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1. Introduction
Other writers were able to provide fixed point solutions for fuzzy mapping, but Zadeh’s concept
of a fuzzy set, first introduced in 1965 [30], proved to be a turning moment in the history of
mathematics and established the groundwork for fuzz mathematics. In 1975, Kramosil and
Michálek [18] presented the new idea of FMS using continuous t-norms. common fixed point
theorems for non-Archimedean FMS that apply to SVM and SEVM were proven by Samanta
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and Mohinta [24]. Bouhadjera and Djoudi [6] demonstrated a few fixed point theorems for
common fixed point theorems for maps with SVM and SEVM meeting a rigorous contractive
requirement without continuity. The Banach Type fixed Point Theorem for SEVM on a FMS was
demonstrated by Sastry et al. [25]. Rezapour and Samet [23] offered the (α-ψ)-contractive and
α-admissible mapping, also constructed some FPT. Hong [12] presented the (α-ψ)-contractive
for set valued mapping in FMS. There is currently a sizable and extensive body of research in
this field. Several fixed point results for SEM and SEVM have been proven in recent years and
have a wide range of applications. Theorems for typical fixed locations for maps with SVM and
SEVM are fascinating and essential in numerous fields. Jinakul et al. [14] demonstrated fixed
point and common fixed point findings for multi-valued mapping in b-metric space. The notion
of compatibility was recently undermined by Gupta et al. [11] by demonstrating several fixed
point findings for SVM and SEVM. This led to the concept of OWC is the simple one of all types
of commutativity views

The presence of fuzzy fixed points in metric and FMS of SEVM was recently demonstrated
by Kanwal et al. [17]. In order to our study aims to propose the notion that single-valued and
set-valued maps in FMS can occasionally be weakly compatible and to show in fixed point theory,
common fixed point outcomes. We loosened the space’s completeness and continuity in this
paper. In this study, we use various unique incorporating integral type generalized contractions
to FMS. Examples and applications that demonstrate and corroborate our obtained results have
been included.

2. Preludes
Definition 2.1 ([18]). A map ∗ : [0,1]× [0,1]→ [0,1] is called continuous triangular norm, if it is
satisfied: a,b, c,d ∈ [0,1]:

(i) (Symmetry) a∗b = b∗a;

(ii) (Monotonicity) a∗b ≤ c∗d if a ≤ c and b ≤ d;

(iii) (Associativity) a∗ (b∗ c)= (a∗b)∗ c;

(iv) (Boundary condition) a∗1= a.

Definition 2.2 ([7]). The 3-tuple (X ,M,∗) is known as FMS if X is an arbitrary set, ∗ is t-norm
and M is a fuzzy set on X × X × [0,∞) such that for all x, y, z ∈ X and p, q ≥ 0, then

(i) M(x, y,0)= 0;

(ii) M(x, y, t)= 1, for all t > 0 if and only if x = y;

(iii) M(x, y, t)=M(y, x, t);

(iv) M(x, z, p+ q)≥M(x, y, p)∗M(y, z, q);

(v) M(x, y, ·) : (0,∞)→ [0,1] is continuous.

Example 2.1 ([18]). Let (X ,d) be a metric space. Define u∗v =min{u,v} (or u∗v = uv), for all
u,v ∈ [0,1]. Then fuzzy metric may define as

M0(u,v, t)= t
t+d(x0, y)

, for all x, y ∈ X and t > 0.
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Example 2.2 ([18]). Let X [0,∞), u∗v = uv for every, u,v ∈ [0,1] and d is usual metric defined
on X . Define a function M0(x, y, t)= e−

d(x0,y)
t ; t and x, y ∈ X , t > 0 then (X ,M,∗) is a FMS.

Note 4′. M0(x, z,max{p, q}) ≥ M0(x, y, p)∗ M0(y, z, q); if the condition (iv) of Definition 2.2 is
replaced by (4′) then FMS (X ,M,∗) is called non-Archimedean FMS. All non-Archimedean
FMSs are FMSs as well.

Definition 2.3 ([4]). A mapping that has a single value for each point in the domain within its
range is called a SVM. It is therefore many-to-one or one-to-one.

Definition 2.4 ([4]). A mathematical function called a SEVM, or correspondence, is a kind of
mapping that moves elements from one function domain (a set) to sub-domains of another set.
Another word for it is multi-valued mapping.

Definition 2.5 ([22]). Let CB(X ) ̸= ; bounded ⊂ FMS(X ,Ω,∗). For A,B ∈ CB(X ) and t > 0.
Define

H(A,B, t)= sup{Ω(x0, y, t) : x0 ∈ A, y0 ∈ B},

and δH(A,B, t)= inf{Ω(x, y, t) : x ∈ A, y ∈ B},

if A = x consist of single point, then δH(A,B, t)=Ω(x,B, t),

if A = x, B = y, then δH(A,B, t)=Ω(x, y, t).

It follows immediately from definition that

δH(A,B, t)= δH(B, A, t)≥ 0,

δH(A,B, t)= 1⇐⇒ A = B = {x}, for all A,B ∈ CB(X ),

and let δH be the Hausdorff FMS on CB(X ) for every A,B in CB(X ),

δH(A,B, t)=min
{

inf
y∈B
Ω(A, y, t), inf

x∈A
Ω(x,B, t)

}
.

Definition 2.6 ([22]). Given a FMS (X ,d,∗), a sequence {xn} in a FMS (X ,d,∗) to a point x ∈ X
if lim

n→∞M(xn, x, t)= 1, for all t > 0.

Definition 2.7 ([22]). Given a FMS (X ,d,∗), a sequence {xn} in a (X ,d, t) is referred to be the
Cauchy sequence if and only if all ϵ ∈ (0,1) and t > 0 there exists n0 ∈ N such that

lim
n→∞M(xn, xm, t)= 1−ϵ, for all n,m > n0.

Definition 2.8 ([11]). Every Cauchy sequence converges in a complete FMS.

Definition 2.9 ([6]). A : X0 → X and B : X → CB(X ) are compatible. If ABx ∈ CB(X ) for all
x ∈ X , t > 0 and lim

n→∞H(ABxn,BAxn, t) = 1, and whenever {xn} is a series with in X that
Axn → x ∈ M and Bxn → M ∈ CB(X ).

Definition 2.10 ([6]). The maps B : X → CB(X ) and A : X → X , Ax ∈ Bx then a point x ∈ X is
referred to as a coincidence point (respectively, x = Ax ∈ Bx).
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Definition 2.11 ([6]). The maps A : X → X and B : X → CB(X ) commute at coincidence points,
i.e., ABx = BAx whenever Ax ∈ Bx, then they are considered weakly compatible.

Definition 2.12 ([6]). If there is a point x in X such that Ax ∈ Bx and ABx ⊆ BAx, then the
maps A : X → X and B : X → CB(X ) are said to be sometimes weakly compatible (OWC).

Example 2.3 ([7]). Let R be the usual metric space. Let A : X → X and B : X → CB(X )
by Ax = 3x and Bx = x2, for all x ∈ R. Then Ax = Bx for x = 0,3, but AB(0) = BA(0) and
AB(3) ̸= BA(3). Because of this, A and B are sometimes weakly compatible but not always so.

Example 2.4 ([7]). Let X = [0,∞) with a∗b =min{a,b} for all a,b ∈ [0,1] and Ω(x, y, t)= t
t+d(x,y) ,

t > 0. Let the maps A : X → X and B : X → CB(X ) by

Ax =
{

0, 0≤ x < 1,
x+1, 1≤ x <∞ and Bx =

{
{0}, 0≤ x < 1,
[1, x+2], 1≤ x <∞.

Then Ax = Bx for x = 1 but AB(1)= [2,4] ̸= BA(1)= [1,4], A(0) ∈ B(0) and AB(0⊆ BA(0)), that
is, A{0}= 0⊆ B(0)= {0}, indicate that A and B are not weakly compatible. Therefore, A and B
are weakly compatible when x = 0, they are also OWC.

Lemma 2.1 ([16]). Let {An} and {Bn} in CB(X ) to A and B in CB(X ). Then

δH(An,Bn, t)→ δH(A,B, t) as n →∞, for all t > 0.

Lemma 2.2 ([16]). Let {An} and {Bn} in CB(X ), then Ω(x,B, t)≥ δH(A,B, t) for any x ∈ A.

3. Main Result
Theorem 3.1. Assume that F,G : X → CB(X ) is a SEVM, f , g : X → X is a SVM. The pairs
{ f ,F} and {g,G} are sometimes weakly compatible. Let ϕ : R5 → R such that ϕ(t,1,1, t∗ t) > 1
and 0< t < 1 and satisfies the condition:∫ δH (Fx,G y,t)

0
ϕ(t)dt ≥

∫ M(x,y,t)

0
ϕ(t)dt , (3.1)

M(x, y, t)=ϕ{H( f x, gy, t),Ω( f x,Fx, t),Ω(gy,G y, t),Ω( f x,G y, t)∗Ω(gy,Fx, t)}.

If a function is non-negative, summable, and Lebesgue integrable, then
∫ ε

0 ϕ(t)dt, for each ε> 0,
for all x, y ∈ X , t > 0, ∃ a unique common fixed point of f , g,F and G.

Proof. Given that { f ,F} and {g,G} are owc pairs. Thus, points p, q ∈ X such that f p ∈ F p,
gq ∈ Gq, f F p ⊆ F f x and gGq ⊆ G gq. Also, by Lemma 2.2, we obtain as f p ∈ F p thus
f f p ⊂ f F ⊂ F f p, gq ∈Gq thus ggq ⊂ gGq ⊂G gq. Hence

Ω( f p, gq, t)≥ δH(F p,Gq, t) (3.2)

and

Ω( f 2 p, g2q, t)≥ δH(F f p,G gq, t). (3.3)

Now we shall show that f p = gq. If not, then δH(F f p,G gq, t)< 1, put x = f p, y= gq, we have

M( f p, gq, t)=ϕ{H( f f p, ggq, t),Ω( f f p,F f p, t),Ω(ggq,G gq, t),Ω( f f p,G gq, t)∗Ω(ggq,F f p, t)}

=ϕ{H( f 2 p, g2q, t),Ω( f 2 p,F f p, t),Ω(g2q,G gq, t),Ω( f 2 p,G gq, t)∗Ω(g2q,F f p, t)}.
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From (3.2), we have

M( f p, gq, t)=ϕ{δH(F f p,G gq, t),1,1,δH(F f p,G gq, t)∗δH(G gq,F f p, t)},

M( f p, gq, t)= δH(F f p,G gq, t).

Then from (3.1)∫ δH (F f p,G gq,t)

0
ϕ(t)dt ≥

∫ M( f p,gq,t)

0
ϕ(t)dt ≥

∫ δH (F f p,G gq,t)

0
ϕ(t)dt.

This is a contradiction

⇒ δH(F f p,G gq, t)= 1

⇒ F f p =G gq

i.e.,

f p = gq.

Also,

Ω( f 2 p, gp, t)≥ δH(F f p,G p, t)

and

Ω( f 2 p,G p, t)≥ δH(F f p,G p, t).

Now, we claim f p = p. If not, then δH(F f p,G p, t)< 1.
Put x = f p, y= p, we have

M( f p, p, t)=ϕ{H( f f p, gp, t),Ω( f f p,F f p, t),Ω(gp,G p, t),Ω( f f p,G p, t)∗Ω(gp,F f p, t)}

=ϕ{H( f 2 p, gp, t),Ω( f 2 p,F f p, t),Ω(gp,G p, t),Ω( f 2 p,G p, t)∗Ω(gp,F f p, t)}

=ϕ{H( f 2 p, gp, t),H( f 2 p,F f p, t),H(gp,G p, t),H( f 2 p,G p, t)∗H(gp,F f p, t)}

=ϕ{δH(F f p,G p, t),1,1,H(F f p,G p, t)∗H(G p,F f p, t)}

= δH(F f p,G p, t).

Then from (3.1),∫ δH (F f p,G p,t)

0
ϕ(t)dt ≥

∫ M( f p,p,t)

0
ϕ(t)dt ≥

∫ δH (F f p,G p,t)

0
ϕ(t)dt.

This is a contradiction

⇒ δH(F f p,G p, t)= 1

⇒ F f p =G p

i.e.,

f p = p.

Similarly, we can show that, gq = q.
Therefore, f f p = f p = ggq = gq = gf p and f p = f 2 p ∈ f Fu ⊆ F f u so that f p ∈ F f p and
f p = gf p ∈G f u. Then f p is common fixed point of f , g,F and G.

Uniqueness: Let z′ be f , g,F , and G ’s other common fixed point.
Put f x = z then we have

Ω(z, z′, t)=Ω( f z, gz′, t)≥ δH(Fz,Gz′, t).
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Now,

M(z, z′, t)=ϕ{H( f z, gz′, t),Ω( f z,Fz, t),Ω(gz′,Gz′, t),Ω( f z,Gz′, t)∗Ω(gz′,Fz, t)}

=ϕ{H( f z, gz′, t),1,1,Ω( f z,Gz′, t)∗Ω(Fz, gz′, t)}

=ϕ{H( f z, gz′, t),1,1,H( f z, gz′, t)∗H( f z, gz′, t)}

= H( f z, gz′, t).

Then from (3.1),∫ δH (Fz,Gz′,t)

0
ϕ(t)dt ≥

∫ M(z,z′,t)

0
ϕ(t)dt ≥

∫ δH (Fz,Gz′,t)

0
ϕ(t)dt.

This is a contradiction

⇒ δH(Fz,Gz′, t)= 1

⇒ Fz =Gz′

i.e.,

z = z′.

Thus f , g,F and G have unique common fixed point.
The proof is now complete.

Example 3.1. Let X = [0,4] with metrc d is defined d = |x− y| for all t ∈ [0,1], and Ω= (x, y, t)=
t

t+|x−y| .
Set the SEVM F,G : X → CB(X ). Define the SVM f , g : X → X .

f (x)=
{

x, 0≤ x ≤ 2,
3, 2< x ≤ 4,

g(x)=
{

2, 0≤ x ≤ 2,
x
4 , 2< x ≤ 4,

F(x)=
{

{2}, 0≤ x ≤ 2,
{0}, 2< x ≤ 4,

G(x)=
{

{2}, 0≤ x ≤ 2,
{4}, 2< x ≤ 4,

that is,

f (2)= {2} ∈ F(2) and F f (2)= {2}= f F(2)

and

g(2)= {2} ∈G(2) and G g(2)= {2}= gG(2).

Hence, there are times when { f ,F} and {g,G} are poorly compatible. Additionally, f , g,F , and G
have a unique shared fixed point of 2.

Example 3.2. Let X = [0,4] with the metric d defined d(x, y)= |x− y|, and a∗b =min{a,b} for

each t > 0, define Ω(x, y, t)=
{

t
t+d(x,y) , if t > 0,

0, if t = 0.
Define the maps f , g,F and G:

f x =
{

2x−1, x ≤ 5,
2x, x > 5,

gx =
{

3−2x, x ≤ 1,
x+1, x > 1,
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Fx =
{

{1}, x < 2,
[2x,2x+5], x ≥ 2,

Gx =
{

{1}, x = 1,
[x, x+2], otherwise.

Hence { f ,F} and {g,G} be occasionally weakly compatible.
Define ϕ : [0,1]→ [0,1] as ϕ(0)= 0, ϕ(1)= 1 and ϕ(t)= t1/2, for 0< t < 1, then condition (3.1) is
satisfied for all t > 1.

Corollary 3.2. Assume that F,G : X → CB(X ) is a SEVM and f , g : X → X is SVM, this means
that the pairs { f ,F} and {g,G} are OWC, and 0< t < 1 and satisfies the condition:∫ δH (Fx,G y,t)

0
ϕ(t)dt ≥

∫ M(x,y,t)

0
ϕ(t)dt, (3.4)

M(x, y, t)= {Ω( f x, gy, t),Ω( f x,Fx, t),Ω(gy,G y, t),Ω( f x,G y, t),Ω(gy,Fx, t)}.

If a function is non-negative, summable, and Lebesgue integrable such that
∫ ε

0 ϕ(t)dt, for each
ε> 0, for all x, y ∈ X , t > 0 then there exists a unique common fixed point of f , g,F and G.

Corollary 3.3. Assume that F,G : X → CB(X ) is a SEVM and f , g : X → X is a SVM, this means
that the pairs { f ,F} and {g,G} are OWC. Let ϕ : R5 → R such that ϕ(t) > 1 and 0 < t < 1 and
satisfies the condition:∫ δH (Fx,G y,t)

0
ϕ(t)dt ≥

∫ M(x,y,t)

0
ϕ(t)dt, (3.5)

M(x, y, t)=ϕ[min{Ω( f x, gy, t),Ω( f x,Fx, t),Ω(gy,G y, t),Ω( f x,G y, t),Ω(gy,Fx, t)}.

If a function is non-negative, summable, and Lebesgue integrable such that
∫ ε

0 ϕ(t)dt, for each
ε> 0 for all x, y ∈ X , t > 0 then there exists a unique common fixed point of f , g,F and G.

Corollary 3.4. Assume that F,G : X → CB(X ) is a SEVM and f , g : X → X is a SVM, this means
that the pairs { f ,F} and {g,G} are OWC. Let ϕ : R → R such that for every, 0≤α≤ 1, ψ(α)>α

and satisfies the condition:∫ δ
β

H (Fx,G y,t)

0
ϕ(t)dt ≥

∫ M(x,y,t)

0
ϕ(t)dt, (3.6)

where

M(x, y, t)=ψ[ηΩβ( f x, gy, t)+ (1−η)Ω
β
2 (gy,Fx, t).Ω

β
2 ( f x,G y, t)]

is a function is sumable, Lebesgue integrable, non-negative such that
∫ ε

0 ϕ(t)dt, for each ε> 0 for
all x, y ∈ X , 0<α< 1 and β≥ 1 then f , g,F and G has unique common fixed point.

Proof. Given that { f ,F} and {g,G} are OWC pairs. Thus, points p, q ∈ X such that f p ∈ F p,
gq ∈ Gq, f F p ⊆ F f p and gGq ⊆ G gq. Also, by Lemma 2.2, we obtain as f p ∈ F p thus
f f p ⊂ f F p ⊂ F f p, gq ∈Gq thus ggq ⊂ gGq ⊂G gq,

Ω( f p, gq, t)≥ δH(F p,Gq, t) (3.7)

and

Ω( f 2 p, gq, t)≥ δH(F f p,Gqt). (3.8)

Now to claim f 2 p = f p.
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Using (3.7) and Lemma 2.2, we have

M(p, q, t)=ψ[ηδβH(F p,Gq, t)+ (1−η)δβH(Gq,F p, t)]=ψ[δβH(F p,Gq, t)].

Since 0≤α≤ 1, ψ(α)>α,

0≤ δβH(F p,Gq, t)< 1, δβH(F p,Gq, t)≥ψ(δβH(F p,Gq, t))> δβH(F p,Gq, t).

So by inequality (3.6).
We have,∫ δ

β

H (F p,Gq,t)

0
ϕ(t)dt ≥

∫ δ
β

H (F p,Gq,t)

0
ϕ(t)dt.

This is contradiction, thus we get

δH(F p,Gq, t)= 1

⇒ F p =Gq

⇒ f p = gq.

Again using (3.7) and Lemma 2.2, we have

M( f p, q, t)=ψ[ηΩβ( f 2 p, gq, t)+ (1−η)Ω
β
2 (gq,F f p, t).Ω

β
2 ( f 2 p,Gq, t)]

=ψ[ηδβH(F f p,Gq, t)+ (1−η)δβH(F f p,Gq, t)]

= δβH(F p,Gq, t).

If 0≤ δβH(F p,Gq, t)< 1, then by we have

δ
β

H(F f p,Gq, t)≥ψ(δβH(F f p,Gq, t))> δβH(F f p,G p, t).

So by inequality (3.6).
We have∫ δ

β

H (F f p,Gq,t)

0
ϕ(t)dt ≥

∫ δ
β

H (F f p,Gq,t)

0
ϕ(t)dt.

This is contradiction, thus we get

δH(F f p,Gq, t)= 1

⇒ F f p =Gq

⇒ f 2 p = f p.

Similarly, { f ,F} and {g,G} have the same role so we can show gq = g2q.
Suppose f p = z then f z = z = gz.

Uniqueness: Let z′ be f , g,F , and G ’s other common fixed point then by inequality (3.1).
Put f x = z, then we have

Ω(z, z′, t)=Ω( f z, gz′, t)≥ δH(Fz,Gz′, t). (3.9)

Now

M(z, z′, t)=ψ[ηΩβ( f z, gz′, t)+ (1−η)Ω
β
2 (gz′,Fz, t).Ω

β
2 ( f z,Gz′, t)]

=ψ[δβH(Fz,Gz′, t)]> δβH(Fz,Gz′, t).
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Then by inequality (3.6),∫ δ
β

H (Fz,Gz′,t)

0
ϕ(t)dt ≥

∫ δ
β

H (Fz,Gz′,t)

0
ϕ(t)dt.

This is contradiction, thus

δH(Fz,Gz′, t)= 1

⇒ Fz =Gz.

Since z and z′ are common fixed point of f , g,F and G.
We have

Ω( f z, gz′, t)≥Ω( f z,Fz, t)∗δH(Fz,Gz′, t)∗Ω(gz′,Gz′, t)≥ δH(Fz,Gz′, t).

So z = f z = gz′ = z′ and there exists a unique common fixed point of f , g,F and G. This completes
the proof.

Theorem 3.5. Assume that F,G : X → CB(X ) is a SEVM and f , g : X → X is a SVM, this means
that the pairs { f ,F} and {g,G} are OWC. Let ϕ : [0,1]→ [0,1] such that for all t ∈ [0,1), ψ(t)= 1
iff t = 1, and satisfies the condition:

ψ{δH(Fx,G y, t)}≥ l{Ω( f x, gy, t)}ψ{Ω( f x, gy, t)}+m{Ω( f x, gy, t)}

min{ψ{Ω( f x,G y, t)},ψ{Ω(gy,Fx, t)}}, (3.10)

for all x, y ∈ X , where l,m : [0,1]→ [0,1] are satisfying the conditions:
l(t)+m(t) > 1, for all t > 0 and l(t)+m(t) = 1 iff t = 1, then f , g,F and G has unique common
fixed point.

Proof. Since the pairs { f ,F} and {g,G}) be OWC. So, there are points x, y ∈ X such that
f x ∈ Fx, gy ∈ G y, f Fx ⊆ F f x and gG y ⊆ G gy. Also, by Lemma 2.2, we obtain as f x ∈ Fx
thus f f x ⊂ f Fx ⊂ F f x, gy ∈G y thus ggy⊂ gGq ⊂G gy,

Ω( f x, gy, t)≥ δH(Fx,G y, t) (3.11)

and

Ω( f 2x, gy, t)≥ δH(F f x,G y, t). (3.12)

Now we shall show that f x = gy. If not then applying above conditions in inequality (3.10) then,
we have

ψ{δH(Fx,G y, t)}≥ l{Ω( f x, gy, t)}ψ{Ω(Fx,G y, t)}+m{Ω( f x, gy, t)}

min{ψ{Ω(Fx,G y, t)},ψ{Ω(G y,Fx, t)}}

≥ l{Ω( f x, gy, t)}ψ{Ω(Fx,G y, t)}+m{Ω( f x, gy, t)}ψ{Ω(Fx,G y, t)}

≥ l{Ω( f x, gy, t)}ψ{δH(Fx,G y, t)}+m{Ω( f x, gy, t)}ψ{δH(Fx,G y, t)}

≥ [l{Ω( f x, gy, t)}+m{Ω( f x, gy, t)}]ψ{δH(Fx,G y, t)}.

Since [l{Ω( f x, gy, t)}+m{Ω( f x, gy, t)}]= 1 iff t = 1 then

ψ{δH(Fx,G y, t)}>ψ{δH(Fx,G y, t)}.

This is a contradiction.
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Thus

δH(Fx,G y, t)= 1

⇒ Fx =G y

⇒ f x = gy.

Again to prove, f 2x = f x. If not then applying above conditions in inequality (3.10) then, we have

ψ{δH(F f x,G y, t)}≥ l{Ω( f 2x, gy, t)}ψ{Ω(F f x, gy, t)}+m{Ω( f 2x, gy, t)}

min{ψ{Ω(F f x,G y, t)},ψ{Ω(gy,F f x, t)}}

≥ l{Ω( f 2x, gy, t)}ψ{Ω(F f x, gy, t)}+m{Ω( f 2x, gy, t)}

min{ψ{Ω(F f x,G y, t)},ψ{Ω(G,F f x, t)}}

≥ l{Ω( f 2x, gy, t)}ψ{Ω(F f x, gy, t)}+m{Ω( f 2x, gy, t)}ψ{Ω(F f x,G y, t)}

≥ [l{Ω( f 2x, gy, t)}+m{Ω( f 2x, gy, t)}]ψ{Ω(F f x,G y, t)}.

Since [l{Ω( f 2x, gy, t)}+m{Ω( f 2x, gy, t)}]= 1 iff t = 1 then

ψ{δH(F f x,G y, t)}>ψ{δH(F f x,G y, t)}.

This is a contradiction.
Thus

δH(F f x,G y, t)= 1

⇒ F f x =G y

⇒ f 2x = f x.

Similarly, { f ,F} and {g,G} have the same role so we can show gy= g2 y.
Suppose f z = z = gz then f z = z = gz and there exists a distinct common fixed point exists of
f , g,F and G. This completes the proof.

Uniqueness: Let z′ be f , g,F , and G ’s other common fixed point then by inequality (3.10).
Put f x = z, then we have

Ω(z, z′, t)=Ω( f z, gz′, t)≥ δH(Fz,Gz′, t). (3.13)

Then by inequality (3.10),

ψ{δH(Fz,Gz′, t)}≥ l{Ω( f z, gz′, t)}ψ{Ω( f z, gz′, t)}+m{Ω( f z, gz′, t)}

min{ψ{Ω( f z,Gz′, t)},ψ{Ω(gz′,Fz, t)}}

≥ l{Ω(z, z′, t)}ψ{Ω(Fz,Gz′, t)}+m{Ω(z, z′, t)}

min{ψ{Ω(Fz,Gz′, t)},ψ{Ω(Gz′,Fz, t)}}

≥ l{Ω(z, z′, t)}ψ{Ω(Fz,Gz′, t)}+m{Ω(z, z′, t)}ψ{Ω(Fz,Gz′, t)}

≥ [l{Ω(z, z′, t)}+m{Ω(z, z′, t)}]ψδH(Fz,Gz′, t)

>ψδH(Fz,Gz′, t).

Since [l{Ω(z, z′, t)}+m{Ω(z, z′, t)}]= 1 iff t = 1.
This is contradiction, so we get Fz =Gz′. Since z and z′ are common fixed point of f , g,F and G.
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Now we have

Ω( f z, gz′, t)≥Ω( f z,Fz, t)∗δH(Fz,Gz′, t)∗Ω(gz′,Gz′, t)≥ δH(Fz,Gz′, t).

So z = f z = gz′ = z′ and there exists a unique common fixed point of f , g,F and G. This completes
the proof.

Theorem 3.6. Assume that F,G : X → CB(X ) is a SEVM and f , g : X → X is a SVM, this means
that the pairs { f ,F} and {g,G} are OWC and satisfies the condition:

δ
β

H(Fx,G y, t)≥ l{Ω( f x, gy, t)}[min{Ω( f x, gy, t).Ωβ−1( f x,Fx, t),Ω( f x, gy, t).Ωβ−1( f x,G y, t),

Ω( f x,Fx, t).Ωβ−1(gy,G y, t),Ωβ−1( f x,G y, t).Ω(gy,Fx, t)}],

for all x, y ∈ X , where β≥ 2 and l : [0,1]→ [0,∞) are satisfying the conditions:
l(t)> 1, for all 0≤ t < 1 and l(t)= 1 iff t = 1. Then f , g,F and G has unique common fixed point.

Proof. Similar proof follows as Theorem 3.5.

Applications. To define as Υ(α)= ∫ α
0 β(α)dα, for all α> 0, for each β(δ)> 0, δ> 0 and β(α)= 0

if and only if α= 0 and non-decreasing and continuous function Υ(α) : [0,∞)→ [0,∞) then

Theorem 3.7. Assume that F,G : X → CB(X ) is a SEVM and f , g : X → X is a SVM, this means
that the pairs { f ,F} and {g,G} are OWC. Let ϕ : R5 → R such that ϕ(t,1,1, t∗ t)> 1 and 0< t < 1
and satisfies the condition:∫ δH (Fx,G y,t)

0
ϕ(t)dt ≥

∫ M(x,y,t)

0
ϕ(t)dt, (3.14)

M(x, y, t)=ϕ{H( f x, gy, t),Ω( f x,Fx, t),Ω(gy,G y, t),Ω( f x,G y, t)∗Ω(gy,Fx, t)}

is a function is sumable, Lebesgue intregable, non-negative such that
∫ ε

0 ϕ(t)dt, for each ε> 0,
for all x, y ∈ X , t > 0 then there exists a distinct common fixed point of f , g,F and G.

Proof. If we take ϕ(t)= 1 then we can easily proof by using Theorem 3.1.

Theorem 3.8. Assume that F,G : X → CB(X ) is a SEVM and f , g : X → X is a SVM, this means
that the pairs { f ,F} and {g,G} are OWC. Let ϕ : [0,1]→ [0,1] such that for all, t ∈ [0,1), ψ(t)= 1
iff t = 1, and satisfies the condition:∫ ψ{δH (Fx,G y,t)}

0
ϕ(t)dt ≥

∫ M(x,y,t)

0
ϕ(t)dt,

where

M(x, y, t)= l{Ω( f x, gy, t)}ψ{Ω( f x, gy, t)}+m{Ω( f x, gy, t)}min{ψ{Ω( f x,G y, t)},ψ{Ω(gy,Fx, t)}},

for all x, y ∈ X , where l,m : [0,1]→ [0,1] are satisfying the conditions:
l(t)+m(t) > 1, for all t > 0 and l(t)+m(t) = 1 iff t = 1. Then f , g,F and G has common fixed
point.

Proof. If we take ϕ(t)= 1 then we can easily proof by using Theorem 3.5.
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4. Conclusion
There are many applications of fixed point theory in several field of science. In this paper,
the main result is the improved and extended results of FMS with single and SEVM which can
be further extended for multi-valued with occasionally weakly compatible (OWC) conditions.
We use two generalized contractions with novel including integral approach in the context
of FMS in this paper and can be used in the finding the solution of LPP, digital problems,
economics population censes etc.
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