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Abstract. With the prevalence of Internet of Things (IoT) systems, data is exponentially growing,
resulting in data streams. Data streams are massive, potentially non-stop, and arrive at high speed.
These systems process IoT data streams in a non-stationary manner, making them susceptible to
concept drift occurrence and class imbalance. Concept drift occurs as a result of the change in the
underlying distribution over time, while class imbalance occurs when some class distribution is
uneven. This paper proposes an Implicit Drift Detection model with Multi-Label RNN (IDD-MLKNN),
aimed at addressing concept drift in multi-label classification for IoT data streams. While the model is
applicable across various domains, its performance was specifically assessed using two IoT datasets
— Bot_IoT and Edge_IloTset — associated with intrusion detection systems. Applying the proposed
model to oversee IoT network traffic offers practical advantages, potentially reducing the time and
expenses of re-examining attack data. The evaluation was conducted for sudden and gradual concept
drift scenarios. Experimental results show the superiority of the IDD-MLKNN over other well-known
multilabel classification models in different performance measures such as the Subset Accuracy,
Accuracy, Hamming Score, and F-measure. However, it was less efficient in terms of Evaluation Time
compared to other multi-label classification methods.
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1. Introduction

The Internet of Things (I0T) enables devices and networks to interconnect and collaborate,
facilitating daily tasks among interconnected entities in smart homes and cities (Ferrag et
al. [5]). Data transmitted within IoT systems are not static. They exhibit heterogeneity and
dynamism, leading to the emergence of data streams. Data streams are high-volume, sequenced
data. Learning from such data is a complex task. Unlike static data, the data stream is
potentially unbounded, massive, and processed in online mode (Gama et al. [6]). It arrives at
high speed, making classification from such data challenging.

Classification algorithms must adapt to data stream properties to learn effectively. One of
the main concerns is that data instances are accessed once. In addition, the data stream is also
expected to evolve, leading to Concept Drift (CD) [|6], which is the unpredictable change in the
underlying data distribution. It could take different forms, such as the change in the input or
the relation between the input and the output.

CD can occur in four different ways: suddenly, gradually, incrementally, and recurrently,
as presented in Figure (1{([6]). Sudden drift happens when the two concepts change suddenly
from one to another. In gradual drift, the second concept takes longer to replace the first one.
Incremental drift occurs when many intermediate concepts in between consist incrementally.
Recurrent drift is a type of drift that has been seen before and reappears after a certain time.
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timne sudden/abrupt incremental gradual reoccuring concepts

Figure 1. Types of concept drift in machine learning [6]

The dynamic nature of IoT data poses a significant challenge in different real-world
applications. For example, in tasks such as image annotation, activity recognition, text
classification, or Intrusion Detection Systems (IDS), an example may be linked with more
than one label, a task known as Multi-label Classification (MLC). MLC involves classifying data
into more than one category, as opposed to binary classification, where the output is a single
class label.

This paper aims to introduce a multi-label classification model for IoT data streams.
The model, called Implicit Drift Detection with Multi-label RNN (IDD-MLkKNN), is based on a
multilabel 2 nearest neighbor algorithm. The IDD-MLKNN model is primarily designed to adapt
to concept drift in data with multiple labels. The proposed model has undergone validation
using IoT datasets with class imbalance. Furthermore, its performance has been benchmarked
against various multi-label classifiers, ensuring the reliability and robustness of the proposed
model.

Among different potential applications, the proposed model is evaluated on IDS, which plays
a vital role in network security (Ferrag et al. [5]). Prior works have utilized machine learning
methods to detect the drift and attacks in network traffic (Andresini et al. [1], Kuppa and Le-
Khac [11]], Mulimani et al. [[12]]). Attack methods and behaviors constantly evolve as malicious
actors develop them. This evolution results in concept drift, where normal and adversarial
traffic characteristics change over time. In addition, a single data record might indicate multiple
states or categories in numerous cyber scenarios (e.g., detecting an attack and its location in
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smart grids (Hallaji et al. [7]])). The proposed model is designed to classify instances for multiple
labels and undergoes evaluation to assess its adaptability to concept drift.

This article is structured as follows: Section [2| presents related work on multi-label
classification approaches and the methods used to address concept drift. Section |3| presents
the proposed model in detail, along with a flowchart. Section 4] details the IoT datasets and
experimental settings, while section five provides the discussions and results. Lastly, Section [6]
presents the conclusion and future work.

2. Related Work

Problem Transformation (PT) and Algorithm Adaptation (AA) are two main broad approaches to
deal with multi-label classification. In the PT approach, multi-label problems are transformed
into other, more minor problems, which are then addressed by single-label methods (Zhang and
Zhou [25]])). Binary relevance is a well-known PT method, which transforms the multi-label issue
into many smaller issues, each solved by binary classification. Classifier Chains (CC) are another
PT that decomposes the problem into smaller problems, similar to the binary relevance method
(Read et al. [18])). CC trains a chain of binary classifiers and utilizes the current classifier’s
prediction in building subsequent binary classifiers.

In the realm of streaming environments, Nguyen et al. [13] have developed an incremental
MLC method based on the Bayesian theorem and the correlation between labels. It tackles drift
by assigning weights to instances, with recent instances having the highest weight. Also, Sousa
and Gama [20]] have proposed MLC method utilizing a multi-target AMRules regressor called
MI-AMRules. It works well in data streams and uses Page-Hinkley (PH) for drift detection.
Xioufis et al. [23] have developed a ML.C method with multiple windows. It monitors two sliding
windows for drift detection and uses sampling techniques to address data stream imbalance.

Problem transformation methods can also leverage ensemble for better performance. Wei
et al. [22] have introduced a multi-label model for data streams with a weighted ensemble.
It divides the stream into chunks, where each chunk is transformed into single-label data.
These transformed chunks are then used to train an ensemble of binary classifiers, including
support vector machine (SVM), Naive Bayes (NV), and C4.5. Classifiers are weighted according
to the expected classification accuracy of the test data. Qu et al. [16] also developed a dynamic
weighted-based ensemble method, which considers the dependence information between labels.
The algorithm employs an ensemble of classifiers that keeps only the recently trained classifier
and discards the old ones. This would make it better to represent the current concept in stream
applications since data are evolving and changing. It works by partitioning the incoming stream
into chunks, where the last one represents the recent chunk. Chunks are utilized for training
the improved binary relevance classifier, which results in more features. The chunk produced is
then used to train an Improved Binary Relevance classifier.

Furthermore, multilabel classification could be addressed by algorithm adaptation methods,
in which a traditional classifier is modified to cope with the nature of multi-label data. The Multi-
Label k-Nearest Neighbor (ML-kNN) is a well-known AA method based on traditional kNN
(Zhang and Zhou [26]). It identifies the 2 nearest neighbor for each instance and then finds
the relevant labels for each neighbor. Maximum a Posteriori (MAP) is then used to predict
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the labels. In the stream setting, MLC could utilize an ensemble of classifiers under the AA
approach. Kong and Yu [9]] have introduced a method for MLC with drift detection. It uses a set
of random trees and considers the label correlations. The tree node’s statistics, such as label
relevance and cardinality, are updated with the stream. Then, an ensemble of random trees is
trained, and the final results are averaged over all the trees. For drift detection, a fading factor
is attached to the tree nodes, which also reduces the impact of the old data. Similarly, Read et
al. [17] proposed a hoeffding trees-based method for multi-label drifting streams called EaHTps.
The only difference is its way of dealing with concept drift. It employs a drift detection method
called ADWIN-bagging ensemble, which adapts the concept drift in the evolving data.

Osojnik et al. [14] have proposed a decision tree-based method, named iISOUP-Tree. It is a
bagging method that implements adaptive perceptions in the leaves. Consequently, it effectively
deals with MLC and multi-target regression problems in a non-stationary environment. For
drift detection, the Page Hinckley detector is employed. Buyukcakir et al. [3]] have introduced a
MLC model based on Geometrically Optimum. It splits the stream into fixed-sized chunks and
utilizes the spatial model to assign weights to the classifiers. The proposed model has also been
evaluated with ADWIN, the well-known drift detection method.

In the Internet of Things context, MLC is utilized to recognize human activities in smart
homes, such as described by Jethanandani et al. [[8]. Various MLC methods, including Classifier
Chain, Naive Bayes (NV), Decision Tree, k-Nearest Neighbors (kNN), and Logistic Regression,
were used to classify multi-resident activities in smart homes. Nevertheless, concept drift (for
example, changes in the resident activities) and class imbalance were not considered. Hallaji et
al. [7] have introduced a network-based IDS that utilizes MLC methods. The system implements
an ensemble of multi-label neural network models, each performing a single-label classification.
The final labelset is made by aggregating the results after each model’s prediction. The proposed
algorithm by Xu et al. [24] uses a Recurrent Neural Network (RNN) to discover anomalies in
IoT datasets collected from smart homes. Anomalies detected can belong to more than one
category. In studies of Hallaji et al. [7]] and Xu et al. [24], concept drift detection is adopted, while
class imbalance is not addressed. Furthermore, Pezze et al. [15]] have proposed a multilabel
classification method to monitor packaging equipment. The method has also been assessed on
an industrial IoT dataset that has class imbalance and distribution shifts. However, the authors
highlighted points for further improvement, such as testing the method in various real-world
applications, especially those with significant label imbalances.

The literature shows that most studies employing ML.C in IoT applications fail to consider
both concept drift and imbalance. While considerable research has been conducted on addressing
concept drift in single-label data streams, the challenges associated with multilabel data streams
still need to be explored, especially in imbalanced IoT data streams. Class imbalance is common
in data streams where the number of instances with a particular set of labels is greater
than those with another set of labels. Addressing these challenges jointly is crucial for better
predictive performance. Thus, this paper introduces an MLC model for handling Concept Drift
(CD) and class imbalance in IoT streams. It evaluates the proposed model’s in predicting attacks,
their category, and subcategories in IoT network traffic datasets by comparing it with well-
known models. The evaluation was conducted on different concept drift scenarios, including
sudden and gradual concept changes.
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3. Implicit Drift Detection with Multi-label kNN (IDD-MLkNN)

DD-MLKNN is a multi-label classification model that handles concept drift and class imbalance
in IoT data streams. It entails three main steps: predict, diagnose, and update. The first step is
the prediction, where a set of labels is produced for the given instance. During classification,
the diagnosis step is carried out to diagnose concept drift in the IoT data stream. The last step
is updating, which is activated according to the diagnosis estimations. Figure [2| presents the
flow chart of the IDD-MLkKNN model.
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Figure 2. Flowchart of IDD-MLkKkNN

The input to the IDD-MLKNN model is labeled instances in the form of {X, Y}, where X
represents a set of features and Y represents a set of labels. For example, an instance in the
Flags dataset arrives with many features (X) such as the country landmass, language, religion,
and many others, and seven labels (Y) representing the flag colorﬂ An instance s; is passed
to the FIFO sliding window. The sliding window is dynamic, so its size is adjusted with each
incoming instance; at the same it has a maximum size that cannot be exceeded.

The underlying algorithm for the prediction phase in IDD-MLKNN is ML-kNN, which works
like a traditional %2 nearest neighbor but with a majority vote mechanism. Initially, it finds
the Euclidean distance between the new instance (s;) and all instances in the sliding window
to identify the £ nearest neighbors. Subsequently, the most appearing labels among these &
neighbors determine the final predicted label set (a voting mechanism). To better understand
the concept, for example, suppose we have a Flags dataset as described earlier. If £ = 3, three

YMulti-Label Classification Dataset Repository, accessed: May 13, 2024, URL: https://www.uco.es/kdis/
mllresources/#GoncalvesEtAl12013
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instances are selected as nearest neighbors to the new instance. The first neighbor has three
labels {Green, Yellow, White}, the second neighbor has two labels {Green, White}, and the
last neighbor has two labels {White, Red}. From labels among the selected neighbors, the new
instance will be classified as Green and White because most of the instances are from class
white and class green. Mathematically, labels with a relative frequency greater than 0.5 are
selected in the predicted label set, (number of label occurrences)/k. Thus, Red and Yellow are
not selected since their relative frequency is 0.3, less than 0.5. During the classification process,
IDD-MLKNN implicitly evaluates the new instances’s label set against the labelset of each
nearest neighbor. It counts each neighbor’s error, where each unmatched label in the label set
is counted as 1. If there are two unmatched labels, then the error becomes 2, and so on. After
that, the probability of getting a neighbor’s label set identical to the new instance’s label set is
computed after each prediction made by the classifier which is calculated as
Number of neighbours with label set identical to s; label set

PNN; = % )

IDD-MLKNN assumes that low similarity suggests a potential drift and change in the data
distribution. Therefore, it keeps storing the highest value reached during the process in a
variable called PNNy.x to identify significant changes by comparing the similarity at a given
time ¢ with the highest similarity reached during the learning process. If the difference between
PNNuax and PNN; exceeds a certain epsilon value, it removes instances with high error rates
above 0.5 to keep a balanced class distribution in the sliding window. The error rate is computed
for each neighbor as the number of errors divided by the number of labels. IDD-MLkKNN allows
instances with low error rates to remain in the window since they might represent a new concept
and need more instances to form a different data distribution.

This technique also implicitly deals with class imbalance instead of the preprocessing
method. In a streaming environment, the majority label set may become a minority as time
passes. It assumes that the majority label set skews the classifier, causing errors. The removal
process here is deemed as undersampling as it is introduced by Roseberry et al. [19], enabling
the minority instances to be present in the sliding window and ensuring a balanced class
distribution.

After that, the window size is evaluated whether instances are removed or no significant
change between the PNNy1,x and PNN; is found. IDD-MLKNN maintains a sliding window with
a maximum size. It works with different window sizes until it reaches its pre-defined maximum
size. In this case, the old instance is removed, making space for a new instance to be inserted.

4. Experiments

IDD-MLKNN model is written in JAVA and implemented in Massive Online Analysis (MOA)
software [2]]. MOA is a widely used tool for executing online machine-learning algorithms and
conducting stream experiments. This section overviews the IoT datasets used and presents their
characteristics. It also outlines the designed scenarios that simulate the sudden and gradual
drift and the evaluation measures used to assess the IDD-MLKNN against the reference
algorithms.

An analysis was performed to showcase the effectiveness of IDD-MLkKNN in MLC. The model
performance was benchmarked against five established multilabel classification methods:
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ML-kNN (Zhang and Zhou [26]]), ML-NV (based on the Binary Relevance approach) (Zhang
and Zhou [25]), EaHTps (Read et al. [17]), iISOUP-Tree (Osojnik et al. [[14]]), and Ml-AMRules
(Sousa and Gama [20]) all of which have been described in Section [2, and their code available in
MOA. The IDD-MLKNN’s window size is 1000, % is three, and the threshold is one. The other
algorithms’ parameters were set to their defaults in MOA, presented in Table

Table 1. The algorithms parameters values

Method Parameters
ML-KNN [25]] K =10, Limit = 1,000
EaHTps [17] Baselearner: Hoeffding tree, EnsembleSize = 10, and changeDetector = ADWIN

iSOUP-Tree [14] |splitConfidence: 1.0E~7, tieThreshold: 0.05, PageHinckleyAlpha: 0.005, and
PageHinckleyThreshold: 50

MI-AMRules [20] | splitConfidence: 1.0E~7, tieThreshold: 0.05, Baselearner: MultiLabelNaive-
Bayes, and changeDetector = DDM

IDD-MLKNN | K =3, MaximumWindowSize = 1,000, Threshold = 1

4.1 Datasets

To assess the IDD-MLKNN’s ability to adapt to concept drift on multi-label IoT data classification.
Two network IoT/IIoT datasets were utilized and processed into multi-label datasets in Arff
format, in which class appearance is represented by one. The datasets used in the experiments
of this study are described below:

4.1.1 The Bot_loT Dataset

Bot_IoT is a realistic dataset that simulates IoT network traffic, with various types of attacks
and normal traffic (Koroniotis et al. [10]). It includes Distributed Denial of Service (DDoS) and
Denial of Service (DoS) with different protocols. It also contains OS fingerprint, service scan,
keylogging, and data exfiltration attacks. The dataset consists of around a million instances,
each instance has 43 features and 3 class labels. The first label indicates normal or attack
traffic. The second label and the third label identify the type of attack and its subcategory. For
instance, the label set {Attack, DoS, HTTP} shows the type and sub-type of the attack, which
specify the protocol used.

Bot_IoT dataset has been preprocessed to ensure the existence of drift and class imbalance.
A random sample of 100,000 instances has been selected with ten features to evaluate the
proposed model and 12 labels. These features are selected as the best in [10]] including Seq,
Stddev, N_IN_Conn_P_SrcIP, Min, State_number, Mean, N_IN_Conn_DstIP, Drate, Srate, and
Max. Two concepts (C1 and C2) are designed; each has different label sets with varying numbers
of instances forming the class imbalance, as shown in Table [2| The first concept contains only
normal traffic and reconnaissance attacks with {Attack, Reconnaissance, Service _Scan} label
set as majority and {Normal, Normal, Normal} as minority class label. The second concept
involves a different type of DDoS and DoS attacks with different protocols.

4.1.2 The Edge_lloTset Dataset

Edge-IIoTset is a real-world cyber security dataset generated using the Internet of Things/
Industrial Internet of Things testbeds with several devices and sensors (Ferrag et al. [5]).
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The attacks are classified into categories including DoS/DDoS attacks, information gathering,
injection attacks, man-in-the-middle attacks, and malware attacks. It comprises 157,800
instances, with 61 features and two class labels; the first label indicates normal or attack,
and the second shows the type of attack.

Moreover, a sample of 100,000 instances has been randomly selected form Edge_IloTset and
preprocessed to simulate the drift by designing two concepts with 23 features as selected by the
authors in [5] and 12 labels. Table |2 shows the set of labels available. The first concept contains
normal distribution and DDoS attacks with different techniques, including TCP, UDP, HTTP,
and ICMP. The second concept is based on normal distribution and Information-gathering
attacks, which use three techniques: port scanning, OS fingerprinting, and vulnerability
scanning. It also includes man-in-the-middle attacks using two protocols, DNS and ARP.

Table 2. The preprocessed Bot_IoT and Edge_IIoTset dataset

Bot_IoT dataset Edge_IloTset dataset

The label set for each instance {11, 12, 13} |Number of The label set for each instance {11, 12} [ Number of
instances instances

{Normal, Normal, Normal} 477 {Normal, Normal} 1238
C1 {Attack, Reconnaissance, OS_Fingerprint} 9,942 C1 {Attack, Attack, DDoS_HTTP} 10,361
{Attack, DDoS_ICMP} 14,026
{Attack, Reconnaissance, Service_Scan} 39,5812 {Attack, DDoS_TCP} 10,151
{Attack, DDoS_UDP} 14,224
{Attack, DDoS, UDP} 13,332 {Normal, Normal} 17,534
{Attack, DDoS, TCP} 13,668 {Attack, Fingerprinting} 778
{Attack, DDoS, HTTP} 15 {Attack, Port_Scanning} 7,715
C2 |{Attack, DoS, UDP} 14,392 | C2| {Attack, SQL_injection} 7,933
{Attack, DoS, TCP} 8,574 {Attack, Vulnerability_scanner} 7,684
{Attack, DoS, TCP} 8,574 {Attack, Vulnerability_scanner} 7,684
{Attack, DoS, HTTP} 19 {Attack, XSS} 8,356
Total 100,000 Total 100,000

4.2

Drift Scenarios

Drift is simulated in the extracted and preprocessed two datasets by changing the distribution
of network data streams and replacing the first concept with the second. In this study, sudden
and gradual drift were are selected for simplicity forming different scenarios, as proposed
in Table |3, For example, the first scenario involves two concepts that abruptly replace each
other. The model will initially process 50,000 instances related to normal activity and two
types of reconnaissance attacks. After that, this concept will no longer be available, as new one
with DDoS and DoS attacks, emerge. Moreover, gradual drift is simulated in scenario three,
where the second concept emerges after 25,000 instances and takes around 45,000 instances to
completely replace the first concept.

4.3 Evaluation Measures

The evaluation method used in the experiment is prequential, where the classifier is evaluated
on the stream by testing first and then training and updating the model with each instance in
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Table 3. The proposed drift scenarios

Dataset Drift type # of instances Description
Bot-IoT (12 labels) Scenario 1 - Sudden 100,000

Cc2
{Attack, DDoS, HTTP}, {Attack, DDoS_TCP}
{Attack, DDoS_UDP}, {Attack, DDoS, HTTP}
{Attack, DDoS_TCP}, {Attack, DDoS_UDP}

1 50K 100K

1 - 2
Edge-IIoTset (12 labels) | Scenario 2 - Sudden 100,000 o ol Novmal
ormal Normal) {Attack, Fingerprinting}
" o {Aitack, Port_Scanning)
(Atts Py {Attack, SQL_injection}
ek

DDoS

1 50K 100K
) C1 2
Bot-IoT (12 labels) Scenario 3 - Gradual 100,000 {Normal, Normal, Normall {Attack, DDoS, HTTP}, {Attack, DDoS_TCP}
{Attack, Recon., OS_F i {Attack, DDoS_UDP}, {Attack, DoS, HTTP}
{Attack, Recon., Service_Scan) {Attack, DoS_TCP}, {Attack, DoS_UDP}
1 25K 0K 100K
-
Both
Concepts
C1+C2
c1
Edge-I1oTset (12 labels) | Scenario 4 - Gradual 100,000 Normal, Normal!
Attack, DDoS_HTTP
{Attack, DDoS_ICMP} o
{Attack, DDoS_TCP}
{Attack, DDoS_UDP} i
1 30K 60K 100K
—

Both
Concepts
Cl1+C2

sequence (Wang et al. [21]). The evaluation of MLC is different from that used in the single-
label classification. Five measures are used to evaluate IDD-MLKNN performance: (1) Subset
Accuracy, which checks all the predicted labels to match exactly the truth label set; Accuracy,
which divides the number of correctly predicted labels by the sum of the predicted and true
labels, (3) Hamming Score, which finds the fraction of labels correctly predicted, averaged over
the instances and labels; (4) F-Measure, which is the mean of the precision and recall, and
(5) Evaluation Time, the time spent to run the classifier.

5. Results and Discussion

The results of evaluating IDD-MLKNN are organized into two sub-sections according to the type
of drift addressed below:

5.1 Sudden Drift Experiment Results
The first experiment tested the IDD-MLKNN’s performance in detecting sudden drift in two IoT
datasets; the results are shown in Table

IDD-MLKNN achieved the highest accuracy, 0.93 and 0.90, in BoT-IoT and Edge-IToTset,
respectively. In both datasets, it outperformed the others with high Subset Accuracy, the strictest
metric. In scenario 1, the Hamming Score for IDD-MLKNN and ML-kNN is 85, which means
85% of the labels are correctly predicted by the models across all instances. On the other hand,
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in scenario 2, EaHTps, iISOUP-Tree, IDD-MLkKNN have the best Hamming score of 0.67. Besides,
IDD-MLKNN outperforms the others in terms of F-measure in the first scenario, which is a
measure that considers the model’s predictions precision and recall. For example, in the second
scenario, IDD-MLkNN and EaHTps achieve the same score of 90. This indicates the high
balance between producing accurate positive label predictions and identifying the most positive
labels across all instances. Among the evaluated models, ML-NV was the fastest with the lowest
classification time.

Table 4. Results of adapting sudden drift over two IoT datasets

T Dataset |, b luation Metric | ML-kNN | ML-NV | EaHTps | iSOUP-Tree | ML-AMRules | IDD-MLKNN
Subset Accuracy 0.714| 0.612 0.672 0.336 0.624 0.729
Accuracy 0.83| 0.807 0.908 0.633 0.815 0.938
BoT-IoT (Sudden) - -
. Hamming Score 0.85| 0.808 0.836 0.705 0.812 0.856
Scenario 1
F-measure 0.875 0.86 0.936 0.743 0.866 0.956
Evaluation Time 17301.9 s 54s| 4789 s 717 s 67.5s 219.5 s
Subset Accuracy 0.172| 0.337 0.406 0.4 0.337 0.405
Accuracy 0.543 0.73 0.889 0.663 0.733 0.903
Edge-IloTset (Sudden) - :
g . Hamming Score 0.557 0.6 0.672 0.679 0.606 0.674
cenario 2
F-measure 0.667| 0.753 0.901 0.75 0.756 0.904
Evaluation Time 34850.1 s 74s| 375.7s 9.7s 73.5s 272.7 s

5.2 Gradual Drift Experiment Results

Table [5| exhibits the average results of running the gradual scenarios, where the second concepts
take longer time to substitute the old ones.

Table 5. Results of adapting gradual drift over two IoT datasets

T Dataset |, b aluation Metric | ML-kNN | ML-NV | EaHTps | iSOUP-Tree | ML-AMRules | IDD-MLKNN
1
Subset Accuracy 0.512| 0.571 0.606 0.271 0.583 0.681
Accuracy 0.7| 0.718 0.825 0.59 0.799 0.94
BoT-IoT (Sudden) - -
. Hamming Score 0.716| 0.616 0.793 0.662 0.781 0.822
Scenario 1
F-measure 0.781 0.8 0.878 0.71 0.855 0.958
Evaluation Time 17484.9 s 4.7Ts| 478.7s 75s 719s 219.1s
Subset Accuracy 0.169 0.33 0.399 0.382 0.331 0.393
Accuracy 0.539 0.7 0.86 0.651 0.739 0.891
Edge-IloTset - e S 9 4
(Sudden)-Scenario 2 amming Score 0.55 0.587 0.66 0.67 0.609 0.665
F-measure 0.663| 0.724 0.88 0.741 0.762 0.893
Evaluation Time 32021.6 s 6.9s| 390.8s 10.9s 65.9s 279.7 s

As shown in Table [5), IDD-MLKNN has the highest values in Subset Accuracy, Accuracy,
Hamming Score, and F-measure in scenario 3. For scenario 4, the model is superior in accuracy
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and F-measure. In addition, IDD-MLKNN shares similar Subset Accuracy with EaHTps and a
similar Hamming Score with iISOUP-Tree and EaHTps.

5.3 Statistical Analysis

To further examine the performance of IDD-MLKNN, the Friedman test with the Bonferroni-
Dunn posthoc test introduced in [4]] are used to find the significance of the results statistically.
The Friedman test ranks the algorithms based on their performance by giving the best rank
of one and the second best rank of two, and so on, for each dataset separately. The average
performance over four datasets and their ranking results is presented in Table [6]

Table 6. The average performance results for all algorithms across all four datasets and their ranking

# Evaluation metric | ML-kNN | ML-NV | EaHTps | iSOUP-Tree | ML-AMRules | IDD-MLKNN
Subset Accuracy 0.39175 0.4625 0.52075 0.34725 0.46875 0.552
Accuracy 0.653 0.738 0.870 0.634 0.771 0.918
Hamming Score 0.668 0.652 0.741 0.679 0.702 0.754
F-measure 0.746 0.784 0.898 0.736 0.809 0.9278
Evaluation Time 25414.6 6.1 431.025 8.8175 69.7 247.75
# Evaluation Metric | ML-kNN | ML-NV | EaHTps iISOUP-Tree ML-AMRules IDD-MLKNN
Subset Accuracy 5 4 2 6 3 1
Accuracy 5 4 2 6 3 1
Hamming Score 5 6 2 4 3 1
F-measure 5 4 2 6 3 1
Evaluation Time 6 1 5 2 3 4
Average Rank 5.2 3.8 2.6 4.8 3 1.6

As presented in Table [6, IDD-MLKNN achieved the best ranking (1) in terms of Subset
Accuracy, Accuracy, Hamming Score, and F-measures, followed by EaHTps. Regarding
Evaluation Time, ML-NV achieved the best ranking, followed by iSOUP-Tree. Figure
illustrates the ranking results for each method’s average rankings of the evaluation measure
across all the IoT datasets. The height of each bar indicates the method’s average ranking for
that particular evaluation measure for all the datasets, shorter bar indicates better performance.

Moreover, the Bonferroni-Dunn test with critical difference = 3.07 at @ = 0.1 shows that
IDD-MLKNN significantly differs from ML-kNN and ISOUPTree. At the same time, the other
methods do not show significant differences compared to IDD-MLKNN. Overall, the results show
that the IDD-MLKNN can maintain high accuracy even in the presence of sudden and gradual
drift in IoT datasets. The performance of learning models encountering concept drift and class
imbalance deteriorates over time unless addressed. The IDD-MLKNN model proactively removes
instances that introduce errors. This removal is done only when the model notices significant
deviations between two main variables; these variables monitor the similarity between the
new instance and its nearest neighbors, making it responsive to abrupt drift. In addition, the
adopted long sliding windows allow for gradual drift adaptation. ML-NV achieves the shortest
classification time due to the method’s simplicity, as it does not diagnose for drift. On the
contrary, in IDD-MLKNN, a diagnosis and update is made after each instance’s arrival which
increases the time complexity.
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Ranking of Evaluation Metries for Different Methods

[] Avg. Subset Accuracy
8 __ B Ave. Accuracy

[ Avg. Hamming Score
|:| Avg, F-measure

|:| Avg. Evaluation Time

Average Ranking

1 | L

ML-kNN ML-NV EaHTps ISOUPTree ML-AMRules IDD-MLENN
Methods

Figure 3. Average rankings of MLC methods across different evaluation measures

6. Conclusion and Future Work

In this article, multi-label classification is utilized for IoT data streams. The proposed IDD-
MLKNN model implicitly handles concept drift and class imbalance. It involves three main
steps, which are classification, diagnose the stream instances in the window, and update the
window when needed. Two IoT datasets, Edge-IToTset and Bot-IoT, were used to simulate two
types of drift: sudden and gradual. The IDD-MLKNN model outperformed other methods in
the comparison analysis in identifying the label set related to network traffic attacks in four
measures, including Subset Accuracy, Accuracy, Hamming Score, and F-measure. Yet, it failed
to get the best ranking in classification time. The practical implications of implementing the
proposed model for monitoring IoT network traffic are to reduce the time and cost that may
result from re-analyzing the attack information. As future work, IDD-MLKNN will be extended
to work with other types of data streams form different domains. It also suggested using a
dynamic threshold instead of static value, which is automatically adjusted according to the type
of data stream or the window size.
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