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1. Introduction and Preliminaries
Bashirov et al. [1] proposed multiplicative calculus, Özavşar and Çevikel [8] initiated the
idea of multiplicative metric spaces (multiplicative distance). The idea of dislocated metric
spaces was begin by Hitzler [5] in 2001. In that the point self-distance need not be zero, he also
commenced Banach’s principle of contraction in these areas. Dislocated quasi metric spaces were
first mentioned by Zeyada et al. [10], who also expanded on Hitzler’s result. Dislocated quasi
b-metric space was first discussed by Rahman and Sarwar [9], and Istrǎţescu [3] introduced
a category of convex contraction mappings in metric spaces, thereby extending the widely
recognized Banach contraction notion. Nallaselli et al. [6] introduced a novel generalized convex
contraction concept for b-metric spaces and 2-metric spaces. Kir and Kizitune [4] established
fixed point theorems for Kannan and Chatterjea type contractive mappings in b-metric spaces.

Definition 1.1 ([7]). Consider a non-empty set P . A mapping ω : P × P → R+ is termed a
multiplicative metric if, for all u1,v1,w1 ∈ P :

(i) ω(u1,v1)≻ 1 and ω(u1,v1)= 1 if and only if u1 = v1,

(ii) ω(u1,v1)=ω(v1,u1),

(iii) ω(u1,w1)⪯ω(u1,v1)ω(v1,w1) (multiplicative triangle inequality).

Definition 1.2 ([8]). Let (P,ω) be two multiplicative metric spaces. A mapping T :P→P is called
multiplicative contraction if there exists a real constant ϖ ∈ [0,1) such that ω(T(u1),T(u2))⪯
ω(u1,u2)ϖ, for all u1,v1 ∈ P .

Theorem 1.1 ([8]). Let (P,ω) be a mms. A T : P → P be a multiplicative contraction. If (P,ω) is
complete, then T has UFP.

Theorem 1.2 ([8]). Let (P,ω) be a complete mms. Suppose the mapping T : P → P satisfies
the following condition:

ω(Tu1,Tv1)⪯ (ω(Tu1,u1) ·ω(Tv1),v1))ϖ, for all u1,v1 ∈ P, ϖ ∈ [
0, 1

2

)
.

Then T has UFP in P . For any u1 ∈ P , iterative sequence Tn{u1} converges to the fixed point.

Definition 1.3 ([9]). Let P be a non-empty set and k ⪰ 1 be a real number. A mapping
ω : P ×P → [0,∞) is called dislocated quasi b-metric if, for all u1,v1,w1 ∈ P :

(i) ω(u1,v1)=ω(v1,u1)= 0 implies u1 = v1,

(ii) ω(u1,w1)⪯ k[ω(u1,v1)+ω(v1,w1)].

The pair (P,ω) is called a dislocated quasi b-metric or shortly (dqb-metric) space.

2. Main Results
Definition 2.1. A mapping ω : P ×P → [1,∞) is termed a dislocated quasi b-multiplicative
metric if, for all u1,v1,w1 ∈ P :

(i) ω(u1,v1)=ω(v1,u1)= 1 implies u1 = v1,

(ii) ω(u1,w1)⪯ [ω(u1,v1)ω(v1,w1)]k.
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The pair (P,ω) is referred to as a dislocated quasi b-multiplicative metric space, or simply a
(dqb-mms).

Remark 2.1. For k = 1 then it becomes dislocated quasi multiplicative metric space.

Example 2.1. Consider P = [0,1] and ω : P ×P → [1,∞) be defined as ω(ϑ, ι) = a(ϑ−ι)3 , where
ϑ, ι ∈ R and a ≻ 1 with k = 2. Then ω(ϑ, ι) is dqb-mms.

Definition 2.2. In a dislocated quasi b-multiplicative metric space (P,ω), where u1,v1 ∈ P and
ϵ≻ 1, the set Bϵ(u1), defined as {v1 ∈ P |ω(u1,v1)} ⪯ ϵ, is referred to as the dqb-multiplicative
open ball with radius ϵ centered at u1. Similarly, the dqb-multiplicative closed ball, denoted as
B̄ϵ(u1), is defined as {v1 ∈ P |ω(u1,v1)⪯ ϵ}.

Definition 2.3. Consider two dqb-multiplicative metric spaces (P,ω1) and (Υ,ω2), along with a
function T : P →Υ. If, for every ϵ≻ 1, there exists δ≻ 1 such that T(Bδ(u1))⊂ Bϵ(T(u1)), where
T maps the ball of radius δ centered at u1 in P to a ball of radius ϵ centered at T(u1) in Υ, then
T is multiplicative continuous at u1 ∈ P .

Definition 2.4. Consider a dislocated quasi b-multiplicative metric space denoted by (P,ω).
In this context:

(i) A point u1 ∈ P is considered a multiplicative limit point of a subset Z ⊂ P if and only if
the intersection of the set (Bϵ(u1)/(u1)) and Z is non-empty for every ϵ≻ 1.

(ii) A subset Z ⊂ P is deemed multiplicative closed within the space (P,ω) if it contains all of
its multiplicative limit points.

(iii) A set Z is labeled as multiplicative bounded if there exists a point u1 ∈ P and a constant
M ≻ 1 such that Z is entirely contained within the ball BM(u1).

Definition 2.5. A sequence {un} is called dq-converges to u1 iff

lim
n→∞ω(un,u1)= lim

n→∞ω(u1,un)= 1.

In this case, u1 is called dq-limit of un.

Definition 2.6. A sequence {un} in dqb-mms (P,ω) is called cauchy if for each ϵ≻ 1, there exists
n0 ∈ N such that n,m ⪰ n0, ω(un,um)≺ ϵ and ω(um,un)≺ ϵ.

Definition 2.7. A dqb-mms (P,ω) is called complete if every cauchy sequence in it is
dq b-multiplicative convergent in P .

Definition 2.8. In a dislocated quasi b-multiplicative metric space (P,ω) with a designated
point Z ∈ P , we define u1 ∈ A as a multiplicative interior point of Z if there exists an ϵ≻ 1 such
that the ball Bϵ(u1) is entirely contained within Z. The set comprising all such interior points
of Z is referred to as the multiplicative interior of Z, denoted by Int(Z).

Definition 2.9. Let (P,ω) be a dqb-mms and Z ⊂ P . If every point of Z is a multiplicative
interior point of Z, this mean, Z = Int(Z), then Z is called a multiplicative open set.
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Lemma 2.1. Let (P,ω) be a dqb-mms, every subsequence of any convergent sequence is convergent.

Lemma 2.2. Let (P,ω) be a dqb-mms. If a sequence {un} is dqb-mms convergent, then
the dq-limit point is unique.

Theorem 2.1. Let (P,ω) be a complete dq-bmms and a continuous function T : P → P satisfies:

ω(Tu1,Tv1)⪯ω(u1,v1)ϖ ,

where u1,v1 ∈ P , ϖ ∈ [0,1/k] and 0⪯ kϖ≺ 1. Then, T has a UFP.

Proof. Initiate {un} ⊂ P , choose u0 ∈ P and inductively construct the sequence {un} of points
of T ,

u1 = Tu0, u2 = T2u0, u3 = T3u0 .

Likewise, un = Tun−1 = Tnu0.
Clearly, {un} is images of u0 under repeated of application of T ,

ω(un,un+m)⪯ω(un,un+1)kn
ω(un+1,un+2)kn+1

. . . ω(un+m−1,un+m)kn+m−1

=ω(Tnu0,Tnu1)kn
ω(Tn+1u0,Tn+1u1)kn+1

. . . ω(Tn+m−1u0,Tn+m−1u1)kn+m−1

⪯ω(u0,u1)ϖkn/1−ϖk .

As n →∞ and ϖ≺ 1/k which implies kϖ≺ 1, then {un} is a multiplicative cauchy sequence.
Since (P,ω) is complete then {un} is convergent such that lim

n→∞un = u.

To demonstrate u is a FP of T ,

ω(u,Tu)⪯ (ω(u,un)ω(un,Tu))k

⪯ (ω(u,un)ω(un−1,un)ϖ)k

→ 0 as n →∞
= 0,

u = Tu .

Therefore, u is a FP of T .
Let, if possible, u and v be two fixed points of T in P . Then, Tu = u, Tv = v.
Now,

ω(u,v)=ω(Tu,Tv)⪯ω(u,v)ϖ

=⇒ ω(u,v)= 1
=⇒ u = v

Then T has a UFP.

Theorem 2.2. Let (P,ω) be a complete dqb-mms with k ⪰ 1. Let T : P → P be a mapping for
which there exists ϖ ∈ [0,1/2) such that

ω(Tu,Tv)⪯ [ω(u,Tu)ω(v,Tv)]ϖ , (2.1)

for all u,v ∈ P . Then there exists u ∈ P such that un → u and u is UFP of T .

Proof. Initiate {un}⊂ P . Fix u0 ∈ P , inductively construct {un} of points of P ,

u1 = Tu0, u2 = Tu1 = T2u0, u3 = Tu2 = T3u0.
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Similarly, un = Tun−1 = Tnu0,

ω(un,un+1)=ω(Tun−1,Tun)
⪯ [ω(un−1,un)ω(un,un+1)]ϖ

⪯ω(un−1,un)ϖ/1−ϖ .

Likewise,

ω(un,un+1)⪯ω(u,u1)(ϖ/1−ϖ)n
.

Note that ϖ ∈ [0,1/2) then ϖ/1−ϖ ∈ [0,1). Thus T is a contraction mapping. We deduce, in
similar manner to that in the proof of Theorem 2.1 that {un}∞n=1 is a cauchy sequence and hence,
a convergent sequence, too. We consider that {un}∞n=1 convergent to u ∈ P . The result as,

ω(u,Tu)⪯ [ω(u,un)ω(un,Tu)]k

⪯ω(u,un)k[ω(un−1,un)ω(un,Tu]kϖ ,

and we arrive at

ω(u,Tu)⪯ω(u,un)(k/1−kϖ)ω(un,Tu)(kϖ/1−kϖ) . (2.2)

Use the equation (2.2),

ω(u,Tu)⪯ω(u,un)(k/1−kϖ)ω(u0,u1)(kϖ/1−kw)(ϖ/1−ϖ)n
. (2.3)

Let n →∞ in equation (2.3),

lim
n→∞ω(u,Tu)= 1

Therefore, u = Tu and implies that u is a FP of T .

Lemma 2.3. Let (P,ω) be a dqb-mms with coefficient k ⪰ 1 and T : P → P be a mapping. Suppose
that {un} is a sequence in T induced by un+1 = Tun such that

ω(un,un+1)⪯ω(un−1,un)ϖ,

for all n ∈ N , where ϖ ∈ [0,1) is a constant. Then {un} is a dqb-multiplicative cauchy sequence.

Theorem 2.3. Consider a dqb-mms (P,ω) with a coefficient k ≥ 1, and let T : P → P be a
mapping on P . Assume that ϖ1,ϖ2,ϖ3 are nonnegative real numbers satisfying ϖ1+ϖ3 < 1 and
ϖ1+ϖ2
k−ϖ3

< 1. In this context, we have the following inequality:

ω(Tu,Tv)k ⪯ω(u,v)ϖ1

[
ω(u,Tv)ω(v,Tv)

1+ω(Tu,Tv)

]ϖ2

ω(Tu,Tv)ϖ3 (2.4)

holds for each u,v ∈ P . Then T has a UFP.

Proof. Let u0 be arbitrary in P . We define {un} in P such that

un+1 = Tun, for all n ∈ N . (2.5)

Utilizing (2.4) with u = un and v = un−1,

ω(un+1,un)k =ω(Tun,Tun−1)k

⪯ω(un,un−1)ϖ1

(
ω(un,Tun)ω(un−1,Tun−1)

1+ω(Tun,Tun−1)

)ϖ2

ω(Tun,Tun−1)ϖ3

=ω(un,un−1)ϖ1

(
ω(un,un+1)ω(un−1,un)

1+ω(un+1,un)

)ϖ2

ω(un+1,un)ϖ3
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⪯ω(un,un−1)ϖ1

(
ω(un,un+1)ω(un−1,un)

1+ω(un+1,un)

)ϖ2

ω(un+1,un)ϖ3

⪯ω(un−1,un)
ϖ1+ϖ2
k−ϖ3 .

Use Lemma 2.3, say {un} is a dqb-multiplicative cauchy sequence in (P,ω). Since (P,ω) is a
complete-dqb-mms, then {un} converges to some u ∈ P as n →∞.
We show that Tu = u.
By dislocated quasi b-multiplicative triangle inequality and (2.4),

ω(u,Tu)⪯ [ω(u,un+1)ω(un+1,Tu)]k

=ω(u,un+1)kω(Tz,Tun)k

⪯ω(u,un+1)kω(u,un)kϖ1

(
ω(un,Tun)ω(u,Tu)

1+ω(Tun,Tu)

)kϖ2

ω(Tu,Tun)kϖ3 .

Taking the limit as n →∞, ω(u,Tu)1−ϖ3 ⪯ 1.
Since 0 ≺ ϖ3 ≺ 1, then ω(u,Tu) ⪯ 1, which is a contradiction, so ω(u,Tu) = 1. Hence Tu = u,
thus u is a FP of T . Now we say T have a UFP. Suppose u and v are different fixed point of T ,
then from (2.4) that

ω(u,v)k =ω(Tu,Tv)k

⪯ω(u,v)ϖ1

(
ω(u,Tu)ω(v,Tv)

1+ω(Tu,Tv)

)ϖ2

ω(Tu,Tv)ϖ3

=ω(u,v)ϖ1

(
ω(u,u)ω(v,v)
1+ω(Tu,Tv)

)ϖ2

ω(u,v)ϖ3

=ω(u,v)ϖ1+ϖ3 .

Since ϖ1 +ϖ3 is non negative reals with ϖ1 +ϖ3 ≺ 1, then we have ω(u,v)= 1.
Thus, T have a UFP in P .

Definition 2.10. In a metric space (P,ω), let T be a self-mapping and consider ϵ> 0. We define
u0 ∈ P as an ϵ-fixed point of T if ω(u0,Tu0)< ϵ. This is denoted by Υϵ>0(T)= {u ∈ P |ω(Tu,u)< ϵ},
and the set of all fixed points of T is denoted by Fix(T). We say that T adheres to the approximate
fixed point theory (AFPP) if, for every ϵ> 0, there exists an ϵ-fixed point of T , i.e., Υϵ(T) ̸= ;.

Definition 2.11. A self-mapping T : P → P on a non-empty set P is considered α-admissible if,
for any u,v ∈ P such that α(u,v)≥ 1, it follows that α(Tu,Tv)≥ 1.

Definition 2.12. Let P possess property (H) if, for every pair u,v in the fixed points of T , there
exists an element u in P such that α(v,u)≥ 1 and α(w,u)≥ 1.

Lemma 2.4. A self mapping T is asymptotically regular on a dq b-mms (P,ω) at a point u0 ∈ P ,
i.e., ω(Tnu0,Tn+1u0)→ 1 then T has the AFPP.

Definition 2.13. Let (P,ω) be a dislocated quasi b-multiplicative metric space with k ≥ 1.
We say that a self mapping T on P is a multiplicative cyclic (α,β)-convex contraction of
Type-2 if there exists a mapping α,β : X → [1,∞] and ϖi ≥ 0, for all i = {1,2,3, . . . ,8} with
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ϖ1 +ϖ2 +ϖ3 +ϖ4 +ϖ5 +ϖ6 +2ϖ7 +2ϖ8 < 1
h2 such that

α(u)β(v)ω(T2u,T2v)≤ω(u,v)ϖ1ω(Tu,Tv)ϖ2ω(u,Tu)ϖ3ω(Tu,T2u)ϖ4ω(v,Tv)ϖ5ω(Tv,T2v)ϖ6

·
[
ω(u,Tv)ω(v,Tu)

2

]ϖ7
[
ω(Tu,T2v)ω(Tv,T2u)

2

]ϖ8

,

for all u,v ∈ P .

Theorem 2.4. Consider a (P,ω), which is a dqb-mms with k ≥ 1. Let T : P → P denote a cyclic
(α,β)-convex contraction of Type-2. We assume that T is a multiplicative cyclic (α,β) admissible
map, and that there exists an element u0 ∈ P satisfying α(u0) ≥ 1 and β(u0) ≥ 1. Under these
conditions, T possesses the approximate fixed point property. If T is continuous, it implies that
there exists a point that remains unchanged under the action of T . If, in addition, for every
pair of elements u and v belonging to the set of fixed points of T , it holds that α(u) ≥ 1 and
β(v)≥ 1,then T possesses a unique fixed point within the domain P .

Proof. Given an initial point u0 ∈ P satisfying α(u0)≥ 1 and β(u0)≥ 1, we define the sequence
{un} in P as un+1 = Tn+1u0, for all n ∈ Z+∪{0}. If there exists an n ∈ Z+∪{0} such that un = un+1,
then un is a fixed point of T . Assuming un ̸= un+1, for all n ∈ Z+∪ {0} and given that T is a
cyclic mapping that is (α,β) admissible mapping, we have

α(u0)≥ 1 =⇒ β(u1)=β(Tu0)≥ 1 , (2.6)

β(u0)≥ 1 =⇒ α(u1)=α(Tu0)≥ 1 . (2.7)

Using a comparable approach,

α(un)≥ 1 and β(un)≥ 1, for all n ∈ N ,

this implies

α(un−1)β(un)≥ 1, for all n ∈ Z+∪ {0} .

Let’s symbolize

m =max{ω(u0,Tu0),ω(Tu0,T2u0)} ,

v =ϖ1 +ϖ2 +ϖ3 +ϖ4 +ϖ5 +2ϖ7 +ϖ8

and ℘ = 1−ϖ6 −ϖ8. Since α(un−1)β(un) ≥ 1, for all n ∈ N . By Definition 2.13, taking u = u0,
v = Tu0,

ω(T2u0,T3u0)≤ω(u0,Tu0)ϖ1ω(Tu0,T2u0)ϖ2ω(u0,Tu0)ϖ3ω(Tu0,T2u0)ϖ4

·ω(Tu0,T2u0)ϖ5ω(T2u0,T3u0)ϖ6

[
ω(u0,T2u0)ω(Tu0,Tu0)

2

]ϖ7

·
[
ω(Tu0,T2u0)ω(T2u0,T2u0)

2

]ϖ8

=ω(u0,Tu0)ϖ1+ϖ3ω(Tu0,T2u0)ϖ2+ϖ4+ϖ5

·ω(T2u0,T3u0)ϖ6

[
ω(u0,T2u0)

2

]ϖ7 [
ω(Tu0,T2u0)

2

]ϖ8

≤ω(u0,Tu0)ϖ1+ϖ3ω(Tu0,T2u0)ϖ2+ϖ4+ϖ5ω(T2u0,T3u0)ϖ6

· [ω(u0,Tu0)ω(Tu0,T2u0)]ϖ7[ω(Tu0,T2u0)ω(T2u0,T3u0)]ϖ8
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=ω(u0,Tu0)ϖ1+ϖ3+ϖ7ω(Tu0,T2u0)ϖ2+ϖ4+ϖ5+ϖ7+ϖ8

·ω(T2u0,T3u0)ϖ6+ϖ8 ,

ω(T2u0,T3u0)1−ϖ6−ϖ8 ≤ mϖ1+ϖ3+ϖ7 mϖ2+ϖ4+ϖ5+ϖ7+ϖ8

= mϖ1+ϖ2+ϖ3+ϖ4+ϖ5+2ϖ7+ϖ8 ,

ω(T2u0,T3u0)≤ m
v
℘ ,

where v
℘
< 1 as ϖ1 +ϖ2 +ϖ3 +ϖ4 +ϖ5 +2ϖ7 +2ϖ8 < 1

h2 .

Since T is cyclic (α,β) admissible. Taking u = Tu0, v = T2u0,

ω(T3u0,T4u0)≤ω(Tu0,T2u0)ϖ1ω(T2u0,T3u0)ϖ2ω(Tu0,T2u0)ϖ3ω(T2u0,T3u0)ϖ4

·ω(T2u0,T3u0)ϖ5ω(T3u0,T4u0)ϖ6

·
[
ω(Tu0,T3u0)ω(T2u0,T2u0)

2

]ϖ7 [
ω(T2u0,T4u0)ω(T3u0,T3u0)

2

]ϖ8

=ω(Tu0,T2u0)ϖ1+ϖ3+ϖ7ω(T2u0,T3u0)ϖ2+ϖ4+ϖ5+ϖ7+ϖ8ω(T3u0,T4u0)ϖ6+ϖ8

= mϖ1+ϖ2+ϖ3+ϖ4+ϖ5+2ϖ7+ϖ8

≤ m
v
℘ ,

ω(T4u0,T5u0)≤ω(T2u0,T3u0)ϖ1ω(T3u0,T4u0)ϖ2ω(T2u0,T3u0)ϖ3ω(T3u0,T4u0)ϖ4

·ω(T3u0,T4u0)ϖ5ω(T4u0,T5u0)ϖ6

·
[
ω(T2u0,T4u0)ω(T3u0,T3u0)

2

]ϖ7 [
ω(T3u0,T5u0)ω(T4u0,T4u0)

2

]ϖ8

=ω(T2u0,T3u0)ϖ1+ϖ3+ϖ7ω(T3u0,T4u0)ϖ2+ϖ4+ϖ5+ϖ7+ϖ8ω(T4u0,T5u0)ϖ6+ϖ8

= m
(

v
℘

)ϖ1+ϖ3+ϖ7

m
(

v
℘

)ϖ2+ϖ4+ϖ5+ϖ7+ϖ8

ω(T4u0,T5u0)ϖ6+ϖ8

≤ m
(

v
℘

)2

.

Continuing in this way

ω(Tnu0,Tn+1u0)≤ m
(

v
℘

)n

,

whenever n = 2δ or n = 2δ−1, for δ> 2.

Therefore, ω(Tnu0,Tn+1u0) ≤ m
(

v
℘

) j−1

, whenever n = 2δ or 2δ − 1, for δ > 1. Therefore,
ω(Tnu0,Tn+1u0)→ 1 as n →∞. So, T is asymptotically regular at u0. By Lemma 2.4, conclude
that the AFPP.
Assuming that (P,ω) is a complete dqb-mms with T being continuous, in order to prove that
{un} is a Cauchy sequence in P , consider two distinct non-zero positive integers, denoted as σ
and ς, where σ< ς. This gives rise to two cases:

Case 1: For n = 2δ with δ, χ> 1, then

ω(Tnu0,Tn+χu0)=ω(T2δu0,T2δ+χu0)

≤ω(T2δu0,T2δ+1u0)kω(T2δ+1u0,T2δ+2u0)k2
ω(T2δ+2u0,T2δ+3u0)k3

. . .

≤ m
(

v
℘

)δ
km

(
v
℘

)δ
k2

m
(

v
℘

)δ+1
k3

m
(

v
℘

)δ+1
k4

. . .
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≤ m(k+k2)
(

v
℘

)δ(
1+k2

(
v
℘

)
+...

)
≤ m

(k+k2)
(

v
℘

)δ 1

1−k2
(

v
℘

)
.

Case 2: For n = 2δ+1 with δ, χ> 1,

ω(Tnu0,Tn+χu0)=ω(T2δ+1u0,T2δ+χ+1u0)

≤ω(T2δ+1u0,T2δ+2u0)kω(T2δ+2u0,T2δ+3u0)k2

·ω(T2δ+3u0,T2δ+4u0)k3
ω(T2δ+4u0,T2δ+5u0)k4

. . .

≤ m
(

v
℘

)δ
km

(
v
℘

)δ
k2

m
(

v
℘

)δ+1
k3

m
(

v
℘

)δ+1
k4

. . .

≤ m(k+k2)
(

v
℘

)δ(
1+k2

(
v
℘

)
+...

)
≤ m

(k+k2)
(

v
℘

)δ 1

1−k2
(

v
℘

)
.

As δ→∞ in all cases, we have k2( v
℘

)< 1, this implies that ω(Tnu0,Tnu0)→ 1. Consequently,
{un} forms a Cauchy sequence in P . Given that P is complete, there exists a point σ ∈ P such
that un = Tnu0 →σ ∈ P as n →∞. Utilizing the continuity of T , we deduce σ= lim

n→∞Tσ. This
establishes σ as a fixed point of T . Now, let’s demonstrate the uniqueness of this fixed point.
Let σ,σ∗ ∈Fix(T) with σ ̸=σ∗. By being cyclic (α,β) admissible, we have α(σ)> 1 and β(σ∗)> 1
and from Definition 2.13, taking u =σ and v =σ∗, we obtain

ω(σ,σ∗)=ω(T2σ,T2σ∗)

≤ω(σ,σ∗)ϖ1ω(Tσ,Tσ∗)ϖ2ω(σ,Tσ)ϖ3ω(Tσ,T2σ)ϖ4ω(σ∗,Tσ∗)ϖ5ω(Tσ∗,T2σ∗)ϖ6

·
[
ω(σ,Tσ∗)ω(σ∗,Tσ)

2

]ϖ7
[
ω(Tσ,T2σ∗)ω(Tσ,T2σ)

2

]ϖ8

≤ω(σ,σ∗)ϖ1ω(σ,σ∗)ϖ2ω(σ,σ∗)ϖ7ω(σ,σ∗)ϖ8

≤ω(σ,σ∗)ϖ1+ϖ2+ϖ7+ϖ8 .

It follows that ω(σ,σ∗)1−ϖ1−ϖ2−ϖ7−ϖ8 ≤ 1, which is contradiction. Therefore, ω(σ,σ∗)= 1. Hence
T has a unique fixed point in P .

3. Application to System of Integral Equation
Let P = C([ĕ, c̆],R+) be a set of all continuous function on [ĕ, c̆] is a closed and bounded interval.
For a real number τ> 0, define ω : P ×P → [1,∞] by

ω(ζ,η)= sup
∣∣∣∣ζ(t)η(t)

∣∣∣∣τ , (3.1)

for all ζ,η ∈ C([ĕ, c̆],R+) with these settings (ω,P) becomes a complete dqb-mms with h = 2τ−1.
We utilize Theorem 2.3 to demonstrate the existence of a solution for the Fredholm integral of a
specified type, as defined by

u(t)=
∫ c̆

ĕ
k(t, s,u(s))ds , (3.2)

for all t, s ∈ [ĕ, c̆],
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(i) k is the function from [ĕ, c̆]× [ĕ, c̆]×P → R are continuous functions on [ĕ, c̆].

(ii) |λ| ≤ 1.

(iii) For every u,v ∈ P with u ̸= v and t, s ∈ [ĕ, c̆] meeting the subsequent inequality:∣∣∣∣k(t, s,Tu(s))
k(t, s,Tv(s))

∣∣∣∣τ ≤ D(t, s)max
{
|u(s)−v(s)|, |Tu(s)−Tv(s)|, |u(s)−Tu(s)|,

· |Tu(s)−T2u(s)|, |v(s)−Tv(s)|, |Tv(s)−T2v(s)|,

·
( |u(s)−Tv(s)||v(s)−Tu(s)

2

)
,

·
( |Tu(s)−T2v(s)| |Tv(s)−T2v(s)

2

)}τ
. (3.3)

(iv) max
t∈[ĕ,c̆]

∫ c̆

ĕ
D(t, s)ds ≤ 1

( ˘e− c)τ−1 , where h = 2τ−1.

Theorem 3.1. Given assumptions (i)-(iv), the integral equation (3.2) possesses a solution within
the set P .
Define T : P → P by

Tu(t)=
∫ c̆

ĕ
k(t, s,u(s))ds . (3.4)

Observe that u is a solution for (3.2) iff u is a f ixed point of T . Let q ∈ R such that 1
τ
+ 1

q = 1.
We establish the novelty of the generalized convex contraction operator T on the space C[ĕ, c̆] by
employing the Holder inequality and satisfying the conditions (i)-(iv). By equations (3.3) and
(3.4), we obtain

d(T2u,T2v)≤ sup
t∈[ĕ,c̆]

|T2u(t)−T2v(t)|τ

≤ sup
t∈[ ˘e,c]

|λ|τ
(∫ c̆

ĕ

∣∣∣∣k(t, s,Tu(s))
k(t, s,Tv(s))

∣∣∣∣ds
)τ

≤
 sup

t∈[ĕ,c̆]

(∫ c̆

ĕ
1τds

) 1
q
(∫ c̆

ĕ

∣∣∣∣(k(t, s,Tu(s))
k(t, s,Tv(s))

)τ∣∣∣∣ds
) 1
τ

τ

= (ĕ− c̆)τ−1 1
(ĕ− c̆)τ−1 max

{
d(u,v),d(Tu,Tv),d(u,Tu), (Tu,T2u),d(v,Tv),

d(Tv,T2v),
d(u,Tv)d(v,Tu)

2
,
d(Tv,T2u)d(Tv,T2u)

2

}
= S̆(u,v) .

Therefore, α(u,v)d(Tu,Tv)≤ S̆(u,v).
Define α : P ×P → R+ by α(u,v) = 1, for all u,v ∈ P . Therefore, T is α-admissible. Let u0 and
{un} in P defined by un+1 = Tun = Tn+1u0, for all n ≥ 0. Equation (3.4), we have

un+1 = Tun(t)= 1
t− s

∫ c̆

ĕ
k(t, s,un(s))ds .

All conditions stated in Theorem 2.3 are met, and hence T has a unique fixed point.
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4. An Application to Dynamic Programming
This section establishes the existence of a solution for a certain class of functional equations
using rational-type contraction in a dislocated quasi b-multiplicative metric space

u̇(x̆)= sup
y̆∈D

{µ(x̆, y̆)+E(x̆, y̆, u̇(Γ(x̆, y̆))} (4.1)

(cf., Bellman and Lee [2]). Here, S represents the state space, D is the decision space, and
Γ : S×D, µ : S×D →R, and E : S×D×R→R are mappings provided for the interactions within
the system.

Lemma 4.1. If T,G : S →R are bounded function, where x̆ ∈ S then for each σ> 1,

σ
|sup

x̆∈S
T(x̆)−sup

x̆∈S
G(x̆)|

≤σ
sup
x̆∈S

|T(x̆)−G(x̆)|
.

Consider a non-empty set S and we work in the space B(S) representing the collection of
all bounded real functions defined on S. Utilizing standard function addition and scalar
multiplication, the norm ∥·∥∞ defined as

∥u̇∥∞ = sup
x̆∈S

|u̇(x̆)|, for all u̇ ∈ B(S),

then (B(S),∥·∥) is Banach space. Therefore, the distance of dqb-mms in B(S) is

ω∞(u̇, v̇)=σ
sup
x∈S

|u̇(x̆)−v̇(x̆)|
, u̇, v̇ ∈ B(S) .

Lemma 4.2. Assuming that:

(i) µ : S×D →R and E(·, ·,0) : S×D →R are bounded functions.

(ii) There exists M̆ ≥ 0 such that, for all x̆ ∈ S, y̆ ∈ D, a,b ∈R,

σ|E(x̆, y̆,a)E(x̆, y̆,b)| ≤σM̆|a−b| .

Then the operator R : B(S)→ B(S) given, for all u̇ ∈ B(S) and all x̆ ∈ S by

(Ru̇)(x̆)= sup
y̆∈D

{µ(x̆, y̆)+E(x̆, y̆, u̇(Γ(x̆, y̆)))} . (4.2)

Theorem 4.1. Suppose the following assumptions:

(i) µ : S×D →R and E(·, ·,0) : S×D →R are bounded functions.

(ii) There exists M̆ ≥ 0 such that, for all x̆ ∈ S, y̆ ∈ D and a,b ∈R,

σ|E(x̆, y̆,a)−E(x̆, y̆,b)|2 ≤σM̆|a−b|2 .

(iii) There exists a continuous comparison function ϕ ∈ Fcom such that, for all x̆ ∈ S, for all
y̆ ∈ D, for all u̇, v̇ ∈ B(S) and for each σ> 1

σ|E(x̆, y̆),u̇(Γ(x̆, y̆))−E(x̆, y̆),v̇(Γ(x̆, y̆))|2 ≤σϕ(M̆(u̇,v̇))2 ,

where

M̆(x̆, y̆)=ω∞(u̇, v̇)ϖ1

[
ω∞(u̇,Ru̇)ω∞(v̇,Rv̇)

1+ω∞(Ru̇,Rv̇)

]ϖ2

ω∞(Ru̇,Rv̇)ϖ3 .

Then, equation (4.1) has a unique solution u̇0 in B(S).
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Proof. Let R : B(S) → B(S) in (4.2), by Lemma 4.2 and the non-decreasing character of ϕ,
we deduce that, for all u̇, v̇ ∈ B(S) and all x̆ ∈ S,

σ|(Ru̇)(x̆)−(Rv̇)(x̆)|2 =σ
|sup

˘y∈D
{µ(x̆, y̆)+E(x̆, y̆,u(Γ(x̆, y̆)}−sup

˘y∈D
{µ(x̆, y̆)+E(x̆, y̆,u̇(Γ(x̆, y̆)}|2

≤σ
|sup

y̆∈D
(µ(x̆, y̆)+E(x̆, y̆,u̇(Γ(x̆, y̆)))−(µ(x̆, y̆)+E(x̆, y̆,v̇(Γ(x̆, y̆))))|2

=σ
sup
y∈D

|E(x̆, y̆),u̇(Γ(x̆, y̆))−E(x̆, y̆),v̇(Γ(x̆, y̆))|2

≤σϕ(M̆(u̇,v̇))2 ,

ω∞(Ru̇,Rv̇)=σ
sup
x̆∈S

|(Ru((x)−(Rv)(x)))|2

≤σϕ(M̆(u̇,v̇))2 , for all u̇, v̇ ∈ B(S),

which means that R satisfies all hypothesis of theorem. Thus, there exists a unique u̇0 ∈ B(S)
such that Ru̇0 = u̇0. Hence, for all x̆ ∈ S, u̇0(x̆) = (Ru̇0)(x) = sup

y̆∈D
{µ(x̆, y̆)+ E(x̆, y̆, u̇0(Γ(x̆, y̆))}.

This complete the proof.
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