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1. Introduction
The behavior of solitons in optical fibers is primarily described by the Nonlinear Schrödinger
Equation (NLSE), which is fundamental in modeling the propagation of optical pulses
in nonlinear and dispersive media. The use of the NLSE in the context of optical fiber
communication was initially investigated by Hasegawa and Tappert in the early 1970s [7]. Thus,
a large number of NLSE-based models that describe a wide range of physical events have been
refined and scrutinised in the literature. The topic of optical solitons has experienced remarkable
development in study due to its profound implications in optical fibres, which are crucial in
transferring information across continents. With all optical communications currently being
utilised for trans-continental and trans-oceanic data transfer via long-haul optical fibres, there is
a pressing need for a thorough, systematic research of these dispersive optical solitons ([4]). Over
the past 25 years, there have been significant advancements in communication and internet
technology. For these technologies, fibre optics is a crucial component and an excellent building
element. The idea of soliton transmission becomes significant, particularly in the context of
sending massive amounts of data packets across extremely long distances. While many physical
processes may be modeled using the Schrödinger equation, one of the key models that takes
solitons propagation in optical fibres into account is the Schrödinger Hirota equation, which
differs from the standard Schrödinger equations. Consequently, various efficient techniques
have been developed by researchers to derive exact solutions. In this work, we employed
the

(G′
G

)
-expansion method ([8], [11], [12]) to construct exact traveling wave solutions.

2. Hirota’s Schrödinger Equation
The Hirota’s Schrödinger equation with Kerr law nonlinearity [2] is given by

ιzt + āzxx + c̄|z|2z+ ι[γ̄zxxx + σ̄|z|2zx]= 0, (1)

where z is complex valued wave function, zt is its linear temporal evolution, γ̄ is the parameter
associated with third order dispersion (3OD), σ̄ is the nonlinear dispersion coefficient and
ι denotes the imaginary unit, zxx represents the linear dispersion term, the nonlinear term
c̄|z|2z represents the Kerr nonlinearity, where |z|2 is the intensity of the wave or field, c̄ is
the parameter characterizing Kerr law nonlinear behavior and ā is a parameter characterizing
the strength of the nonlinear effect.

3. Classical Lie Symmetry Analysis
The analysis of differential equations through symmetry methods has seen a surge in interest
in recent years. In this work, demonstrate how to systematically derive the symmetries and
perform symmetry reductions of the Hirota-Schrödinger equation using the classical Lie group
approach in an algorithmic manner. To identify the symmetries admitted by equation (1).
Now consider

z(x, t)= p+ ιq, (2)

which splits (1) into its real and imaginary parts as:{
−qt + āpxx + c̄p3 + c̄pq2 − γ̄qxxx + σ̄p2 px + σ̄pxq2 = 0,
pt + āqxx + c̄q3 + c̄qp2 + γ̄pxxx + σ̄p2qx + σ̄qxq2 = 0.

(3)
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The Lie group (Adem and Khalique [1], Bluman and Cole [5], Olver [9], and Ovsiannikov [10])
of continuous transformations will now be examined in order to find the classical symmetries in
the following manner:

p̃ = p+ϵη̄(x, t, p, q)+ o(ϵ2),
q̃ = q+ϵφ̄(x, t, p, q)+ o(ϵ2),
x̃ = x+ϵξ̄(x, t, p, q)+ o(ϵ2),
t̃ = t+ϵτ̄(x, t, p, q)+ o(ϵ2).

(4)

that preserves the invariance of system (3) under this one-parameter transformation. This
yields a linear system with redundant equations for the infinitesimal η̄(x, t, p, q), φ̄(x, t, p, q),
ξ̄(x, t, p, q), τ̄(x, t, p, q). Hence, the invariance condition associated with (1) yields:{

−φ̄t + āη̄xx +3c̄p2η̄+2c̄pqφ̄+ c̄η̄q2 − γ̄φ̄xxx + σ̄p2η̄x +2σ̄ppxη̄+ σ̄q2η̄x +2σ̄pxqφ̄= 0,
η̄t + āφ̄xx + c̄p2η̄+2c̄pqη̄+3c̄q2φ̄+ γ̄η̄xxx + σ̄p2φ̄x +2σ̄pqxη̄+ σ̄q2φ̄x +2σ̄qqxφ̄= 0.

(5)

Through the substitution of the infinitesimal values η̄t, φ̄t, η̄x, φ̄x, η̄xx, φ̄xx, η̄xxx and φ̄xxx into
(5). By matching the same powers of the various differentials and setting them to zero and
arrive at the desired system of over-determined PDEs. The solution to this system is as follows:

η̄= pe1 + qe2, φ̄=−pe2 + qe1, ξ̄=−e1x+ e3, τ̄=−2e1t+ e4, (6)

where e1, e2, e3 and e4 are arbitrary constants. The associated infinitesimal generators are
presented as follows:

D1 =−x
∂

∂x
−2t

∂

∂t
+ p

∂

∂p
+ q

∂

∂q
, D2 = q

∂

∂p
− p

∂

∂q,
, D3 = ∂

∂x
, D4 = ∂

∂t
. (7)

4. Symmetry Reductions and Exact Solutions of Hirota-Schrödinger’s
Equation

In the subsequent section, main aim to obtain exact solutions ([3], [8]) of equation (1) by utilizing
the reduced forms obtained through similarity transformations. The appropriate similarity
variables and their functional forms are determined by solving the associated characteristic
equations, as obtained below:

dx
ξ̄

= dt
τ̄

= dp
η̄

= dq
φ̄

. (8)

To facilitate symmetry reductions and obtain exact solutions, consider the following four distinct
cases of vector fields:

4.1 Reduction Under D3
Solving equation (8) yields the similarity variables in the following form:

z(x, t)= h(ψ̄)eιg(ψ̄), (9)

where ψ̄ = t. Treating h(ψ̄) and g(ψ̄) as new dependent variables with a new independent
variable ψ̄ and using (9) in (1) to obtain a nonlinear ordinary differential equation as:{

h′(ψ̄)+ ιc̄h3(ψ̄)= 0,
h(ψ̄)g′(ψ̄)= 0.

(10)

In this case, the analysis yields only a constant solution for the equation under consideration.
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4.2 Symmetry Reduction Under D4

The similarity reduction corresponding the vector field D4 is given by:

z(x, t)= h(ψ̄)eιg(ψ̄), (11)

where ψ̄= x. Utilising (11) into (1), the obtained system of ordinary differential equations is

āh′′(ψ̄)− āh(ψ̄)(g′(ψ̄))2 + c̄h3(ψ̄)−3γ̄h′′(ψ̄)g′(ψ̄)−3γ̄h′(ψ̄)g′′(ψ̄)
+γ̄h(ψ̄)(g′(ψ̄))3 − σ̄h(ψ̄)g′(ψ̄)= 0,

and

2āh′(ψ̄)g′(ψ̄)+ āh(ψ̄)g′′(ψ̄)+ γ̄h′′′(ψ̄)−3γ̄h′(ψ̄)(g′(ψ̄))2

−3γ̄h(ψ̄)g′(ψ̄)g′′(ψ̄)+ σ̄h2(ψ̄)h′(ψ̄)= 0.

(12)

Due to the complexity of the above system of equations, a non-trivial solution could not be
obtained.

4.3 Symmetry Reduction Under D3 +D4

The similarity variables for vector field D3 +D4 is given by:

z(x, t)= h(ψ̄)eιg(ψ̄), (13)

where ψ̄= x− t. Using the given similarity variable, the reduced system of ordinary differential
equation is given by:

h(ψ̄)g′(ψ̄)+ āh′′(ψ̄)− āh(ψ̄)(g′(ψ̄))2 + ch3(ψ̄)−3γ̄h′′(ψ̄)g′(ψ̄)−3γ̄h′(ψ̄)g′′(ψ̄)
+ γ̄h(ψ̄)(g′(ψ̄))3 − γ̄h(ψ̄)g′′′(ψ̄)− σ̄h(ψ̄)g′(ψ̄)= 0,

and

−h′(ψ̄)+2āh′(ψ̄)g′(ψ̄)+ āh(ψ̄)g′′(ψ̄)+ γ̄h′′′(ψ̄)−3γ̄h′(ψ̄)(g′(ψ̄))2

−3γ̄h(ψ̄)g′(ψ̄)g′′(ψ̄)+ σ̄(h(ψ̄))2h′(ψ̄)= 0.

(14)

The complexity of the system makes it difficult to determine a non-trivial solution.

4.4 Symmetry Reduction Under w̄D3 +D4

The similarity variables for vector field w̄D3 +D4 is given by:

z(x, t)= h(ψ̄)eιg(ψ̄), (15)

where ψ̄= x− w̄t. The obtained ordinary differential equations corresponding to the similarity
variable (15) is:

w̄h(ψ̄)g′(ψ̄)+ āh′′(ψ̄)− āh(ψ̄)g′(ψ̄)+ ch3(ψ̄)−3γ̄h′′(ψ̄)g′(ψ̄)−3γ̄h′(ψ̄)g′′(ψ̄)
+ γ̄h(ψ̄)(g′(ψ̄))2 − σ̄h3(ψ̄)g′(ψ̄)= 0,

−w̄h′(ψ̄)+2āh′(ψ̄)g′(ψ̄)+ āh(ψ̄)g′′(ψ̄)+ γ̄h′′′(ψ̄)−2γ̄h′(ψ̄)(g′(ψ̄))2 − γ̄h′(ψ̄)g′(ψ̄)
− γ̄h(ψ̄)g′′(ψ̄)+ γ̄h(ψ̄)g′′′(ψ̄)− γ̄h(ψ̄)g′(ψ̄)g′′(ψ̄)+ σ̄h2(ψ̄)h′(ψ̄)= 0.

(16)

The complexity of the system makes it difficult to determine a non-trivial solution.
From these reductions we are unable to find the exact traveling wave solutions so we use(G′

G
)
-expansion method to obtain the traveling wave solution of Hirota-Schrödinger equation

describe as follows:
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Consider the nonlinear PDE as

F(z, zt, zx, zxt, zxx, . . .)= 0, (17)

where z = z(x, t) is unknown function, along with its partial derivatives.

Step 1: Consider the following wave transformation

z(x, t)=ψ(ξ), ξ= x+vt (18)

with constants k and v will convert PDE to ODE which is of the form

F(ψ,ψ′,ψ′′,ψ′′′, . . .)= 0. (19)

Step 2: Suppose solution of ODE (19) has been written of the form

F̃(χ)= aq

(
G′

G

)q

+aq−1

(
G′

G

)q−1

+ . . . , (20)

where aq are constants to be determine, where q ranges from 0 to infinity. As G =G(χ) persuades
the LDE of second order which is of the form written below:

G′′+ λ̂G′+ µ̂G = 0. (21)

where aq (aq ̸= 0); where ‘q’ is called the balance number, aq−1, . . . ,a0, λ̂ and µ̂ are constants to
be determine later.

Step 3: Determining the positive integer ‘q’ from (19), by equalizing the higher order nonlinear
terms to the higher order derivatives.

Replacing (20) into (19) and use ODE (21), then gather all the entire terms of
(

G′
G

)
containing

homogeneous power, and equalize each coefficient to zero, resulting in a variety of algebraic
equations for analysis aq,aq−1, . . . ,a0, c, λ̂ and µ̂.

Step 4: The general solution of (21) is noted, then substituting the values of aq in (20) we will
get the exact solutions of (1) which is of the for

(
G′

G

)
=



√
λ̂2 −4µ̂

2

C1 sinh
(

1
2

√
λ̂2 −4µ̂

)
χ+C2 cosh

(
1
2

√
λ̂2 −4µ̂

)
χ

C1 cosh
(

1
2

√
λ̂2 −4µ̂

)
χ+C2 sinh

(
1
2

√
λ̂2 −4µ̂

)
χ

− λ̂

2
, λ̂2 −4µ̂> 0,

√
4µ̂− λ̂2

2

−C1 sin
(

1
2

√
4µ̂− λ̂2

)
χ+C2 cos

(
1
2

√
4µ̂− λ̂2

)
χ

C1 cos
(

1
2

√
4µ̂− λ̂2

)
χ+C2 sin

(
1
2

√
4µ̂− λ̂2

)
χ

− λ̂

2
, λ̂2 −4µ̂< 0,

c2

c1 + c2χ
− λ̂

2
, λ̂2 −4µ̂= 0.

(22)

In this context, C1 and C2 both illustrates the arbitrary constants.
The traveling wave transformation for Hirota-Schrödinger equation (1) is performed as

follows:

z(x, t)= F(ξ)eιθ, (23)

where ξ = x+ vt, θ = βx+ rt. Here, ‘r’ is the wave number of the soliton and r, v and β are
constants which are determined.

Substituting equation (23) into equation (1), yields the following:

(a−3γβ)F ′′(ξ)+ (−r−aβ2 +γβ3)F(ξ)+ (c−σβ)F3(ξ)= 0 . (24)
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By using the homogeneous balance principal in (24), we have m = 1, then solution of ODE (24)
is of the form

F(ξ)= a0 +a1

(
G′

G

)
. (25)

Substituting (25) in (24), then collect all the coefficients with similar power of
(G′

G
)

together.
Since (25) is the solution of (24), substituting (25) into (24), we obtained the following system of
algebraic equation

(
G′

G

)3

: ca3
1 +2aa1 −6γβa1 −σβa3

1 = 0,(
G′

G

)2

: 3aa1λ−3σβa0a2
1 +3ca0a2

1 −9γβλa1 = 0,(
G′

G

)1

: γβ3a1+3ca1a2
0−aa1β

2−3γβa1λ
2−ra1−6γβµa1−3σβa1a2

0+aa1λ
2+2aµa1=0,(

G′

G

)0

: aa1λµ+γβ3a0 − ra0 + ca3
0 −aa0β

2 −3γβλµa1 −σβa3
0 = 0 .

(26)

The solutions corresponding to equation (23) are given below:
γ= γ, a = a, µ=µ, c = −2a+ gγβ+σβa2

1

a2
1

,

r = γβ2a2
1 +2aa2

0 −6γβa2
0 +aβ2a2

1 +6γβµa2
1 −2aµa2

1

a2
1

, λ= 2a0

a1
, σ=σ, a0 = a0, a1 = a1.

The general outcomes of equation (23) can be provided as:

Case I: When λ̂2 −4µ̂> 0,

F(ξ)= a0 +a1


√
λ̂2 −4µ̂

2

C1 sinh
(

1
2

√
λ̂2 −4µ̂

)
χ+C2 cosh

(
1
2

√
λ̂2 −4µ̂

)
χ

C1 cosh
(

1
2

√
λ̂2 −4µ̂

)
χ+C2 sinh

(
1
2

√
λ̂2 −4µ̂

)
χ

− λ̂

2

 , (27)

then solution is

z(x, t)=
a0 +a1

√( 2a0
a1

)2−4µ

2

C1 sinh
(

1
2

√( 2a0
a1

)2−4µ
)
(x+vt)+C2 cosh

(
1
2

√( 2a0
a1

)2−4µ
)
(x+vt)

C1 cosh
(

1
2

√( 2a0
a1

)2−4µ
)
(x+vt)+C2 sinh

(
1
2

p
λ2−4µ

)
(x+vt)

−
2a0
a1
2

 eι(βx+rt) . (28)

Case II: When λ̂2 −4µ̂< 0,

F(ξ)= a0 +a1


√

4µ̂− λ̂2

2

−C1 sin
(

1
2

√
4µ̂− λ̂2

)
χ+C2 cos

(
1
2

√
4µ̂− λ̂2

)
χ

C1 cos
(

1
2

√
4µ̂− λ̂2

)
χ+C2 sin

(
1
2

√
4µ̂− λ̂2

)
χ

− λ̂

2

 , (29)

then solution is

Z(x, t)=
a0 +a1

√
4µ−

( 2a0
a1

)2

2

−C1 sin
(

1
2

√
4µ−

( 2a0
a1

)2
)
(x+vt)+C2 cos

(
1
2

√
4µ−

( 2a0
a1

)2
)
(x+vt)

C1 cos
(

1
2

√
4µ−

( 2a0
a1

)2
)
(x+vt)+C2 sin

(
1
2

√
4µ−

( 2a0
a1

)2
)
(x+vt)

− ( 2a0
a1

)
2

 eι(βx+rt). (30)

Case III: When λ̂2 −4µ̂= 0,

F(ξ)= a0 +a1

(
c2

c1 + c2χ
− λ̂

2

)
, (31)
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then solution is

z(x, t)= a0 +a1

(
c2

c1 + c2(x+vt)
−

(2a0
a1

)
2

)
eι(βx+rt) . (32)

The graphical representations are shown in Figure 1, Figure 2 and Figure 3 this shows 3-D
view of 2-D solutions.
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Figure 1. Traveling wave solution of |z(x, t)| of
equation (28) when λ̂2 −4µ̂ > 0 for a0=2, a1 =1,
λ̂=4, µ̂=2, C1=9, C2=4, γ= 1, β= 1, a = 1, c = 5,
ξ= x+15t
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Figure 2. Traveling wave solution of |z(x, t)| of
equation (30) when λ̂2 −4µ̂ < 0 for a0 = 1, a1 = 1,
a = 1, C1 = 4, C2 = 7, µ̂ = 4, λ̂ = 2, γ = 1, β = 1,
σ= 1, ξ= x−9t
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Figure 3. Traveling wave solution of |z(x, t)| of equation (32) when λ̂2 −4µ̂= 0 for a0 = 1, a1 = 1, β= 1,
σ= 1, C1 = 4, C2 = 5, ξ= x+9t
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5. Qualitative Analysis
In this section, a qualitative approach (Du et al. [6]) is adopted to study the Hirota-Schrödinger
equation based on the bifurcation theory of planar dynamical systems. After converting
the equation into an autonomous system, bifurcation analysis is applied to the resulting ordinary
differential equation. The autonomous system is then analyzed to identify its equilibrium points.
These critical points are classified into four types: nodes, saddles, centers, and spirals. Phase
portraits corresponding to various points are constructed to visually illustrate the nature and
behavior of the system.

Let us examine the following complex transformation:

z(x, t)= eιω̄V (δ̄) (33)

where ω̄ = jx− kt+ ω̄0 and δ̄ = t− ξ̄x+ δ̄0. A nonlinear ODE is obtained by substituting (33)
into (1). After decomposing the equation into its real and imaginary components, the following
result emerges:

(k− ā j2 + γ̄ j3)V (δ̄)+ (āξ̄2 + γ̄ jξ̄2)V ′′(δ̄)+ (c̄− σ̄ j)V 3(δ̄)= 0 , (34)
(1−2āξ̄ j+3γ̄ξ̄ j2)V ′(δ̄)− σ̄ξ̄V 2(δ̄)V ′(δ̄)− γ̄ξ̄3V ′′′(δ̄)= 0 . (35)

Integrating (35) with respect to δ̄ once and assuming a zero integration constant yields the
following:

(1−2āξ̄ j+3γ̄ξ̄ j2)V (δ̄)− σ̄ξ̄V 3(δ̄)− γ̄ξ̄3V ′′(δ̄)= 0 (36)

Equations (36) and (35) gives us
(k− ā j2 + γ̄ j3)

(1−2āξ̄ j+3γ̄ξ̄ j2)
=− (āξ̄2 + γ̄ jξ̄2)

γ̄ξ̄3
=− (c̄− σ̄ j)

σ̄ξ̄
. (37)

The dynamical system that results from applying the Galilean transformation to (18) is as
follows:{

V ′(δ̄)=U(δ̄),
U ′(δ̄)= W̄1V 3(δ̄)+W̄2V (δ̄), (38)

where

W̄1 = (σ̄ j− c̄)
(āξ̄2 + γ̄ jξ̄2)

, W̄2 = (−k+ ā j2 − γ̄ j3)
(āξ̄2 + γ̄ jξ̄2)

. (39)

The Hamiltonian function for (38) is given by

H(V ,U)= U2

2
−W̄1

V 4

4
−W̄2

V 2

2
= h,

where h is hamiltonian constant. By solving the system the derived equilibrium points are

ϵ1 = (0,0), ϵ2 =
(
−ιW̄2

W̄1
,0

)
, ϵ2 =

(
ι
W̄2

W̄1
,0

)
.

The determinant of the Jacobian matrix for the system in equation (38) is

D(V ,U)=−W̄1V 2(δ)−W̄2 . (40)

Depending upon determinant we have different cases:
(i) (V ,U) acts as a saddle point if D(V ,U)< 0,

(ii) (V ,U) acts as a center point if D(V ,U)> 0,

(iii) (V ,U) acts as a cuspid point if D(V ,U)= 0.
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The following outcomes can be achieved by modifying the relevant parameter:

Case 1: Ŵ1 > 0 and Ŵ2 > 0
Through choosing particular parameter values, it is observed that the only real equilibrium
point is (0,0), as shown in Figure 4. Clearly, (0,0) corresponds to a saddle point.

Case 2: Ŵ1 < 0 and Ŵ2 > 0
The findings demonstrate three equilibrium points where (0,0) works as a saddle point, as
depicted in Figure 5. In addition, (−2.4494,0) and (2.4494,0) act as center points.

Figure 4. Phase portraits illustrating the
bifurcations of the proposed system under the
conditions Ŵ1 > 0 and Ŵ2 > 0 based on varying
parameter values

Figure 5. Phase portraits showing bifurcation
behavior of the proposed system under the
conditions Ŵ1 < 0 and Ŵ2 > 0 under different
parameter values

Case 3: Ŵ1 < 0 and Ŵ2 < 0
Upon selecting suitable parameter values, it is observed that the only real (non-complex)
Equilibrium point is (0,0), as illustrated in Figure 6. This point clearly corresponds to a center.

Case 4: Ŵ1 > 0 and Ŵ2 < 0
By selecting appropriate parameter values, it is found that three equilibrium points (0,0),
(−0.5773,0), and (0.5773,0), as depicted in Figure 7. It is clear that, (0,0) corresponds to a
center point, while (−0.5773,0) and (0.5773,0) are saddle points.

6. Conclusion
In this paper, Lie symmetry method is implemented to the Hirota-Schrödinger equation to obtain
similarity reductions. However, these reductions did not yield exact solutions. Consequently,
the

(G′
G

)
-expansion method was employed to derive exact solutions of the Hirota-Schrödinger

equation. The obtained solutions are represented by rational, trigonometric, and hyperbolic
functions and graphical representation shown in 3-D view. Then, investigate the bifurcation
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Figure 6. Phase portraits of the proposed systems
bifurcations with condition Ŵ1 < 0 and Ŵ2 < 0
based on different parameter values

Figure 7. Phase portraits of the proposed systems
bifurcations with condition Ŵ1 > 0 and Ŵ2 <
0based on different parameter values

theory of the associated dynamical system corresponding to the nonlinear Hirota-Schrödinger
equation. Through bifurcation analysis, examined the qualitative behavior of the system. By
perturbing the governing dynamical system, various phase portraits were generated to explore
the dynamic characteristics of the model.
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