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1. Introduction
In nonlinear analysis, the Banach contraction mapping principle is introduced by Banach

[3]. This is a classical and powerful tool to solve the existence and uniqueness of fixed points of
certain self-maps of metric spaces. Afterwards, several authors have studied weak contraction
mapping which is generalizations of the Banach contractions mapping. Some fixed point
theorems of weak contractions in complete metric spaces were proved by many authors, see
in [14]-[19]. In [6], [11]-[23], the partially ordered metric spaces extended the existence of a
fixed point for weak contractions and generalized contractions. Some of them concern altering
distance functions which were introduced by Khan et al. [14]. They discussed about fixed point
theorems in complete and compact metric spaces.

In 2014, Su [28] introduced generalized contraction mappings concerning generalized
altering distance functions. He proved a new fixed point theorem of generalized contraction
mappings in a complete partially order metric spaces.

On the other hand, George et al. [7] introduced the concept of rectangular b-metric space.
They proved an analogue of Banach contraction principle and Kannan’s fixed point theorem in
this space.

At the same time, Roshan et al. [22] also introduced almost generalized weakly contractive
mappings which was constructed from an altering distance function. Some fixed point theorems
with almost generalized weakly contractive mappings are established.

In this paper, we introduce a weak altering distance function and new generalized contractive
mapping in rectangular b-metric spaces. The fixed point result of such a mapping in rectangular
b-metric spaces are discussed.

2. Auxiliary Results

In this work, we focus rectangular b-metric spaces which was introduced by Roshan et al. [22].
In this space, Roshan et al. gave two lemmas which plays an important role to prove the fixed
point result of new generalized contractive mapping in rectangular b-metric spaces.

Definition 2.1 ([22]). Let X be a nonempty set, s ≥ 1 be a given real number and let
d : X × X → [0,∞) be a mapping such that for all x, y ∈ X and all distinct points u,v ∈ X ,
each distinct from x and y:

(i) d(x, y)= 0 if and only if x = y;

(ii) d(x, y)= d(y, x);

(iii) d(x, y)≤ s[d(x,u)+d(u,v)+d(v, y)] (b-rectangular inequality).

Then (X ,d) is called a rectangular b-metric space or generalized b-metric space with
parameter s.

Convergent and Cauchy sequences in rectangular b-metric spaces, completeness, we define
as follows:
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Definition 2.2 ([7]). Let (X ,d) be a rectangular b-metric space, xn be a sequence in X and
x ∈ X :

(i) the sequence xn is said to be converges to a point x in (X ,d), if for every ε> 0 there exists
n0 ∈N such that d(xn, x) < ε for all n > n0 and this fact is represented by lim

n→∞xn = x or
xn → x as n →∞;

(ii) the sequence xn is said to be Cauchy sequence in (X ,d) if for every ε > 0 there exists
n0 ∈N such that d(xn, xn+p)< ε for all n > n0, p > 0 or equivalently, if lim

n→∞d(xn, xn+p)= 0
for all p ∈N;

(iii) (X ,d) is said to be a complete rectangular b-metric space if every Cauchy sequence in X
converges to some x ∈ X .

We define continuous mapping in rectangular b-metric spaces as follows:

Definition 2.3. A mapping f is called continuous mapping if f xn → f x wherever xn → x ∈ X as
n →∞.

Next, the two lemmas concerning Cauchy sequence on rectangular b-metric spaces are
stated here.

Lemma 2.4 ([22]). Let (X ,d) be a rectangular b-metric space and let {xn} be a Cauchy sequence
in X such that xm 6= xn whenever m 6= n. Then {xn} can converge to at most one point.

Lemma 2.5 ([22]). Let (X ,d) be a rectangular b-metric space with coefficient s ≥ 1. If y ∈ X and
{xn} is a Cauchy sequence in X with xn 6= xm for infinitely many m,n ∈N, n 6= m, converging to x
where x 6= y, then

1
s

d(x, y)≤ liminf
n→∞ d(xn, y)≤ limsup

n→∞
d(xn, y)≤ sd(x, y).

3. Main results
In this section, we will introduce definitions of weak altering distance function and generalized
(ψ,φ)s-contractive mapping. With these definitions, we will establish the existence of fixed point
results in rectangular b-metric spaces.

Definition 3.1. Let s ≥ 1 be a given real number. A function ψ : [0,∞)→ [0,∞) is called a s-weak
altering distance function as following properties:

(i) if {xn} is a sequence in [0,∞) and x ∈ [0,∞) such that
x
s ≤ limsup

n→∞
xn ≤ sx, then ψ(limsup

n→∞
xn)≤ limsup

n→∞
ψ(xn);

(ii) ψ is non-decreasing;

(iii) ψ(t)= 0 if and only if t = 0.

Remark 3.2. It is easy to see that the class of s-weak altering distance functions is larger than
the class of altering distance functions.
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Example 3.3. Let ψ : [0,∞)→ [0,∞) define by

ψ(t)=


t2, 0≤ t ≤ 1

2
,

t+ 1
10 , t > 1

2
.

Then ψ is a s-weak altering distance.

Proof. Let {xn} is a sequence in [0,∞) such that for all s ≥ 1 there exist x ∈ [0,∞) with
x
s
≤ limsup

n→∞
xn ≤ sx.

We want to show that

ψ(limsup
n→∞

xn)≤ limsup
n→∞

ψ(xn).

Case 1: 0≤ limsup
n→∞

xn ≤ 1
2

, we get

ψ(limsup
n→∞

xn)= (limsup
n→∞

xn)2

= (
lim

n→∞(sup{xk;k ≥ n})
)2

= lim
n→∞((sup{xk;k ≥ n})2)

= lim
n→∞(sup{x2

k;k ≥ n})

= limsup
n→∞

x2
n

and

limsup
n→∞

ψ(xn)= lim
n→∞(sup{ψ(xk);k ≥ n})

= lim
n→∞(sup{x2

k;k ≥ n})

= limsup
n→∞

x2
n.

Case 2: limsup
n→∞

xn > 1
2 , we get

ψ(limsup
n→∞

xn)= limsup
n→∞

xn + 1
10

and

limsup
n→∞

ψ(xn)= lim
n→∞(sup{ψ(xk);k ≥ n})

= lim
n→∞

(
sup

{
xk +

1
10

;k ≥ n
})

= lim
n→∞(sup{xk;k ≥ n})+ 1

10

= limsup
n→∞

xn + 1
10

.

Then ψ is a s-weak altering distance function but ψ is not an altering distance function because
ψ is not continuous.
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Definition 3.4. Let (X ,¹,d) be a partially order rectangular b-metric spaces with parameter
s ≥ 1. A mapping f : X → X is said to be a generalized (ψ,φ)s-contractive if

ψ(sd( f x, f y))≤φ(d(x, y)) (3.1)

for all x, y ∈ X with x ¹ y, where ψ : [0,∞)→ [0,∞) is a s-weak altering distance function and
φ : [0,∞)→ [0,∞) is a function satisfies the following conditions:

(i) ψ(t)>φ(t) if and only if t > 0,

(ii) if {xn} is a sequence in [0,∞) such that x
s ≤ limsup

n→∞
xn ≤ sx for some x ∈ [0,∞), then

limsup
n→∞

φ(xn)≤φ(x).

In our work, we will prove the fixed point result for generalized (ψ,φ)s-contractive mapping
in partially ordered rectangular b-metric spaces. Before proving our main result we need the
following Lemma:

Lemma 3.5. Let (X ,¹,d) be a complete partially ordered rectangular b-metric spaces with
parameter s ≥ 1 and f : X → X be a generalized (ψ,φ)s-contractive mapping. If f is continuous
non-decreasing with respect to ¹ and there exist x0 ∈ X such that x0 ¹ f x0, then f has periodic
point.

Proof. Let {xn} be a sequence in X , such that xn+1 = f xn, for all n ∈N∪ {0}. Since x0 ¹ f x0 = x1

and f is non-decreasing, we have x1 = f x0 ¹ f x1 = x2. Continuing this process, we get

x0 ¹ x1 ¹ ·· · ¹ xn ¹ xn+1 ¹ ·· ·
for all n ∈N. We will show that f has a periodic point, that is, there exist a positive integer p
and a point z ∈ X such that z = f pz. Assume the contrary, that is, f has no periodic point. Then,
all elements of the sequence {xn} are distinct, i.e. we can assume that xn 6= xm for all n 6= m.
Next, we want to show the {xn} is a Cauchy sequence in X . We suppose that {xn} is not a Cauchy
sequence. Then there exists ε> 0 for which we can find two subsequences {xmi } and {xni } of {xn}
such that ni is the smallest index for which

ni > mi > i and d(xmi , xni )≥ ε. (3.2)

This means that

d(xmi , xni−2)< ε. (3.3)

Using (3.3) and taking the upper limit as i →∞, we get

limsup
i→∞

d(xmi , xni−2)≤ ε. (3.4)

On the other hand, we have

d(xmi , xni )≤ sd(xmi , xmi+1)+ sd(xmi+1, xni−1)+ sd(xni−1, xni ). (3.5)

Next, we will show that d(xmi , xmi+1)→ 0 as i →∞. Since xmi−1 6= xmi , for all mi ∈N, by (3.1),
we have

ψ(d(xmi , xmi+1))≤ψ(sd(xmi , xmi+1))
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≤φ(d(xmi−1, xmi ))

<ψ(d(xmi−1, xmi )), (3.6)

for all mi ∈N. This implies that

d(xmi+1, xmi )< d(xmi , xmi−1) (3.7)

for all mi ∈ N. Hence, the sequence {d(xmi+1, xmi )} is decreasing and bounded below.
Consequently, there exists r ≥ 0 such that

d(xmi+1, xmi )→ r as i →∞. (3.8)

This implies that lim
i→∞

d(xmi , xmi−1)= r and then

limsup
i→∞

d(xmi , xmi−1)= liminf
i→∞

d(xmi , xmi−1)= r.

Now we obtain that
r
s
≤ limsup

i→∞
d(xmi , xmi−1)= r ≤ sr.

Consider the properties of ψ and φ, letting i →∞ in (3.6), we get

ψ(r)≤ limsup
i→∞

ψ(d(xmi+1, xmi ))≤ limsup
i→∞

φ(d(xmi , xmi−1))≤φ(r).

By using the condition ψ(t)>φ(t) for all t > 0, we have r = 0, and hence

d(xmi+1, xmi )→ 0 as i →∞. (3.9)

Similarly, we have

d(xni−1, xni )→ 0 as i →∞. (3.10)

Therefore, by using (3.9) and (3.10), then the inequality (3.5) becomes

limsup
i→∞

d(xmi , xni )≤ s(limsup
i→∞

d(xmi+1, xni−1)). (3.11)

Thus, by using (3.2) and (3.11), we have
ε

s
≤ limsup

i→∞
d(xmi+1, xni−1). (3.12)

Using the b-rectangular inequality, so we have the following inequality:

d(xmi+1, xni−1)≤ sd(xmi+1, xmi )+ sd(xmi , xni−2)+ sd(xni−2, xni−1). (3.13)

Using the same argument as in (3.9), we have

d(xni−2, xni−1)→ 0 as i →∞. (3.14)

Therefore, by using (3.3), (3.9), (3.12) and (3.14), then the inequality (3.13) becomes
ε

s
≤ limsup

i→∞
d(xmi+1, xni−1)≤ sε. (3.15)

Again using the b-rectangular inequality, so we have the following inequality:

d(xmi , xni )≤ sd(xmi , xni−2)+ sd(xni−2, xni−1)+ sd(xni−1, xni ). (3.16)
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Thus, by using (3.3), (3.4), (3.10), (3.14) and taking the upper limit as i →∞, we get
ε

s
≤ limsup

i→∞
d(xmi , xni−2)≤ sε. (3.17)

From (3.1), we have

ψ(sd(xmi+1, xni−1))≤φ(d(xmi , xni−2)). (3.18)

Next, taking the upper limit as i →∞ in (3.18) and using (3.12), (3.15) and (3.17) we have

ψ(ε)=ψ
(
s · ε

s

)
≤ψ(s limsup

i→∞
d(xmi+1, xni−1))

=ψ(limsup
i→∞

sd(xmi+1, xni−1))

≤ limsup
i→∞

ψ(sd(xmi+1, xni−1))

≤ limsup
i→∞

φ(d(xmi , xni−2))

≤φ(ε).

This contradicts to ψ(t)>φ(t) for all t > 0. Thus, {xn+1}= { f xn} is a Cauchy sequence in X . As X
is complete, there exists u ∈ X such that xn → u as n →∞. By Lemma 2.4, we obtain that

u = lim
n→∞xn+1 = lim

n→∞ f xn = f ( lim
n→∞xn)= f u.

This result contradicts the assumption that f has no periodic points. This completes the
proof.

Now, we are ready to prove the first main theorem.

Theorem 3.6. Let (X ,¹,d) be a complete partially ordered rectangular b-metric spaces with
parameter s ≥ 1 and f : X → X be a generalized (ψ,φ)s-contractive mapping. Suppose that the
following conditions hold:

(i) f is a continuous mapping;

(ii) f is non-decreasing with respect to ¹;

(iii) there exists x0 ∈ X such that x0 ¹ f x0.

Then f has a fixed point.

Proof. Since x0 ¹ f x0 = x1 and f is non-decreasing, we have x1 = f x0 ¹ f x1 = x2. Continuing
this process, we get

x0 ¹ x1 ¹ ·· · ¹ xn ¹ xn+1 ¹ ·· ·
for all n ∈N. By Lemma 3.5, f has a periodic point. Thus, there exist z ∈ X and a positive integer
p such that z = f pz. If p = 1, then z = f z so z is fixed point of f . Let p > 1. We claim that the
fixed point of f is f p−1z. Suppose the contrary, that is, f p−1z 6= f ( f p−1z). Then d( f p−1z, f pz)> 0
and so is φ(d( f p−1z, f pz))<ψ(d( f p−1z, f pz)). Letting x = f p−1z and y= f pz in (3.1), we have

ψ(sd(z, f z))=ψ(sd( f pz, f p+1z))
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≤φ(d( f p−1z, f pz))

<ψ(d( f p−1z, f pz)),

≤ψ(sd( f p−1z, f pz)),

and taking into account the fact that ψ is non-decreasing, we deduce

d(z, f z)< d( f p−1z, f pz).

Now, we write x = f p−2z and y= f p−1z in (3.1), we get

ψ(sd( f p−1z, f pz))≤φ(d( f p−2z, f p−1z))

<ψ(d( f p−2z, f p−1z)),

≤ψ(sd( f p−2z, f p−1z)),

which implies d( f p−1z, f pz) < d( f p−2z, f p−1z) since ψ is non-decreasing. We continue in this
way and end up with the inequalities

d(z, f z)< d( f p−1z, f pz)< d( f p−2z, f p−1z)< ·· · < d(z, f z),

which is a contradiction. Therefore, the assumption d( f p−1z, f pz) > 0 is wrong, that is,
d( f p−1z, f pz)= 0 and f p−1z is the fixed point of f .

In the second Theorem, we replace the assumption that f is continuous by another condition,
but we have the some conclusion as in Theorem 3.6.

Theorem 3.7. Let (X ,¹,d) be a complete partially ordered rectangular b-metric spaces with
parameter s ≥ 1 and f : X → X be a generalized (ψ,φ)s-contractive mapping. Suppose that the
following conditions hold:

(i) if {xn} is a non-decreasing sequence in X such that xn → x ∈ X , then xn ¹ x and
limsup

n→∞
φ(d(xn, x))= 0 for all n ∈N;

(ii) f is non-decreasing with respect to ¹;

(iii) there exists x0 ∈ X such that x0 ¹ f x0.

Then f has a fixed point.

Proof. Following similar arguments to those given in the proof of Lemma 3.5, we construct an
increasing sequence {xn} in X such that xn → u, for some u ∈ X . Suppose that f u 6= u. Since
xn ¹ u for all n ∈N, by (3.1), we have

ψ(sd(xn+1, f u))≤φ(d(xn,u)). (3.19)

By this inequality, using Lemma 2.5, first property in Definition 3.1 and inequality (3.1), we get

ψ(d(u, f u))=ψ
(
s · 1

s
d(u, f u)

)
≤ψ

(
s limsup

i→∞
d(xn+1, f u)

)
≤ limsup

n→∞
ψ(sd( f xn, f u))
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≤ limsup
n→∞

φ(d(xn, x))

= 0. (3.20)

Since ψ is a weak altering distance function, we get ψ(d(u, f u))= 0 and so u = f u. Hence, u is
a fixed point of f .
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