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1. Introduction
The qualitative theory of differential equations is concerned with analyzing the characteristics
of their solutions. These characteristics include oscillation, stability, periodicity, bifurcation,
synchronization, symmetry, among others. A specialized area within this field, called oscillation
theory, focuses on establishing criteria that determine whether the solutions to differential
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equations exhibit oscillatory or non-oscillatory behavior. Recent decades have seen considerable
interest and research focused on investigating the oscillation conditions of particular Functional
Differential Equations (FDEs), see Agarwal et al. [2], Erbe [7], Györi and Ladas [12], Moaaz and
Albalawi [21], Palanisamy et al. [22], and Santra et al. [26].

A Neutral Delay Differential Equation (NDDE) is a type of FDE where the highest derivative
of the unknown function appears both with and without a delay. During the last thirty years,
the investigation of neutral differential equations has attracted considerable interest, becoming
a significant field of study owing to its applications and analytical challenges, see, e.g., Agarwal
et al. [1], Baculíková and Džurina [3], Candan [5], Dong [6], Grace et al. [9, 10], Liu and Bai
[17], Liu et al. [18], Meng and Xu [20], Tunç and Grace [27], Xu and Meng [28, 29], Ye and
Xu [31], and Zhang and Wang [32]. There is a wide range of applications for these types of
equations, which include the analytical modeling of vibrating masses coupled with an elastic bar,
systems for automatic control, mixing of liquids, and dynamics of populations, see Hale [13,14].
Specifically, second-order NDDEs are highly valuable in biology for describing how the human
body maintains balance and in robotics for designing bipedal robots. These applications highlight
the relevance of these equations in understanding complex systems in both technological and
biological contexts, see MacDonald [19].

This paper studies the second-order non-linear NDDE of the form

(b(η)ψ(u(η))[w′(η)]r)′+ q(η)uβ(ϱ(η))= 0, (1.1)

η≥ η0, where w(η)= u(η)+ p(η)u(τ(η)). Hereafter, it will be assumed without further mention
that

(A1) b ∈ C1([η0,∞),R), and r,β ∈Q+ are quotients of odd numbers;

(A2) p, q ∈ C1([η0,∞), [0,∞)) and p(η)≤ p0 < 1;

(A3) τ,ϱ ∈ C([η0,∞),R), τ(η)≤ η, ϱ(η)≤ η, lim
η→∞τ(η)=∞ and lim

η→∞ϱ(η)=∞;

(A4) ψ ∈ C1(R, (k,K]), where k and K are positive constants and δ= rpK /k.

In this context, a solution of (1.1) is defined as a real-valued function u ∈ C1([ηu,∞),
ηu ≥ η0, that satisfies (1.1) on [ηu,∞), and has the properties bψ(u)[w′]r ∈ C1([ηu,∞),R) and
sup{|y(η)| : η ≥ η∗} > 0, for all η∗ ≥ ηu. An oscillatory solution of (1.1) is defined as having
arbitrary large zeros. If not, it is classified as non-oscillatory. In addition, we study the canonical
case of (1.1), that is,∫ ∞

η0

b−1/r(ℓ) dℓ=∞. (1.2)

In 1987, a new class of functions P is introduced by Philos [23] with the aim of extending and
generalizing the results initially established by Kamenev [15]. Following Philos, it is necessary
to define

D0 = {(η,ℓ) : η> ℓ> η0}

and

D = {(η,ℓ) : η≥ ℓ≥ η0}.
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The class P is said to include a function H ∈ C([η0, ∞),R), or H ∈P, if

(i) H(η,η)= 0, for η≥ η0, H(η,ℓ)> 0 on D0.

(ii) H(η,ℓ) has a continuous and nonpositive partial derivative ∂H/∂ℓ on D0 such that the
condition

∂H
∂ℓ

=−h(η,ℓ)[H(η,ℓ)]r/(r+1),

for all (η,ℓ) ∈ D0, satisfies for some h ∈ C(D,R).

Afterward, differential equations of various types and orders have been studied using Philos
class H.

In 1985, Grammatikopoulos et al. [11] studied the neutral equation

(u(η)+ p(η)u(η−τ))′′+ q(η)u(η−ϱ)= 0,

and they showed that it oscillates if 0≤ p(η)≤ 1 and
∫ ∞ q(ℓ)(1− p(ℓ−ϱ))dℓ=∞.

For the equation

(u(η)+ p(η)u(η−τ))′′+ q(η) f (u(η−ϱ))= 0,

Xu and Xia [30] proved that it oscillates provided that 0≤ p(η)<∞ and q(η)≥ M > 0.

In 2011, new oscillation criteria were presented by Baculikova and Džurina [4] for

(b(η)[u(η)+ p(η)u(τ(η))]′)′+ q(η)u(ϱ(η))= 0,

where 0≤ p(η)≤ p0 <∞ and τ◦ϱ= ϱ◦τ.

By using comparison principles, Baculikova and Džurina [3] studied the equation

(b(η)[w′(η)]r)′+ q(η)uβ(ϱ(η))= 0,

where w(η)= u(η)+ p(η)u(τ(η)), and they showed that it oscillates provided 0≤ p(η)≤ p0 <∞,
ϱ′(η)≥ 0, τ′(η)≥ τ0 > 0 and τ◦ϱ= ϱ◦τ.

Li et al. [16] studied the equation

(b(η)[(u(η)− p(η)u(τ(η)))′]r)′+ q(η)uβ(ϱ(η))= 0,

where 0≤ p(η)≤ p0 < 1, and derived oscillation criteria.

In [8], a number of oscillation-related results were obtained for

(b(η)[(u(η)− p(η)u(τ(η)))′]r)′+ q(η)uβ(ϱ(η))= 0.

Rogovchenko [24] employed the Philos class H to analyze the oscillatory behavior of the
delay equation

(b(η)ψ(u(η))u′(η))′+ q(η) f (u(ϱ(η)))= 0.

Concerning the neutral equation,

(b(η)ψ(u(η))w′(η))′+ q(η) f (u(ϱ(η)))= 0,

which represents a more general case, Şahiner in [25] demonstrated that it oscillates by utilizing
three frequently referenced sets of conditions in the literature.

This work focuses on studying the super-linear case and examining the oscillatory behavior
of the NDDE (1.1). The criteria established herein guarantee that every solution of (1.1) must
be oscillatory.
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2. Auxiliary Lemmas

For the sake of convenience, r and λ are defined as r := rr/(r+1)r+1 and

λc(η) :=
∫ η

c
b−1/r(ℓ) dℓ. (2.1)

In preparation for the main results, the following lemmas are introduced:

Lemma 2.1. Assume that N(θ)= c1θ− c2θ
1+1/r , where c1 and c2 > 0. Then N has the maximum

value at θmax := (rc1/((r+1)c2))r and N(θ)≤ N(θmax)= rcr+1
1 c−r

2 , for θ ∈R.

Lemma 2.2. Suppose that x is a positive solution. Then
(P1) w and w′ are positive and (bψ(u)[w′]r)′ < 0 eventually.

(P2) w > 1
δ

b1/rw′λη1 and (w/λδη1
)′ < 0.

Proof. Let u be an eventually positive solution of (1.1). Then, there is a η1 ≥ η0 such that

u(τ(η))> 0 and u(ϱ(η))> 0, for η≥ η1.

Based on the definition of w, it can be concluded that w(η)> 0, for η≥ η1. It follows from (1.1)
and (A2) that

(bψ(u)[w′]r)′ =−quβ(ϱ)≤ 0. (2.2)

Thus, (bψ(u)[w′]r)′ ≤ 0 and w′ is of a constant sign.

Suppose w′ < 0 for η≥ η2. Now,

b(η)ψ(u(η))[w′(η)]r ≤ b(η2)ψ(u(η2))[w′(η2)]r

=−m0 < 0.

So,

[w′]r ≤ −m0

bψ(u)
.

Also, ψ(u)≤ K ; this implies that

[w′]r ≤ −m0

K
· 1
b

.

Thus,

w′ ≤− r

√
m0

K
· 1
b1/r . (2.3)

Integrating (2.3) leads to

w(η)≤ w(η2)− r

√
m0

K

∫ η

η2

1
b1/r(ℓ)

dℓ. (2.4)

It follows from (1.2) that a contradiction is obtained.

Thus,

w′(η)> 0, for η≥ η2.

Now, it follows that

w′ = (bψ(u))1/rw′

b1/rψ1/r(u)
, for η≥ η2.
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Since ψ(u)≤ K , then

(bψ(u))1/rw′

b1/rψ1/r(u)
≥ (bψ(u))1/rw′

rpKb1/r
, for η≥ η2.

Now,

w′ ≥ (bψ(u))1/rw′
rpKb1/r

, for η≥ η2. (2.5)

Integrating (2.5) leads to

w(η)≥ w(η2)+
∫ η

η2

(b(ℓ)ψ(u(ℓ)))1/rw′(ℓ)
rpKb1/r(ℓ)

dℓ.

Utilizing the properties in (P1), one obtains

w(η)≥ 1
rpK

(b(η)ψ(u(η)))1/rw′(η)
∫ η

η2

1
b1/r(ℓ)

dℓ.

Since ψ(u)> k, then

w(η)>
rpk
rpK

b1/r(η)w′(η)
∫ η

η2

1
b1/r(ℓ)

dℓ

= 1
δ

b1/r(η)w′(η)λη1(η).

Now, (
w
λδη1

)′
=

w′λδη1
−δλδ−1

η1
b−1/rw

λ2δ
η1

= λη1 w′−δb−1/rw

λδ+1
η1

< 0.

The proof is thus concluded.

3. Main Results
In what comes next, it is assumed that all functional inequalities hold eventually, meaning
they are satisfied for sufficiently large values of η. This assumption does not lead to a loss of
generality; specifically, any nonoscillatory solution u of (1.1) can be regarded as eventually
positive. The first oscillation result is now introduced, and its proof is established.

Theorem 3.1. Suppose that ϱ′(η)≥ 0, r ≤β, and there exists a function ρ ∈ C1(I,R+) such that

limsup
η→∞

1
H(η,η0)

∫ η

η0

[
H(η,ℓ)ρ(ℓ)q(ℓ)(1− p(ϱ(ℓ)))β− Krrρ(ℓ)b(ϱ(ℓ))

Mβ−rβr(ϱ′(ℓ))r
[Q(η,ℓ)]r+1

(r+1)r+1

]
dℓ=∞,

(3.1)
where

Q(η,ℓ)= ρ′(ℓ)
ρ(ℓ)

H(η,ℓ)1/(r+1) −h(η,ℓ). (3.2)

Hence, every solution of (1.1) oscillates.

Communications in Mathematics and Applications, Vol. 16, No. 2, pp. 429–441, 2025



434 Philos-Type Criteria for Testing the Oscillatory Performance of Solutions. . . : A. E. Amer et al.

Proof. Assume, contrary to the claim, that u is an eventually positive solution of (1.1). Besides,
there is η1 ≥ η0 such that u(τ(η))> 0 and u(ϱ(η))> 0, for η≥ η1.

According to the definition of w,

u = w− pu(τ)

≥ w− pw(τ)

≥ w− pw.

Thus,

u ≥ w(1− p). (3.3)

From eq. (1.1) and using (3.3), it can be deduced that

(bψ(u)[w′]r)′ =−quβ(ϱ)

≤−qwβ(ϱ)(1− p(ϱ(η)))β. (3.4)

The function ϕ is defined as

ϕ= ρ bψ(u)[w′]r

wβ(ϱ)
> 0. (3.5)

Now,

ϕ′(η)= ρ′(η)
ρ(η)

ϕ(η)+ρ(η)
(bψ(u)[w′]r)′

wβ(ϱ)
−βρ(η)

bψ(u)[w′]rw′(ϱ)ϱ′

wβ+1(ϱ)
.

Using (3.4), one obtains

ϕ′(η)≤ ρ′(η)
ρ(η)

ϕ(η)−ρ(η)q(1− p(ϱ))β−βρ(η)
bψ(u)[w′]rw′(ϱ)ϱ′

wβ+1(ϱ)
. (3.6)

Since (b(η)ψ(u(η))[w′(η)]r)′ ≤ 0, then

b(η)(ϱ)ψ(u(ϱ))[w′(ϱ)]r ≥ bψ(u)[w′]r.

This leads to

w′(ϱ)≥ b1/rψ1/r(u)w′

b1/r(ϱ)ψ1/r(u(ϱ))
. (3.7)

Using (3.7) and (A4), (3.6) becomes

ϕ′(η)≤ ρ′

ρ
ϕ−ρq(1− p(ϱ))β− β

K1/r ρ
(bψ(u)[w′]r)1+1/r

wβ+1(ϱ)
ϱ′

b1/r(ϱ)
.

Now, one can write

(w(ϱ))β+1 = (w(ϱ))β+(β/r)

(w(ϱ))(β/r)−1 . (3.8)

Back to the last inequality and using (3.8), it is concluded that

ϕ′ ≤ ρ′

ρ
ϕ−ρq(1− p(ϱ))β− β

K1/r

[
ρ

bψ(u)[w′]r

wβ(ϱ)

]1+1/r
ϱ′(w(ϱ))(β/r)−1

ρ1/rb1/r(ϱ)

= ρ′

ρ
ϕ−ρq(1− p(ϱ))β− β

K1/r

ϱ′

ρ1/rb1/r(ϱ)
(w(ϱ))(β/r)−1ϕ1+1/r. (3.9)

Since w ≥ M for all η≥ η2 and letting r ≤β, then

(w(ϱ))(β/r)−1 ≥ M(β/r)−1. (3.10)
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Using (3.10) and substituting in (3.9), it follows that

ϕ′ ≤ ρ′

ρ
ϕ−ρq(1− p(ϱ))β− βM(β/r)−1

K1/r

ϱ′

ρ1/rb1/r(ϱ)
ϕ1+1/r. (3.11)

Multiplying (3.11) by H(η,ℓ) and integrating, one obtains∫ η

η2

H(η,ℓ)ϕ′(ℓ)dℓ≤
∫ η

η2

H(η,ℓ)
ρ′(ℓ)
ρ(ℓ)

ϕ(ℓ)dℓ−
∫ η

η2

H(η,ℓ)ρ(ℓ)q(ℓ)(1− p(ϱ(ℓ)))βdℓ

− βM(β/r)−1

K1/r

∫ η

η2

H(η,ℓ)
ϱ′(ℓ)

ρ1/r(ℓ)b1/r(ϱ(ℓ))
ϕ1+1/r(ℓ) dℓ. (3.12)

Then,∫ η

η2

H(η,ℓ)ϕ′(ℓ)dℓ=−H(η,η2)ϕ(η2)+
∫ η

η2

h(η,ℓ)[H(η,ℓ)]r/(r+1)ϕ(ℓ) dℓ.

Returning to (3.12), it follows that∫ η

η2

H(η,ℓ)ρ(ℓ)q(ℓ)(1− p(ϱ(ℓ)))βdℓ≤ H(η,η2)ϕ(η2)−
∫ η

η2

h(η,ℓ)[H(η,ℓ)]r/(r+1)ϕ(ℓ) dℓ

+
∫ η

η2

H(η,ℓ)
ρ′(ℓ)
ρ(ℓ)

ϕ(ℓ) dℓ

− βM(β/r)−1

K1/r

∫ η

η2

H(η,ℓ)
ϱ′(ℓ)

ρ1/r(ℓ)b1/r(ϱ(ℓ))
ϕ1+1/r(ℓ) dℓ,

or∫ η

η2

H(η,ℓ)ρ(ℓ)q(ℓ)(1− p(ϱ(ℓ)))βdℓ≤−βM(β/r)−1

K1/r

∫ η

η2

H(η,ℓ)
ϱ′(ℓ)

ρ1/r(ℓ)b1/r(ϱ(ℓ))
ϕ1+1/r(ℓ) dℓ

+
∫ η

η2

[H(η,ℓ)]r/(r+1)
[
−h(η,ℓ)+ ρ′(ℓ)

ρ(ℓ)
[H(η,ℓ)]1/(r+1)

]
ϕ(ℓ) dℓ

+ H(η,η2)ϕ(η2).

Using Lemma 2.1 with θ =ϕ,

c1 = [H(η,ℓ)]r/(r+1)
[
−h(η,ℓ)+ ρ′(ℓ)

ρ(ℓ)
[H(η,ℓ)]1/(r+1)

]
= [H(η,ℓ)]r/(r+1)Q(η,ℓ)

and

c2 = βM(β/r)−1

K1/r H(η,ℓ)
ϱ′(ℓ)

ρ1/r(ℓ)b1/r(ϱ(ℓ))
,

one obtains

H(η,η2)ϕ(η2)≥
∫ η

η2

H(η,ℓ)ρ(ℓ)q(ℓ)(1− p(ϱ(ℓ)))β dℓ

−
∫ η

η2

rr

(r+1)r+1 [[H(η,ℓ)]r/(r+1)Q(η,ℓ)]r+1 K Mr−β

βr
ρ(ℓ)b(ϱ(ℓ))

(ϱ′(ℓ))r
1

[H(η,ℓ)]r dℓ

or

ϕ(η2)≥ 1
H(η,η2)

∫ η

η2

[
H(η,ℓ)ρ(ℓ)q(ℓ)(1− p(ϱ(ℓ)))β− Krrρ(ℓ)b(ϱ(ℓ))

Mβ−rβr(ϱ′(ℓ))r
[Q(η,ℓ)]r+1

(r+1)r+1

]
dℓ,

which contradicts assumption (3.1).
The proof is thus concluded.

Communications in Mathematics and Applications, Vol. 16, No. 2, pp. 429–441, 2025



436 Philos-Type Criteria for Testing the Oscillatory Performance of Solutions. . . : A. E. Amer et al.

Theorem 3.2. Suppose that ϱ′(η)≥ 0, r ≤β, and there exists a function ρ ∈ C1(I,R+) such that

limsup
η→∞

∫ η

η1

[
ρ(ℓ)q(ℓ)(1− p(ϱ(ℓ)))β− K Mr−βrr

βr(r+1)r+1
(ρ′(ℓ))r+1

(ρ(ℓ))r
b(ϱ(ℓ))
(ϱ′(ℓ))r

]
dℓ=∞. (3.13)

Hence, every solution of (1.1) oscillates.

Proof. By following the approach used in the proof of Theorem 3.1, one obtains

ϕ′ ≤ ρ′

ρ
ϕ−ρq(1− p(ϱ))β− βM(β/r)−1

K1/r

ϱ′

ρ1/rb1/r(ϱ)
ϕ1+1/r.

Using Lemma 2.1 with θ =ϕ, c1 = ρ′/ρ and

c2 = βM(β/r)−1

K1/r

ϱ′

ρ1/rb1/r(ϱ)
,

it can be concluded that

ϕ′ ≤−ρq(1− p(ϱ))β+ K Mr−βrr

βr(r+1)r+1

(
ρ′

ρ

)r+1
ρb(ϱ)
(ϱ′)r . (3.14)

Integrating (3.14) leads to

ϕ(η)−ϕ(η2)≤
∫ η

η2

[
−ρ(ℓ)q(ℓ)(1− p(ϱ(ℓ)))β+ K Mr−βrr

βr(r+1)r+1
(ρ′(ℓ))r+1(
ρ(ℓ)

)r
b(ϱ(ℓ))
(ϱ′(ℓ))r

]
dℓ.

Thus,

ϕ(η2)≥
∫ η

η2

[
ρ(ℓ)q(ℓ)(1− p(ϱ(ℓ)))β− K Mr−βrr

βr(r+1)r+1
(ρ′(ℓ))r+1

(ρ(ℓ))r
b(ϱ(ℓ))
(ϱ′(ℓ))r

]
dℓ,

which contradicts assumption (3.13).

The proof is thus concluded.

Theorem 3.3. Suppose that there exists a function ρ ∈ C1(I,R+) such that

limsup
η→∞

∫ η

η1

ρ(ℓ)q(ℓ)

(
λδη1

(ϱ(ℓ))

λδη1(ℓ)

)β
(1− p(ϱ(ℓ)))β− Krr

βr(r+1)r+1
(ρ′(ℓ))r+1

ρr(ℓ)
b(ℓ)

dℓ=∞.

(3.15)
Hence, every solution of (1.1) oscillates.

Proof. Following the steps in the proof of Theorem 3.1, one arrives at

(b(η)ψ(u(η))[w′(η)]r)′ ≤−q(η)wβ(ϱ(η))(1− p(ϱ(η)))β.

The function ϕ is defined as

ϕ= ρ bψ(u)[w′]r

wβ
> 0. (3.16)

Then,

ϕ′ = ρ′

ρ
ϕ+ρ

[
(bψ(u)[w′]r)′

w2β wβ−βbψ(u)[w′]r

w2β wβ−1w′
]

≤ ρ′

ρ
ϕ+ρ

[−qwβ(ϱ)(1− p(ϱ))β

wβ
−βbψ(u)[w′]r+1

wβ+1

]
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≤ ρ′

ρ
ϕ+ρ

[
−q

(
w(ϱ)

w

)β
(1− p(ϱ(η)))β−βbψ(u)

[w′]r+1

wβ+1

]
,

which by using (3.16) implies that

ϕ′ ≤ ρ′

ρ
ϕ+ρ

[
−q

(
w(ϱ)

w

)β
(1− p(ϱ(η)))β−β bψ(u)ϕ

r+1
r

ρ
r+1

r b
r+1

r ψ
r+1

r (u)

]

= ρ′

ρ
ϕ−ρq

(
w(ϱ)

w

)β
(1− p(ϱ(η)))β−β ϕ

r+1
r

ρ
1
r b

1
rψ

1
r (u)

. (3.17)

Since ψ(u)≤ K , (3.17) becomes

ϕ′ ≤ ρ′

ρ
ϕ−ρq

(
w(ϱ)

w

)β
(1− p(ϱ(η)))β− β

K
1
r

ϕ
r+1

r

ρ
1
r b

1
r
. (3.18)

It follows from Lemma 2.2 that(
w
λδη1

)′
< 0,

which leads to(
w(ϱ)

w

)β
≥

(
λδη1

(ϱ)

λδη1

)β
.

Using this and substituting in (3.18), then

ϕ′ ≤ ρ′

ρ
ϕ−ρq

(
λδη1

(ϱ)

λδη1

)β
(1− p(ϱ))β− β

K
1
r

ϕ
r+1

r

ρ
1
r b

1
r

. (3.19)

Using Lemma 2.1 with θ =ϕ, c1 = ρ′/ρ and

c2 = β

K
1
r

1

ρ
1
r b

1
r

.

Eq. (3.19) becomes

ϕ′ ≤−ρq

(
λδη1

(ϱ)

λδη1

)β
(1− p(ϱ))β+ Krr

βr(r+1)r+1

(
ρ′

ρ

)r+1

ρb

=−ρq

(
λδη1

(ϱ)

λδη1

)β
(1− p(ϱ))β+ Krr

βr(r+1)r+1
(ρ′)
ρr

r+1

b. (3.20)

Integrating (3.20) leads to

ϕ(η)−ϕ(η2)≤
∫ η

η2

−ρ(ℓ)q(ℓ)

(
λδη1

(ϱ(ℓ))

λδη1(ℓ)

)β
(1− p(ϱ(ℓ)))β+ Krr

βr(r+1)r+1
(ρ′(ℓ))
ρr(ℓ)

r+1

b(ℓ)

dℓ.

Thus,

ϕ(η2)≥
∫ η

η2

ρ(ℓ)q(ℓ)

(
λδη1

(ϱ(ℓ))

λδη1(ℓ)

)β
(1− p(ϱ(ℓ)))β− Krr

βr(r+1)r+1
(ρ′(ℓ))
ρr(ℓ)

r+1

b(ℓ)

dℓ,

which contradicts with assumption (3.15).

The proof is complete.
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By replacing H(η,ℓ) with (η−ℓ)n, n ∈ w+, in Theorem 3.1, the following corollary is obtained.

Corollary 3.1. Suppose that ϱ′ ≥ 0, r ≤β, and there exists a function ρ ∈ C1(I,R+) such that

limsup
η→∞

1
(η−η0)n

∫ η

η0

[
ρ(ℓ)q(ℓ)(η−ℓ)n(1− p(ϱ(ℓ)))β− Krrρ(ℓ)b(ϱ(ℓ))

Mβ−rβr(ϱ′(ℓ))r
[Q(η,ℓ)]r+1

(r+1)r+1

]
dℓ=∞,

where Q is given by the definition in Theorem 3.1. Hence, every solution of (1.1) oscillates.

By selecting ρ(ℓ)=λr
η1

(ϱ(ℓ)), the following oscillation result for (1.1) is derived.

Corollary 3.2. Let ϱ′(η)≥ 0, r ≤β, and suppose there exists a function ρ ∈ C1(I,R+) such that

limsup
η→∞

∫ η

η1

[
q(ℓ)λr

η1
(ϱ(ℓ))(1− p(ϱ(ℓ)))β− K Mr−βr2r+1

βr(r+1)r+1
ϱ′(ℓ)

λη1(ϱ(ℓ))(b(ϱ(ℓ)))
1
r

]
dℓ=∞.

Hence, every solution of (1.1) oscillates.

As a special case of (1.1), for

(b(η)ψ(u(η))[w′(η)])′+ q(η)u(ϱ(η))= 0, (3.21)

the criterion that is proposed here is as follows:

Corollary 3.3. Suppose that there exists a function ρ ∈ C1(I,R+) such that

limsup
η→∞

∫ η

η1

[
ρ(ℓ)q(ℓ)

(
λδη1

(ϱ(ℓ))

λδη1(ℓ)

)
(1− p(ϱ(ℓ)))− K

4
(ρ′(ℓ))2

ρ(ℓ)
b(ℓ)

]
dℓ=∞,

where λη1(η) := ∫ η
η1

[1/(b(ℓ))] dℓ. Hence, every solution of (3.21) oscillates.

4. Conclusion
This paper has presented some new theorems that investigate the oscillation of the super-linear
equation (1.1) in its canonical case. The Riccati transformation technique was employed as a
fundamental tool. In Theorem 3.1 and Theorem 3.2, monotonic constraints are not required on
the delay functions, while Theorem 3.3 requires that ϱ′ ≥ 0. It would be intriguing if subsequent
research could extend the results for the non-canonical case and also for higher-order equations.
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