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1. Introduction
The notion of invariant submanifolds plays a crucial role in differential geometry, as it allows us
to explore and understand the geometric properties of a manifold under certain transformations
or symmetries. Hyperbolic Kenmotsu manifolds are a particular class of Riemannian manifolds
that generalize the concept of Kenmotsu manifolds. They possess a special type of metric tensor
known as a Kenmotsu metric, which is closely related to the hyperbolic metric. Understanding
the existence and properties of invariant submanifolds in hyperbolic Kenmotsu manifolds
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has significant implications in various fields of mathematics and physics. Specifically, in
mathematical physics, invariant submanifolds often arise in the context of gauge theories,
where they represent physically meaningful states or configurations.

The concept of Hyperbolic Kenmotsu manifolds has been extensively studied by various
authors in different contexts. In a study conducted in 2021 by Pankaj et al. [10], the properties
of Yamabe metric on 3-dimensional hyperbolic Kenmotsu manifolds were examined. Recently,
in 2022, Chaubey et al. [5] conducted a study examining the characteristics of invariant
submanifolds within hyperbolic Sasakian manifolds. They established that a three-dimensional
submanifold is completely geodesic if and only if it is invariant.

In addition, Gill and Dube [8] studied the basic properties, integrability, and totally
geodesicity of generalized CR-submanifolds of the trans hyperbolic Sasakian manifold were
studied. In a separate investigation, Siddiqi and Akyol [12] studied the concept of anti-
invariant ξ⊥-Riemannian submersions from hyperbolic β-Kenmotsu manifolds onto Riemannian
manifolds was introduced and examined. The study established necessary and sufficient
conditions for a specific anti-invariant ξ⊥-Riemannian submersion deemed to be totally geodesic.

Invariant submanifolds can be used in digital design to create smooth and deformable
shapes, such as character animation in video games or computer-generated images. By defining
invariant submanifolds, designers can ensure that specific parts of the shape remain unchanged
during deformation, resulting in more realistic and visually appealing animations. Invariant
submanifolds find applications in medical imaging, particularly in analyzing and segmenting
anatomical structures from imaging data. By identifying and tracking invariant submanifolds
in medical images, researchers and clinicians can accurately characterize and measure distinct
anatomical features, leading to precise diagnosis, treatment planning, and analysis of disease
progression. Invariant submanifolds can be used in graphic design to create custom shapes and
patterns. By manipulating the parameters that define the invariant submanifolds, designers
can generate aesthetically pleasing designs that possess specific symmetries or transformations.
This can be particularly useful for logo design, textile patterns or architectural elements.

This introduction aims to provide a brief overview of invariant submanifolds, highlighting
their importance and relevance in the field of differential geometry and its applications.
In Section 2, we will explore some aspects of invariant submanifolds, including definitions
and fundamental properties of invariant submanifolds and hyperbolic Kenmotsu manifold.
In Section 3, we have derived the main results of invariant submanifold of hyperbolic Kenmotsu
manifold. In Section 4, we concluded our results.

2. Preliminaries
In a manifold M with (2n+1) dimensions, possessing the properties of almost hyperbolic contact
manifold (AHCM), there exists a fundamental tensor field φ of type (1,1), along with other key
components such as a unit time-like vector field ξ, a 1-form η, we have

φ2 = I+η⊗ξ, η(ξ)=−1, η◦φ= 0, φ(ξ)= 0, rank(φ)= 2n, (2.1)

it includes identity endomorphism of the tangent bundle of M̃2n+1 by I and the tensor product
as ⊗. An AHCM M̃2n+1 is said to be an almost hyperbolic contact metric manifold (AHCMM),
is characterized by the property that its semi-Riemannian metric g satisfies the following
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conditions:

g(φE1,φE2)=−g(E1,E2)−η(E1)η(E2), (2.2)

g(φE1,E2)=−g(E1,φE2), g(E1,ξ)= η(E1), (2.3)

for any arbitrary vector fields E1 and E2. A structure denoted as (φ,ξ,η, g) defined on the
manifold M̃2n+1 is referred to as an almost hyperbolic contact metric structure. An AHCMM
M̃2n+1 is called a hyperbolic Kenmotsu manifold (HKM) (Bhatt and Dube [4]) if below mentioned
equations are satisfied,

(∇E1φ)E2 = g(φE1,E2)ξ−η(E2)φE1, (2.4)

∇E1ξ=−E1 −η(E1)ξ, (2.5)

which gives

(∇E1φ)E2 = g(φE1,φE2)=−g(E1,E2)−η(E1)η(E2). (2.6)

Lemma 2.1 ([10]). On a (2n+1)-dimensional HKM M̃2n+1, we have
(i) R(E1,E2)ξ= η(E2)E1 −η(E1)E2,

(ii) R(E1,ξ)ξ=−E1 −η(E1)ξ,

(iii) R(ξ,E1)E2 = g(E1,E2)ξ−η(E2)E1,

(iv) S(E1,ξ)= 2nη(E1), S(ξ,ξ)=−2n and Qξ= 2nξ,
where curvature tensor, Ricci tensor and Ricci operator is denoted by R, S and Q respectively on
M̃2n+1.

An invariant submanifold (IS) M of a HKM M̃2n+1 is characterized by the property that
for every point E1 ∈M, the tangent space TE1M is preserved under the action of the structure
vector field φ. This implies that the characteristic vector field ξ becomes tangent to M.

For an IS in a HKM, the (0, i)-tensor field T satisfies the condition

π(E,ξ)= 0, (2.7)

where E is any vector tangent to M̃2n+1.
On a Riemannian manifold (M, g) with the Levi-Civita connection ∇, we take ∇qT as

the covariant differentiation of the qth order of a (0, i)-tensor field T, where i ≥ 1.
A tensor field T is recurrent if the below mentioned equations satisfied on the entire manifold

M (Roter [11]),

(∇T)(E1,E2, . . . ,Ek;E)T(F1,F2, . . . ,Fk)= (∇T)(F1, . . . ,Fk;E)T(F1, . . . ,Fk) (2.8)

and

(∇2T)(E1,E2, . . . ,Ek;E,F)T(F1,F2, . . . ,Fk)= (∇2T)(F1,F2, . . . ,Fk;E,F)T(E1,E2, . . . ,Ek), (2.9)

respectively, where E,F,E1,F1, . . . ,Ek,Fk ∈TM. By examining equation (2.8) at a specific point
x ∈M in the case where the tensor T is non-zero, there exists a singular 1-form φ and a (0,2)-
tensor ψ. These are uniquely defined within a neighborhood U of E1, satisfying the following
equations:

∇T =T⊗φ, φ= d(log∥T∥), (2.10)

∇2T =T⊗ψ. (2.11)
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These equations hold on U, where the norm of T and ∥T∥2 = g(T,T) represented by ∥T∥. A tensor
T is considered to be generalized 2-recurrent (G-2-R) if

((∇2T)(E1, . . . ,Ek;E,F)− (∇T⊗φ)(E1, . . . ,Ek;E,F))T(F1, . . . ,Fk) (2.12)

= ((∇2T)(F1, . . . ,Fk;E,F)− (∇T⊗φ)(F1, . . . ,Fk;E,F))T(E1, . . . ,Ek). (2.13)

The formulas of Gauss and Weingarten are (Chen [6]),

∇̃EF=∇EF+π(E,F), (2.14)

∇̃EN=−ANE+∇⊥
EN. (2.15)

Consider the tangent vector fields E,F and denote the normal vector field as N on M. We denote
the second fundamental form as π, the shape operator as A, and normal connection as ∇⊥.
The manifold is said to be totally geodesic (TG) if π is identically zero.

The relationship between the π and AN is represented as:

g̃(π(E,F),N)= g(ANE,F), (2.16)

where g̃ denotes metric on M. This equation relates the components of π and AN with respect
to the tangent vector fields E and F.

The first and second covariant derivatives of the π can be obtained as follows:

(∇̃Eπ)(F,Z)=∇⊥
E (π(E,Z))−π(∇EF,Z)−π(F,∇EZ), (2.17)

(∇̃2π)(Z,W,E,F)= (∇̃E∇̃Fπ)(Z,W) (2.18)

=∇⊥
E ((∇̃Fπ)(Z,W))− (∇̃Fπ)(∇EZ,W)− (∇̃Eπ)(Z,∇FW)− (∇̃∇EFπ)(Z,W) (2.19)

respectively, where the van der Waerden-Bortolotti connection of M denoted by ∇̃ (Chen [6]).
M is said to have parallel π if ∇̃π= 0 [6]. Further, we define endomorphism R(E,F) and E∧B F

of χ(M) by

R(E,F)Z=∇E∇FZ−∇F∇EZ−∇[E,F]Z (2.20)

and

(E∧BF)Z=B(F,Z)E−B(E,Z)F, (2.21)

respectively, where E,F,Z ∈ χ(M) and symmetric (0,2)-tensor field on (M, g) is denoted by B.
The tensor Q(B,T) is defined by

Q(B,T)(E1, . . . ,Ek;E,F)=−(T(E∧B F)E1, . . . ,Ek)− . . .−T(E1, . . . ,Ek−1(E∧B F)Ek). (2.22)

By substituting T =π, ∇̃π, B= g, and B= S into the given formula, these tensors Q(g,π), Q(S,π),
Q(g,∇̃π) and Q(S,∇̃π) can be calculated.

Definition 2.1. An immersion is considered to be semiparallel (SP) (Deprez [7]), 2-semiparallel
(2-SP) (Özgür and Murathan [1]), pseudoparallel (PP) (Asperti et al. [3]), 2-pseudoparallel
(2-PP) (Özgür and Murathan [1]) and Ricci-generalized pseudoparallel (RGPP) (Murathan et
al. [9]) respectively, for every vector fields E,F tangent to M the following specified conditions
are satisfied,

R̃ ·π= 0, (2.23)

R̃ · ∇̃π= 0, (2.24)

R̃ ·π=K1Q(g,π), (2.25)
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R̃ · ∇̃π=K1Q(g,∇̃π), (2.26)

R̃ ·π=K2Q(S,π), (2.27)

where R̃ represents the curvature tensor corresponding to the connection ∇̃.

Definition 2.2. An immersion is 2-RGPP if it satisfies the equation

R̃ · ∇̃π=K2Q(S,∇̃π), (2.28)

where K1 and K2 are functions that depend on π and ∇̃π. By (2.23), we have

(R̃(E,F) ·π)(X1,X2)=R⊥(E,F)π(X1,X2)−π(R(E,F)X1,X2)−π(X1,R(E,F)X2), (2.29)

for every vector fields E,F,X1 and X2 tangent to M. Similarly,

(R̃(E,F) · ∇̃π)(X1,X2,X3)=R⊥(E,F)(∇̃π)(X1,X2,X3)− (∇̃π)(R(E,F)X1,X2,X3)

− (∇̃π)(X1,R(E,F)X2,X3)− (∇̃π)(X1,X2,R(E,F)X3), (2.30)

for all vector fields E,F,X1,X2,X3 tangent to M, where (∇̃π)(X1,X2,X3)= (∇̃X1π)(X2,X3) (Arslan
et al. [2]).

3. Totally Geodesic Properties on Invariant Submanifold (IS) of
Hyperbolic Kenmotsu Manifold (HKM)

In this study, we focus our attention on examining the invariant submanifold (IS) of HKM that
satisfy certain conditions. By investigating these specific submanifolds, we aim to gain a deeper
understanding of the properties and characteristics of HKM,

(i) R̃ · ∇̃π= 0,

(ii) R̃ ·π=K1Q(g,π),

(iii) R̃ · ∇̃π=K1Q(g,∇̃π),

(iv) R̃ ·π=K2Q(S,π)

(v) R̃ · ∇̃π=K2Q(S,∇̃π).

Theorem 3.1. Let M be an IS of a HKM M̃2n+1. The necessary and sufficient condition for M to
be 2-SP is TG.

Proof. Let M be 2-SP then R̃ · ∇̃π= 0. We modify E=F= ξ in (2.30), we arrive at the equation

R⊥(ξ,F)(∇̃π)(X1,ξ,X3)− (∇̃π)(R(ξ,F)X1,ξ,X3)− (∇̃π)(X1,R(ξ,F)ξ,X3)− (∇̃π)(X1,ξ,R(ξ,F)X3)= 0.
(3.1)

In view of (2.17), (2.5), Lemma 2.1 (ii),(iii) and (2.7), we have the following equalities:

(∇̃π)(X1,X2,X3)= (∇̃X1π)(ξ,X3)

=∇⊥
X1
π(ξ,X3)−π(∇X1ξ,X3)−π(ξ,∇X1X3)

=π(X1,X3), (3.2)

(∇̃π)(R(ξ,F)X1,ξ,X3)= (∇̃R(ξ,F)X1π)(ξ,X3)

=∇⊥
R(ξ,F)X1

π(ξ,X3)−π(∇R(ξ,F)X1ξ,X3)−π(ξ,∇R(ξ,F)X1X3)

=−η(X1)π(F,X3), (3.3)
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(∇̃π)(X1,R(ξ,F)ξ,X3)= (∇̃X1π)(R(ξ,F)ξ,X3)

=∇⊥π(R(ξ,F)ξ,X3)−π(∇X1R(ξ,F)ξ,X3)−π(R(ξ,F)ξ,∇X1X3)

=∇⊥
X1
π(−η(F)ξ−F,X3)−π(∇X1(−η(F)ξ−F),X3))−π(F,∇X1X3), (3.4)

(∇̃π)(X1,ξ,R(ξ,F)X3)= (∇̃X1π)(ξ,R(ξ,F)X3)

=∇⊥
X1
π(ξ,R(ξ,F)X3)−π(∇X1ξ,R(ξ,F)X3)−∇(ξ,∇X1R(ξ,F)X3)

=−η(X3)π(X1,F). (3.5)

Substituting (3.2) to (3.5) into (3.1), we obtain

−R⊥(ξ,F)π(X1,X3)+η(X1)π(F,X3)−∇⊥
ξ π({−F−η(F)ξ},X3)

+π(∇X1{−F−η(F)ξ},X3)+π(F,∇X1X3)+η(X3)π(X1,F)= 0. (3.6)

Replacing X3 by ξ and using (2.5), (2.7) in (3.6), we get π(X1,F) = 0. The converse part of
the above theorem is also trivial.

Theorem 3.2. Let M be an IS of a HKM M̃2n+1. The necessary and sufficient condition for M is
PP is TG.

Proof. Let M be PP then R̃ ·π=K1Q(g,π). Setting E=X2 = ξ in (2.22), (2.30) and adding, we
reach

R⊥(ξ,F)π(X1,ξ)−π(R(ξ,F)X1,ξ)−π(X1,R(ξ,F)ξ)

=−K1{g(ξ,ξ)π(X1,F)− g(ξ,X1)π(ξ,F)+ g(ξ,F)π(ξ,X1)− g(F,X1)π(ξ,ξ)}. (3.7)

Making use of equations (2.1), Lemma 2.1(ii) and (2.7) in (3.7), we get π(X1,F)= 0 and if K1 ̸= 1.
The converse part of the above theorem is also trivial.

Theorem 3.3. Let M be an IS of a HKM M̃2n+1. The necessary and sufficient condition for M to
be 2-PP is TG.

Proof. Let M be 2-PP then R̃ · ∇̃π=K1Q(g,∇̃π). Taking E=X2 = ξ into (2.22), (2.30) and adding,
from equations (2.1) and (2.7), we arrive at following equation,

(R⊥(E,F) · ∇̃π)(X1,X2,X3)=K1Q(g,∇̃π)(X1,X2,X3;E,F),

which gives,

R⊥(E,F)(∇̃X1π)(X2,X3)− (∇̃R(E,F)X1π)(X2,X3)− (∇̃X1π)(R(E,F)X2,X3)(∇̃X1π)(X2,R(E,F)X3)

=−K1{(∇̃(E∧gF)X1)π)(X2,X3)+ (∇̃X1π)((E∧g F)X2,X3)+ (∇̃X1π)(F, (E∧g F)X3)}. (3.8)

Simplifying the above equation, and then substituting E = X3 = ξ and after necessary
arrangements we get,

R⊥(ξ,F)(∇̃X1π)(X2,ξ)− (∇̃R(ξ,F)X1π)(X2,ξ)− (∇̃X1π)(R(ξ,F)X2,ξ)(∇̃X1π)(X2,R(ξ,F)ξ)

=−K1{g(F,X1)(∇̃ξπ)(X2,ξ)−η(X1)(∇̃Fπ)(X2,ξ)+ (∇̃X1π)(g(F,X2)ξ−η(X2)F,ξ)

+ (∇̃X1π)(X2,η(F)ξ+F)}. (3.9)

After simplifying by taking X2 = ξ and using (2.7), (2.5) in above equation, we get (K1 −2)
·π(X1,F)= 0, provided K1 ̸= 2. The converse part of the above theorem is also trivial.
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Theorem 3.4. Let M be an IS of a HKM M̃2n+1. The necessary and sufficient condition for M to
be RGPP is TG.

Proof. Let M be RGPP, i.e., R̃ ·π=K2Q(S,π).
If we choose E= ξ and X2 = ξ in (2.22) and (2.7) and adding, gives

R⊥(ξ,F)π(X1,ξ)−π(R(ξ,F)X1,ξ)−π(X1,R(ξ,F)ξ)

=−K2{π(S(F,X1)ξ−S(ξ,X1)F,ξ)+π(S(ξ,F)ξ−S(ξ,ξ)F,X1)}. (3.10)

Making use of Lemma 2.1(ii),(iv), (2.7) in (3.10), we get (2nK2 −1)π(X1,F)= 0, where K2 ̸= 1
2n .

The converse part of the above theorem is also trivial.

Theorem 3.5. Let M be an IS of a HKM M̃2n+1. The necessary and sufficient condition for M is
2 -RGPP is TG.

Proof. Let M be 2-RGPP, i.e., R̃ · ∇̃π=K2Q(S,∇̃π). Changing E and X2 with ξ in (2.22), (2.30)
and adding, which in view of (3.7) and (2.7) gives

R⊥(ξ,F)(∇̃X1π)(ξ,X3)− (∇̃R(ξ,F)X1π)(ξ,X3)− (∇̃X1π)(R(ξ,F)ξ,X3)− (∇̃X1π)(ξ,R(ξ,F)X3)

=−K2{(∇̃(ξ∧sF)X1π)(ξ,X3)+ (∇̃X1π)((ξ∧sF)ξ,X3)+ (∇̃X1π)(ξ, (ξ∧sF)X3)}. (3.11)

After calculating each term of the above equation and performing necessary rearrangements,
we get

−R⊥(ξ,F)π(X1,X3)+η(X1)π(F,X3)+ (∇̃X1π)(F,X3)+η(F)π(X1,X3)+η(X3)π(X1,F)

=−K2{−2nη(X1)π(F,X3)+2n(∇̃X1π)(F,X3)+2nη(F)π(X1,X3)−2nη(X3)π(X1,F)}. (3.12)

By putting X3 = ξ and using equations (2.5), (2.7) in (3.12), we find that (4nK2 −1)π(F,X1)= 0,
provided K2 ̸= − 1

4n . The converse part of the above theorem is also trivial.

Corollary 3.1. Let M be an IS of a HKM M̃2n+1. The statements below are equivalent:
(i) π is parallel,

(ii) π is recurrent,
(iii) M has parallel third fundamental form,
(iv) π is G-2-R
(v) M is SP,

(vi) M is 2-SP,
(vii) M is PP and if K1 ̸= 1,

(viii) M is 2-PP,
(ix) M is RGPP and if K2 ̸= 1

2n ,
(x) M is 2-RGPP,

(xi) M is TG.

4. Conclusion
Our study delved into the geodesic properties of IS, specifically within the framework of HKM.
We examined and established the relation between the various conditions related to the π.
These conditions encompassed being 2-SP, PP, 2-PP, RGPP and 2-RGPP.
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These results have implications in both theoretical and applied mathematics, as well as in
various fields where the understanding and utilization of IS in HKM play a significant role.
Such knowledge can be beneficial in areas such as differential geometry, mathematical physics
and even in the development of novel algorithms and computational techniques.

Overall, our study contributes to the advancement of our understanding of IS in HKM and
provides a foundation for future research and exploration in this area of mathematics.
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