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1. Introduction

As of late, addressing differential equations like partial and ordinary differential equations,
integro-differential equations, fractional differential equations, and so forth has become vital
as so many everyday life problems include them. Subsequently, numerous techniques were
developed to address these. The strategy for utilising the integral transform has demonstrated
its presentation and relevance in addressing the ordinary and the partial differential equations,
integro-differential equations, fractional differential equations, and so on. These transforms are
used to convert differential equations into algebraic equations, solve this problem in this domain,
and then apply inverse transforms to it for the original solution of our problem. The main aim
of the technique is to solve differential equations using an easier method. This technique plays
a vital role in obtaining solutions to the differential equations.

In the last thirty years, many transforms have been introduced and proven efficient
for solving differential equations. Initially, in 1780, French mathematician and physician
P. S. Laplace (cf. Debnath and Bhatta [2]), introduced the Laplace transform. Also in 1822,
dJ. Fourier (cf. Debnath and Bhatta [2]]) introduced the Fourier transform. These two transforms
have powerful applications in applied mathematics as well as other sciences like physics,
engineering, and astronomy. Then many transforms were introduced, like the Sumudu
transform (Watugala [19]), the Natural transform (Khan and Khan [6]]), the Elzaki transform
(Elzaki [3]], and Kuffi et al. [7]), the formable integral transform (Saadeh and Ghazal [14]),
NE transform (Xhaferraj [20]) etc., to prove their efficacy in solving the differential equations.
Some more transforms are discussed in relation between Sharad transform and other transform
relation.

In this paper, we introduced an integral transform called the Sharad transform in Section
proved some theorems and properties like the convulsion theorem and the linearity property
in Section |3 and found the Sharad transform of some specific functions in Section |3} Find
the relationship between the Sharad transform and certain ancient transforms in the table in
Section 4. The Sharad transform was then applied to an ordinary differential equation in its
subsequent part.

2. Sharad Transform

In this section, we will define a new integral transform called the Sharad transform. Also, its
inverse transform.

We know that “A function g(¢) is called the exponential order of « if there exists a constant
P and T such that g(¢) < Pe®, forall¢t=T.

Definition 1 (Sharad Transform). A new integral transform, the Sharad transform of
the function g(¢) is denoted by the symbol T[g(#)], and it is defined as

Jlg@®]=G(s,u) :p(s)fooe_q(s)tg(ut)dt (2.1)
0

provided the integral exists for t =0, u >0, ¢,u € R and p(s) # 0 and ¢(s) are complex functions
of variable s € C.
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Here s and u are transform variables. For its existence, the integral of the function g(#) must be
of exponential order as well as piece-wise continuous on the interval [0,00). The equation (2.1)
is equivalent to

Tle@®]l=G(s,u) = ]?fooe‘@tg(t)dt_
0

Definition 2. The inverse Sharad transform of the function G(s,u) is the original function g(z),
which is defined as
B 1 c+ioco ( S) (S)t
THGGwl=g = | L2
271 Je—ico p(S )
Here p(s) # 0 and ¢/(s) is a derivative of q(s) with respect to s assumed to exist. The expression

G(s,u)ds.

in the definition can be proved by using the Fourier transform and its inverse transform.

3. Properties and Theorems

In this section, the author verified some properties and theorems of the Sharad transform.

Theorem 1 (Linearity Property). Let g(¢t) and f(t) be functions whose Sharad transform exists,
and they are denoted by G(t) and F(t), respectively. Then, the Sharad transform of yf(t)+ Ag(t)
exists and is as below:

Jlyf@)+1g®)]=yF @)+ AG(t), where y and A are constant.
Proof.
Ty f (&) +Ag@®)] = l? fo e Wy f(1)+ Ag(e)ldt
:y[@fooe—%f(t)dt &fooe—%g(t)dt]
u Jo u Jo

= yF(t)+ AG(t). O

+A

Theorem 2 (The Differentiation of Sharad Transform). If g(¢) has a Sharad transform G(s,u),
the Sharad transform of a derivative of different order is as follows:

(1) TLg'®)] = L2T1g(6)] - 22 5(0),
@) TLg" (1] = LL ()] - 224 g(0) - 28 g7(0),
(3) TIg" ()] = [Q(s)] WOF g14(4)] - [q(S)] P(s)g(o) q(s) p(s) 2'(0) - p(S) 2"(0),

(@) 7[g<n><t>]=($) T[g(t)]—f#kgo(% *g4(0).

Proof.
O TleD) =G s,u) = 2 f 42 (1)t

X
_ Iﬂ lim ( f P ’(t)dt) (integrating by parts)
0

u x—oo

[ 2
0 u
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:_1? ©0) + Q(S)(p(S)f _a), (t)dt)

_ @f.r[ )] @g(m

2  TE"®1=G'(s,u)= @f 4Pt g (p)dt
= ? lim (fx S "(t)dt) (integrating by parts)
X—00 0

= lﬁ [( q(s)t l( )) fm (_@) q(s)t l(t)dt
u 0 u

_ p(s) 20+ q(s) (p(S)f —46), '(t)dt)

:—’% 0)+ %(@ﬂ 01— wgm)) (by proof of 1))
[q(s)]zj[ ()]_p(s;q(s) (0)_@ ),
3 TE"®1=6"(s,u)=2 (=) [ 4Pt g ()dt
J? lim ( fo Tt "'(t)dt) (integrating by parts)
_ps)

(e_ﬁt l/( )) ‘/‘00 (_@) e_(_t ”(t)dt
0 u

=2 g0y L2 (p(s) [Tt a)

2
q(s)([Q(S)] p(s L)tq() (0)— ()g’(O))

(by proof of (6.1)

2
Tlg (t)]—[Q(S)] P 40y = L8 P 10y~ PO g,
u u u u u

(4) Proof can be obtained by usmg mathematical induction on n. O

p(s) "

= g (0)+ Jle@®1-
u

[q(S)]3

Theorem 3 (First Translation Property or Shifting Property). Let g(t) be the continues function
and t =0, then

T g(t)] = —1 g (s L)

qgs)—au | q(s)-au
Proof.
Tle“g(t)]=G(s,u) = p(s)fooe‘q‘s”e“”tg(ut)dt
0

X—00

X
= p(s) lim (f e_q(s)te“”tg(ut)dt)
0

X
= p(s) lim ( f e_(q(S)_“u)tg(ut)dt)
0

_ ps)q(s) “e_q(s,t ( uq(s)t

= ) dt (by change of variable)
q(s)—au Jo q(s)—au
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0 gl v ) .

- q(s)—au “q(s)—au

Theorem 4 (Change of Scale Property). Let g(t) be the continues function and t =0, then
Jlglat)l = G(s,aun)

and

Proof.
Tlg(at)] = p(s) f ~ ematon glaut)dt
0

o S
= Iﬁf e_ytg(at)dt
u Jo

put w = at, then, we get

oo (s)
— Iﬁ e_cfx_utg(w)dw
au Jo

=G(s,au).

For second proof in above proof just replace a by % O

Theorem 5 (Convolution). Let g1(t) and go(t) be the functions with the Sharad transform
G1(s,u) and Ga(s,u), respectively. Then, the convolution of the functions g1 and g2 is as follows:

t
Jlg1*gel= I%S)Gl(s,u)Gz(s,u), where g1 gg = fo g1(n)ga(t—1)dT.

Proof. We can write by using the definition of the Sharad transform,

Tlg1 * g2l=p(s) fo eI gy x g ut)dt
[ele] ut
=p(s) f e_q(s)t( f g1(0)gaut — T)dr)dt (put 7=ux and d7=udx then x is in [0, £])
0 0
[e’s} t
:up(s)f e 96N (f g1(ux)gao(u(t —x))dx) dt (put y =t —x then dy =dt)
0 0

=up(s) fo e 190+ g (ux)go(uy)dxdy

:LGl(s,u)Gg(s,u).
p(s)

4. Sharad Transform of Standard Functions

In this section, we are able to find the Sharad transform of some special functions.

(1) Let g(¢t) =k, where & is constant. Applying Sharad transform to both sides, we get
(s) [
Tgen =G, =22 [ e
u Jo
kp(s)

li ety
u A, e
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-
q(s) 0

_kp(s)
B u

_kp(s)
~qs)

(2) Let g(t)=t, for all £ > 0. Applying Sharad transform to both sides, we get
(s)
Tg01 =Gl =22 [

49,

tdt

— @ lim ( f I td t) (integrating by parts)
0

u x—oo

e )
( q(s)e 0 [q(s)]? ¢ 0
up(s)

TR

o)
_u

(3) Let g(t) = ¢2, for all ¢ > 0. Applying Sharad transform to both sides, we get
T1g®] = Gs,u) = 2 f 12y

x s
= p—(S) lim ( f "q_)tt dt) (integrating by parts)
u x—\Jo
tz s x X s
_ p(s) (_u_e_%t) — lim (f ——Zte_$t dt)
u q(S) o *—oo\Jo q(s)

2P g (f te=ht dt)
q(s) x—=\Jo

_ 2u 2p(s)
g
(4) Let g(t)=1t",for all t >0 and n € N. Then
I'(n+ Du"p(s)
Tlg®]=
[g@®] [g(s)]"* 1

We can prove it by using mathematical induction on n € N.

(5) Let g(¢) = e, for all ¢,a > 0. Applying Sharad transform to both sides, we get
Tlg(t) = Gls,u) = 2 f -4t gatgy

= Iﬂ lim (fxe_ﬁt “tdt)
u xXx—oo 0

0 [l
0

u x—oo
_p(s) ( u (—q”)t)x
= e
u au—q(s) 0
= —p(s) , where q(s) > au.
g(s)—au
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(6) Let g(t) = €', for all ¢,a > 0. Applying Sharad transform to both sides, we get

q(s)

Tle(t)] = Gls,u) = 1? f © 1 ar
0

= & lim (fxe_gteiatdt)
0

u x—oo
=P i U xe(iauuq(‘S))td’f)
u xXx—oo 0
_p(s) ( u (—i“”;q“))t)x
= e
u |\au—q(s) 0
= A (because q(s) > iau)
g(s)—iau
_ p(s)lg(s) +iau] T
= eGP a2l (by rationalisation)
p(s)q(s) . aup(s)

= l .
[q(s)12+a2u2  [q(s)]?+au?
We know that, e“?? = cos(at) + i sin(at)), so we get

P 4 Tisintap)] = —PE)

Tlcos(at)] = —[q(s)]2 22 —[q(s)]2 2.2

(7) Similarly, by using the sine and cosine formulas and the Sharad transform of e’, we can
find the Sharad transform of hyperbolic sine and hyperbolic cosine,

P& 4 Tisinh@s)] = — 2P

Tlcosh(at)] = —[q(s)]2 ~ 252 —[q(s)]2 — 2.2

The Sharad transform for some standard functions is collected in Table

Table 1. Sharad transform of some standard function

Sr. No. | Standard function | Sharad transform J[g(¢)]

1 k, constant k(ﬁis))

2 t v,

; ’ e

4 eat q(}:)(%

5 cos(at) [qég]sz)%

6 sin(at) T

7 cosh(at) [qég]sz)%

8 sinh (a?) [q(g)l]tz%
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5. Relation Between the Sharad Transform and Other Transforms

In this section, we will give a relation between the Sharad transform and some other transform.
If we put the particular values of u, p(s), and g(s) in definition of the Sharad transform, we
get the other transform. We formatted Table [2| with some substitution of u, p(s), and ¢(s) in
the Sharad transform.

In a similar way, by substituting values, we get many other transforms. Thus, we can
conclude that this is the more general form of the integral transform.

Table 2. Relation between Sharad transform and other useful transform

Sr. No. | u | p(s) | q(s) Tlg®] Sharad transform converted into
1 1 1 s Io: e Slg(t)dt Laplace transform (Debnath and Bhatta [2]])
2 - % s % JoleStg(ut)dt NE transform (Xhaferraj [20])
3 -] s s sfo e Stg(ut)dt Formable transform (Saadeh and Ghazal [14]))
4 1] 1 1 Jole tg(ut)dt Sumudu transform (Watugala [19])
5 -1 s Jo e tg(ut)dt Natural transform (Khan and Khan [6])
6 1| s 1 s [&e s g(t)dt Elzaki transform (Elzaki [3])
7 1 s 1 estg(t)dt Abhoodh transform (Aboodh [1])
8 - | s s s o e Stgut)dt ZZ transform (Zafar et al. [21]))
9 1] s s sfoe Stg(t)de Mahgoub transform (Mahgoub and Alshikh [10;
10 1| s2 s s2 [Pe S g(t)dt Mohan transform (Mahgoub [9]) B
11 1] 1 1 Jole tgt)de Kamal transform (Sedeeg [15])
12 1| s3 s s3 [5Ce S g(t)dt Rohit transform (Gupta [4i)
13 1| & s L [SCestg(t)dt SEE transform (Mansour et al. [12]))
14 1 % s % Jo? e "' g(t)dt, « #0 | Soham transform (Khakale and Pa?l[5])
15 1| s s | sfePe *"tg(t)dt, a #0 | Kushare transform (Kushare et al. [8])
16 1| - - p(s) [5° e 99 g($)dt | A new general transform (Mansour et al. [13])
17 1| 5 s 5 Jo e g(t)dt Emad-Sara transform (Maktoof et al. [11])
18 1| sP s% siﬁ foe s g(t)dt Sadiq transform (Shaikh [16]])
19 1] s° s % [ e Stg(t)dt Dinesh Verma transform (Verma [18])
20 - 1 S fé’o e Stg(ut)dt Ramadan Group transform (Soliman et al. [[17])

6. Application of Sharad Transform

Here, we apply the Sharad transform to solve some ordinary differential equations.

Example 1. Solve the Initial Value Problem (IVP) y'(¢) +5y(¢) = 0 with the initial condition
y(0) =2.

Commaunications in Mathematics and Applications, Vol. 15, No. 4, pp. [1305H1316, 2024
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Solution. We have to solve this example by applying the Sharad transform,
y'()+5y(8) =0, (6.1)
y(0)=2. (6.2)
Applying the Sharad transform to equation (6.1)),
Ty O]+ TBy(H)] =0

@‘T[ ()] - Iﬂy(O) +5Ty(®)] = (using Theorem

using the initial condltlon (6.2) and after simplification, we get

_ 2p(s)
Tly@)] = 76 150"

By taking inverse Sharad transform, we get the required solution,
y(t) = 2¢75¢

Example 2. Solve the IVP y"(¢)— 3y'(¢) + 2y(¢) = 4¢3 with the initial condition y(0) = —3 and
y'(0) =5.

Solution. We have to solve this example by applying the Sharad transform,

y"(#) -3y (t) + 2y(¢) = 4€* (6.3)
y(0)=-3 and y'(0)=5. (6.4)
Applying the Sharad transform to equation (6.3) and using Theorem [2], we get
2 4
[q( L gty p—(s:tq(S) -2= (S) Y0~ 3ﬂ‘r[y(t)] 3’&y(0) +2T[y(0)] = —(sf (_s;u

Using the initial condition (6.4) and after simplification, we get

[q(s)]? q( ) _ p(s)(—38u?+23q(s)u — 3[q(s)I*)

12 3 +2]|Tly@®)] = 2(q(5)— 3u) )
3 210(8) 4p(s)  9p(s)

Thy®1= q(s)—3u - q(s)-2u q(s)-u’

By taking inverse Sharad transform, we get the required solution,

y(t) = 2e3" + 4% — 9e!.

Example 3. Solve the IVP

y"(#)+2y" () + 2y'(t) + 3y(¢) = sin(¢) + cos(t) (6.5)
with the initial condition
y(0)=9"(0)=0 and »'(0)=1. (6.6)

Solution. We have to solve this example by applying the Sharad transform. Applying the Sharad
transform to equation (6.5) and using Theorem [2 we get

3 2 ?
[q(s)] Ty ()]_[q(s)] 1& (O)—?& "0) - p(S) ¥(0) + 2[q(s)] Tly(®)]
p(sl)tq(S) 0)— ZP(S) '0)+22 q(s )T[y(t)]_z&y(0)+37[y(t)]
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_up(s) p(s)q(s)
T lg®R+u  [g(s)2+u2’

Using the initial condition and after simplification, we get

3 2
([q(S)] +2[q(82)] +2q(8)
u

p(s) up(s) p(s)q(s)
u  [ge)2+u?2 [g(s)2+u2’

p(s)g(s)

+3| Tyt = ——— +2
u

us u

([q(s)]3 +2ulq(s)1? +2u?q(s) + 3u? ) TTy(t)] = ps(s)[q(s) +2ulq(s)]? +2uq(s) + 3u?)
u® T W2([g)P + u?) ’
_up(s)
IO R

By taking inverse Sharad transform, we get the required solution

y(t) = sin(f).

7. Conclusion

We define the more general new integral transform, the Sharad transform, and prove some
properties and theorems about it. Also, we apply this to solving some ordinary differential
equations. Here we conclude that this transform is a more generalisation of the integral
transform. It covers many of the integral transforms, like the Laplace transform, the Sumudu
transform, the Formable transform, and many more. Hence, it will become very useful in solving
ordinary and partial differential equations, integro-differential equations, and many more in
modern life.
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