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Abstract. This work concerns with the study of the continuous classical quaternary boundary optimal
control problem or for brief quaternary boundary optimal control problem (QBOCP) controlling by
quaternary linear hyperbolic system (QLHS). The existence theorem for a unique quaternary state
vector solution (QSVS) for the QLHS as well as for its quaternary adjoint linear system (QALS)
is proved via the method of Galerkin (MG) with given continuous boundary control quaternary
vector (CBCQV). The existence theorem of a continuous boundary optimal control quaternary vector
(CBOCQYV) controlling by the QLHS is demonstrated. The directional derivative (DDV) for the objective
functional (OF) is derived. Lastly, the necessity conditions for optimality (NCO) of the problem is
studied.
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1. Introduction

Various real-life applications are classified as ideal optimal control problems (OCPs). It has been
used in many fields, like dynamic system (Kruse and Strack [9]), economic science (Barzegar
et al. [2]), chemical reactor (Nurmagambetov [11]), engineering (Wang et al. [12]). In the field
of applied mathematics OCPs usually are controlled by ODEs and PDEs and they were
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investigated by numerous research, e.g., Gerdts [6], and Manzoni et al. [10]. Other investigators,
Casas and Yong [[4]], Gugat and Herty [7] and Kouri and Surowiec [|8] interested about OCPs
controlled by PDES of the kinds; elliptic, parabolic and hyperbolic respectively, whilst the
interested about studding boundary OCP (BOCP) which are controlled by couple of PDES
(CPDES) of the above three mentioned kinds, as well as the study of the boundary OCP
(BOCP) controlled by triple of PDES (TPDES) of the three kinds all were achieved through
the investigations by Al-Hawasy and Al-Ajeeli [1]. On the other hand, the investigation of the
QBOCP controlling by Quaternary PDES (QPDES) of the kinds elliptic and parabolic by Diwan
et al. [5]]. All these investigations encourage us to aim about investigating QBOCP controlling by
QLHS. This work is started with giving a description about the problem, the weak formulation
(WFO) for the QLHS is formulated, and then the method of Galerkin (MG) is employed to
demonstrate the theorem of existence of a unique QSVS for the WFO of the QLHS (of a unique
vector solution of the WFO of the QAES associated the (QLHPDES)) when the CBCQYV is fixed,
also the state and demonstration for existence of a COBCQYV controlling by QLHS is studied.
Finally, the DDV for the OF is derived and the necessary conditions for optimality (NCO) of this
OCP is studied.

In this paper, Section [2|deals with the description of the problem including the equations
and their boundary conditions, then the WFO for the QLHS are found, at the end of this section
some hypotheses are considered. Section [3|deals with the theorem of existence of unique solution
for the resulting WFO through employing the MG under suitable hypos when the CBCQV is
known. In Section 4] the existence of a CBCOQV is studied after the LC property from different
spaces are proved. Then, the QAEs associated with the QSEs are formulate and the DD of
the OF is derived. Finally, the NCO is proved.

2. Problem Description

Let Qc R2, x = (x1,x9), @ =I xQ, I =[0,T1, £ =0Q = 0Q x I, the QBOCP consists of the QLHS
which is given in Q by:

2 0 ayl

i — . a1 =— | tai1yr —baye +b3ys —bays = f1(x,1), 1)
2.0 dy2

Yott — ——|agij 7| tazys +bay1 —bsys + beys = falx,t), (2)
20 0ys

Y3 — ) asij=— |+asys—bsy1+bsy2+brys = f3(x,1), (3)
29 0y4

YVatt — —|@4ij=— |+ asya+bsy1 —beys — brys = falx,1), 4)

y1(x,0) = y)(x), y1:(x,0) = y;(x),1 =1,2,3,4 on Q, 5)

2

onyy; = Z aij, 0xjyrcos(ny,xj)=u(x,t), 1 =1,2,3,40on X, (6)

ij=1
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where n;, for [ = 1,2,3,4 is an outer normal vector on X, the angle between the x;-axis and
n; and is referred by (n;,x,)y = (y1,¥2,¥3,y4) € (HX@))* is the QSVS, U = (u1,ug,us3,uy) €
(L2(2))* = L%(2) is the QCBCY, (f 1, f2, f3.f1) € (LAQ))* = LAQ), is given, a;;; = a;;,(x,t) € L®(Q),
a; =a(x,t) e L¥Q), by, = bp(x,t) e L°(Q), k =2,3,4,5,7.

The set of admissible QCBCV is ﬁ'f (W eL%3): % eU ae. UcR*, U convex} and the OF is

Go(u) = leyz yld||Q+ leuzllz, YERT. (7
2z

Let V=VxVxVxV=HYQ),V ={T:7 = (v1,v9,03,04) € H-(Q)}.

2.1 The Weak Formulation (WFO)
The WFO of the QLHS ((1)-(6)) is
Y1ee,v1) +r1t, y1,v1) +(@1y1,v1)2(0) — (b2ye, v1)r2) + (B3Y3,v1)12(q) — (b4y4,V01)12(q)
=(f1,v1)r2(q) + (®1,v1)1250)s (8)
(yaie,v2) +ra(t, y2,v2) + (a2ye,v2)r2q) + (b2y1,v2)12() — (B5Y3,V2)12(q) + (B6Y4,V2)12(0)
=(f2,v2)12(q) + (U2,V2)12(50) 9
(¥3¢1,03) +r3(t,y3,v3) +(a3y3,v3)20) — (b3Y1,V3)12(0) + (B5Y2,V3)12(q0) + (B7Y4,V3) 120
= (f3,v3)12(00) + (U3,V3)2(50)> (10)

(Yare,v4) +1a(t,y4,04) +(@4y4,v4)12(0) + (DaY1,v4)12) — (DeY2,Va)r2(q) — (B7Y3,V4)12(0)

= (f4,v4)12(q) + (U4,V4)12(50)> (11)
(7, v = (yz(O) v1)a and (y7,v))a = (¥1(0),v1)a, Y v eV, 1=1,2,34, (12)
where r;(¢,y;,v7) = U 1ff9alugzl gzldx for 1 =1,2,3,4.

2.2 Hypotheses (HYPOS)

s(t,y, V) =ri(t,y1,v1) +(@1y1,01)0 +ra(t, y2,v2) + (@2y2,v2)12(q) + '3t, ¥3,U3)
+(a3ys,v3)r2(q) +ra(t, ¥4,04) +(a4y4,v4)12(0)
s, 7, I <ally 1V 1,
stt, ¥, %) =zaly i,
ls:(t, 5, DI <bIY 1117 1,
s, 5,9 =bl VI,
where s;(t,y,v) = foZ” 1 632” gzl gzl dx,and a,a,b,b e R*.

In this work, the notations , ( , ) will be referred to the convergent
L2Q  L2Q L2V) LAIV)

strongly in L2(Q), L3(Q), (L2(1,V),L%(I,V)), respectively, and

L2Q) L@ (LZ(I,V) " L2a,V)
to the convergent weakly in L%(Q), L%(Q) (L%(I,V),L3(I,V)), respectively.

3. Main Results
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The Existence of a Unique Solution for the WFO
The next theorem deals with the existence of a unique QSVS for the WFO ((8)-(12)).

Theorem 3.1. Let u € L*(Q) be a given QBOC, then the WFO ((8)-(12)) has a unique QSVS v,
with 'y € (LA, V)* = L*(I,V) and 'y ; = (y1e, Y21, ¥30, yar) € LAL, V™),

Proof. For every n, let the set of piecewise affine function in Q be vV n=Vinx Vo, x V3, xVy, c Y_;,
{V .}, be a sequence of subspaces of V, then by the MG V v €V there is a sequence {v .},

—_ <7 —_
vp,e€V,,Vnand v,

v (thus, v, —— 7).
L2(V) LX)

Let {7J~ =(v1,02j,V3;5,V45) : j = 1,2,...,n} spans Y_;n and the approximate Galerkin solution be

Yin =Y 1y j(x), (13)
j=1

zin =) dij(H)vg(x), (14)
j=1

where c;;(t), d;;(t) are unknown functions of ¢, V [ =1,2,3,4, j=1,...,n.
Utilizing y;, (with y;,.; = 2;,), and v; € V,,, for I = 1,2,3,4 in ((8)-(12)), they yield to

(108,01 + 71, Y10,01) H(@1Y10, 0D 120) — (0220, V1D 12() T (03Y3n, V1) 12() — (D4Y4n, V1) 12

=(f1,vDr2) + (@1,v1) 12000 (15)
(22nt,02) +ra(t, yon,v2) +(@2y2n,v2)12(q) T (b2Y1n,v2)12() — (05Y3n,V2)12(q) + (b6Yan,V2)12(0)
=(f2,v2)12() + (W2,V2)1250) (16)
(23nt,03) +13(t, ¥3n,03) +(@3Y3n,V3)12(0) — (B3Y1n,V3)12(0) T (D5Y2n,U3)12(0) + (B7Y4n,V3)12(00)
=(f3,v3)12(q) + (13,V3)12(500) 7
(24nt,V4) +14(t, yan,v4) +(@4Y4n,v4)12(0) + (DaY1n, V) 12() — (B6Y2n,Va)12(0) — (D7Y3n,Va)12(q)
=(fa,v)r2(q) + (e, V) 1250) (18)
(y?n,vl)g = (y?,vl)g and (zlln,vl)g = (y},vl)g, Yv eV, 1=1,2,3,4, (19)

where y?n = y?n(x) = yi.(x,0) €V, z?n = ylln = ylln(x) = y1:(x,0) € L2(Q) be the projection of y?
onto V of yl1 = y;: onto L2(Q), VI =1,2,3,4, i.e.,

0 0 w11 =0
, with < by, (20)
Yin pry Y ly,l1<bo
1 1 oy =1
—— y;, with <bj. (21)
Yin T Y ly,llo<b1

Substituting and in ((I5)-(19)) and setting v; = v;;, ¥V i = 1,2,3,4,...,n, then, the secured
equations will be equivalent to the following 1st order ODEs of linear system with ICs

A1D1(t)+ M1C1(t) - FCa(t) + GC3(t) - HC4(t) = d1, (22)
A2D2(t) +MoCo(t)+ FC1(t) —OC3(t)+ RCy(t) =do, (23)
A3D3(t) +M3C3(t)—GC1(t)+ OCo(t) + PCy(t) =d3s, (24)
A4Dy(t)+ M4Cy(t)+ HC1(t) ~ RCo(t) - PC3(t) = d4, (25)
A;C;(0)=m) and A;D;(0)=mj], (26)

where A; = (a;ij)nxn = (15,013), M; = (myijdnxn = [ri@,v5,00) + (@pugj,videl, F =
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(fijdnxn = (b2vgj,v2)12(0), G = (&ij),x,, = (D3V3;,V11)12(0)» Ci(0) = (c1j(0nx1, H = (hij), ., =
(b4v4j,v1:)12(0) O = (0i)),, ., = (b5V25,03i)12(q0)> Ci() = (c1;(0nx1, P = (pij), ., = (b7045,03i)12(02)s
R = (rijnxn = (bev2;,04)12(), Di(0) = (d1j(0nx1, dij = (f1,v10)r20) + Wi, v1)1290), MY, =
01, my, = (v} ,v10), Di@) = (dyj()nx1, ¥ 1=1,2,3,4, j=1,2,...,n.

Since A; ! exists ¥V I =1,2,3,4, then (22)-(26)) has a unique QSVS .

In the next steps, the norms ||§)n(t)||Lz(Q) and ||;n(t)||L2(I,V) are proved bounded.
Setting v; = yins, ¥V 1 =1,2,3,4 in ((I2)-(15)) respectively, employing [12, Lemma 2.1] for the first
two terms in the LHS for each expression, then gathering the outcome equations, to bring

d — — — — —
E[” ynt(t)”i2(g) +S(t7 Yn, yn)] _St(t7 Yn,Y n)

=2[(f1, y1n8)L2(0) + W1, Y1n8) 2000 + (D2Y2n + b3Y3n — DaYan, Y1nt)L2()
+ (f2,y2nt)L2(Q) + (uz,yZnt)L2(aQ) +(b2y1n —bs5y3n + b6y4n’y2nt)L2(Q)
+ (f3,y3nt)L2(Q) + (u3>y3nt)L2(aQ) +(bsy2n —b3yin + b7y4nay3nt)L2(Q)
+(f4, y4nt)L2(Q) +(uy, y4nt)L2(aQ) +(b4y1n — beyon — b7y3n,y4nt)L2(Q)]. 27)
Employing HYPOS, after take the absolute values of it yields to:

T Ol 7oy + T nln )

<bly, ||12L11(Q) +2(1(62Y2n, Y1) 2| + 1(03Y3n, Y1nt)r2l + 104y an, Y1nt) L2l
+1(02y1n, Y2nt) L2y + (06 Yan, Yont) L2yl + (05530, Yend) L2yl + [(05Y2n, Y3nt)L2(0)
+1(07Y4n, Y3nt)L2(p)| + 103y 10, Y3nt) L2l + 1(04Y1n, Yand)r2y| + 1(06Y2n, Yant)L2(q)l
+ 1730, Yant) L2y + (1, Y1ne) L2l + 1(F2, Y2nt) L2yl + 1(f3, ¥3n8)L2(00)
+1(fa, Yand)p2l + 1@ 1, Y1ne) L2000 + (w2, yent) 2oy + (@3, ¥3ne) L2000
+ (g, Yant) 20000 |- (28)
Applying the inequality of Cauchy for the RHS of (30), integrating on (0,¢), take in account

that llymllz2q) < lymlgiq) < | yln”}; ), |yinellz2) < 1y nelleys 13inelliz2eq) < cillyinellgiqy,
luilizzog) < e, | fill L2(0Q) = el then utilizing the trace theorem, and HYPOS, to secure

t d —_ —_——
|| S Ol 4T g
t_ _ 4
< fo (A1l nell o) + 2l F nliFn g de + 3 (1Fllg + 1wl 50,
=1

_ _ t
<hq+hs fO (Y nell oy + 17 ntlzp o)At (29)

where [b;| < hi, i =2,3,4,5,6,7, hs = 3maxh;, hg = maxzey, hi=hg+hg+1, hg =hg+b,
<1< =i=
Eg = max(ﬁl,ﬁg), E4 =4e; +4e;.

Since ||72 1@ = b1 and IIE/’}LIILQ(Q) < bo with hs = by +ab; +E4, hence turn into
—_— —_— —_— t —_—
Rl Y @172 + IV 0Ol g)] < 5 + B3 fo Y nellg + 1Y nli3q)lde (A =min(1,a)

_ _ t
<P+ hgfo LY nellg+ 15 w1 ) 1d2
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with 57 = &, _8 = @
he he
Applying the inequality for Gronwall, it yields that V ¢ €[0,T],
||ynt(t)||ig(9) + ||7n(t)||?{1(Q) Sﬁ7eh3 = bz(c)
= 1V n®l7 5, = b%(c) and Y nll g, < b%(0), ¥ ¢€[0,T1.

Therefore, ”7nt(t)”L2(Q) < b]_(C) and ||7n(t)||L2(I,V) < b(C)

The QSVS convergence: Assume V has a sequence of subspace of {Y_f)n}flozl st.V v e Y_;, there

is a subsequence {V ,} with ¥, € V,, ¥ n for which ¥, = v and U, — v but for any n,
L4(@)

Withv nC V, problem (- has a unique QSVS ¥ . = (V1n, Y21, Y3n, Y4n), hence corresponding
to the sequence of spaces {V ,}77 ;, there is a sequence of approximation problem of the from
(@B)-(@2), allow V; =V, = (V1n,V2n,VU3n,V4n) inthem V n=1,2,...,
(Y1e6,010) + 718, ¥1,010) + (@151, V10)12(0) — (D2Y2, V1n)12() + (B3Y3,V10)12() — (b4Y4, V1) 1200
= (fl,Uln)L2(Q) +(u1, Uln)L2(aQ), (30)
(Yate,Van) +ra(t, y2,v20) +(@2y2,V20)12(0) + (b2Y1,V2r)12(q) — (B5Y3,V2n)12() + (b6Y4,V2n)2(00)
=(f2, Uzn)L2(Q) + (u27v2n)L2(aQ), (31)
(¥3¢¢,U3n) +73(t, ¥3,030) +(@3y3,03n)2(0) — (03Y1,V3n)1.2(q) + (B5Y2,V3n)12() + (0754, V30)2(00)
=(f3,V3n)12(0) T (¥3,V3n)12(502)> (32)
(Vate,Van) +1a(t, y4,040) +(@4Y4,V4n)12(0) + (D4Y1,V4n)12(q) — (B6Y2,Van)12(q) — (07Y3,Van)L2(q)
= (f4,V4n)12(q) + (W4, Van) 1250 (33)
(37> vin)a = 31(0),v10)0 and (37, v1n)a = Y1:(0),010)q, ¥ V1n € Vin, 1=1,2,3,4. (34)

Of course ((30)-(34)) has a sequence of QSVS {}’n}‘r’fz1 with ||7n(t)||Lz(Q) and ||7n(t)||L2(1,V)
are bounded. By applying theorem of Alaglou (Borthwick [3]]) there is a subsequence of
{¥ wlnen, let for simplicity be {y n}nen, s.t. ¥ n ¥, and since L2(I,V) c

¥ and y,
L2(Q) L2(1,V)

L2(Q) = (L2(Q))* c L2(1,V*), then by applying the theorem of Aubin (Borthwick [3]), there is a

subsequence of {y ,},en say a gain {y plnen s.t. ¥ a — .
L4(Q)

Now, multiplying ((30)-(34)) by ¢;(t) € C2[0,T1, V I =1,2,3,4, ¢i(T) = @ (T) =0, ¢;(0) #0,
<p2(0) # 0 integrating on [0,T], then integrating by parts twice the 1lst expression in each
acquired inequalities, to bring

T d T
_fo E(ylntyvln)(l)ll(t)dt+f0 [Fl(t’yln’vln)’“(bSYSn—b2y2n—b4y4n,v1n)L2(Q)]<p1(t)dt
T
) fo (F1,01)p20) * (11,010)1200)P1BOAE + (91, V1n)L20) P10, (35)
T T
f(; (ylntyvln)(P,,(t)dt+]; [Fl(t,ylnyvln)+(b3y3n—bgygn—b4y4n,v1n)L2(Q)](p1(t)dt

T
=f0 ((fl;vln)L2(Q)+(ul,vln)LQ(aQ))(Pl(t)dt+(y%nyvln)L2(Q)(P1,O_(y?n,vln)Lz(Q)(Pll,m (36)
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T d T
_/(; a(yZnt,UZn)(l),Q(lf)dt+\[0 [72(t’y2n’02n)+(b2yln—b5y3n+56y4n,vzn)L2(Q)]<p2(t)dt

T
T T
T
:j(; ((f2,v2n)L2(Q)+(u2yv2n)L2(aQ))(p2(t)dt+(y%n,02n)L2(Q(P2’O—(ygn,l)2n)L2(Q)(p,2’0’ (38)
T d T
_/(; a(y3nt,v3n)(pé(t)dt+j(‘) [73(t’y3n”’3n)+(b53’2_b3y1n+b7y4,03n)L2(Q)](p3(t)dt
T
:L ((f3703n)L2(Q)+(u3;v3n)L2(aQ))(p3(t)dt+(y£])"n,v3n)L2(Q)(p3’0’ (39)
T T
](; (y3ntyv3n)¢,,3(t)dt+j; [FS(t,ySn,USn)+(b5y2n—b3y1n+b7y4n’v3n)L2(Q)](p3(t)dt
T
:L ((fS, USn)L2(Q) +(ug, U3n)L2(GQ))(p3(t)dt+(y§n’03n)L2(Q)(p3,0_(ygn,USn)L2(Q)(Pé,O, (40)
T d T 3
_‘[0 E(y4nt,v4n)<ﬂﬁ1(t)dt+f0 [r4(t’y4n’v4n)+(b4y1n_b6y2n—b7y3n,U4n)(L2(Q)](p4(t)dt
T
:](; ((f4’v4n)L2(Q)+(u4’v4n)L2(GQ))(p4(t)dt+(yin7v4n)(L2(Q)(p4,0, (41)
T T
f(; (y4nt>U4n)(PZ(t)dt+j; [74(t’y4n’v4n)+(b4yln_b6y2n—b7y3n,v4n)L2(Q)](p4(t)dt

T
=f0 ((f47v4n)L2(Q)+(u4,v4n)L2(aQ))(P4(t)dt+(yinyv4n)L2(Q)(P4,O_(ygn,véln)LZ(Q)(P&,() (42)

with 74(¢, 1n,v1n) = T1(E, Yin, Vin) + @1 Y10, Vin)L2(0)» @10 = 1(0) and @) ( = ¢;(0), 1 =1,2,3,4.
First, since V 1 =1,2,3,4,

VInp1(t) — v1;(2),
L21,V)
Vin = V1 =\ | v} (@) — [L2U, V)]v ) (8),
v1n91(0) —— v;¢;(0)
L2(Q)

and

" "
U] (t) —— v} (1),
Uln v > n®; @ ¥,

L2(Q)
012 }(0) —— v;9}(0)
L2(Q)

yi and y;, —— y1.
L2(1,V) L2@Q)

Vi@, then V [ =1,2,3,4, then

Second, y;,; —— yi; and y;,
L2@Q)

Third, since v, @;

L2(@)

T
j(; ((fl,Uln)LZ(Q)+(u1,vln)L2(ag))(pl(t)dt
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T
= fo((fl,vz)m(g)+(uz,vz)L2(ag))<pz(t)dt.

These above three points helps to passage the limits in ((35)-(42)), to turn out

f —(ylt,vl)q),l(t)dt + fOT[rl(t,y1,v1) +(a1y1 —bay2 +b3y3 —bays,v1)r2)lep1(t)dt
- fo (F1, 00120+ (W1,0D1200)91dE + (3}, 0012009 L0, 43)
T T
fo (y1,v1)¢" ()dt +f0 [r1(¢,y1,v1) +(a1y1 — b2ys + b3ys — bays,v1)r2q)le1(t)dt
= f T((fl,vﬁm(m +(1,01)1290)P1(OdE + (31,01 1200910 — 07,V D120 P05 (44)
f _(y2t7 v2)@y()dt + fOT[rz(t,yz, vg) +(agys +bay1 —bsys + by, v2)r2q)lpa(t)dt
:f ((f2,02) L2000 + (W2, V2) 1200 P2(t)dt + (¥3,V2)1.2(0)P2.,05 (45)
f (y2,v2)5()dt +f [ra(t, y2,v2) + (agys + bay1 — bsys + by, v2)r2(q)l@e(t)dt
- f (o) + (12, 02) 260 P2DE + (b 02)1 2000020 — (V20212600 Ph o (46)
f —(y3t,03)<Pf.;(t)dt + fOT[rs(t,ys,vs) +(agys —bsy1+bsy2 + b1y4,v3)1 20 l@s(t)dt
= f ((f3,03) 2000 + (U3, U3) 1200 P3(1)dE + (¥3,V3)1.2(0) 03,05 (47)
f (y3,V3)p5(t)d¢ +f [3(¢, ¥3n,V3n) +(a3Y3n — b3Y1n + b5Y2 + b7Y4,V30) 2 l3(t)d
=f0 ((f3,v8)12(0) + (W3, V8)12(00) ) P3(D)dt + (¥5,03) 1,200y P30 —(yg,v3)L2(Q)<Pé,o, (48)
T 4 T
—f d—(y4t, vy (t)dt +f [r4(t,y4,04) +(asys + bay1 —bey2 — b1y3,v4)2q)lpa(t)dt
f (F1,00) L2000 + (Wa, V0 1290 Pa(B)dt + (1, 04) 12 P4,05 (49)
f (y4,v4)@y(D)dt +f0 [74(¢,y4,04) +(asys + bay1 — bey2 — b7y3,v4) 2 lpa(t)dt
=f0 (F1,00) 12000 + (W4, V4) 1290 Pa(B)dt + (4, 04) L2y P,0 _(y2’U4)L2(Q)(p£1,0- (50)

Case 1: Pick out ¢; € C2[0,T1(V I =1,2,3,4), in (@4), (6), and with ¢;(0) = ¢;(0) =0,
<p2(T) = ¢;(T) =0, then integrating twice the first expression in their LHS, they yield to

T T
fo (y1ee,vD@()d +f0 (r1(¢,y1,v1) +(@1y1 —bays + b3ys — bays,v1)r2q)@1(t)dt

T
= fo ((f1,v1)r2(q) + (1,020 P1()d ¢, (51)
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T T
](; (yate, v2)pa2(t)dt +f0 (ra(, y2,v2) +(agy2 + bay1 — bsys + beys,v2)r2q)p2(t)dt

T
- fo ((Fa09)2 + (2, v2) 200 2L, (52)
T T

fo (y3t,v3)s3(8)dt + fo (r3(t,¥3n,U3n) + (@3Y3n — b3Y1n + b5y2 + b7Y4,V30)12())3(8)d E

T

= fo ((f3,v3)12(q) + (U3,V3)12(90)) @3(t)d E, (53)
T T

fo (yatt,v4)pa(D)dt + fo (ra(t,y4,v4) +(@gys + bay1 — beys — b7y3,v4)12(q))Pa(t)dt

T
:fo ((fa,v4)12(q) + (14,v4)1290))Pa(t)d . (54)
Hence y is a QSVS of ((8)-(11)) a.e. on I.

Case 2: Pick out ¢; € C%[0,T1, V 1 =1,2,3,4, s.t. ¢;(t) = ¢;(0) = ¢(T) = 0 and ¢;(0) # 0, MBS
(8, (@, @@op, by @1(2), p2(t), p3(t) and @4(t) respectively, then integrate on [0,7'], and then
integrating the 1st expression in LHS in each acquired inequalities, then subtracting each

equality from the each corresponding one of ((43), (45), and (48)) respectively, to acquire
(51:00),0)91(0) = (v1,v:)p1(0), ¥ 1=1,2,3,4.

Case 3: Pick out ¢; € C%[0,T1, V 1 = 1,2,3,4, with ¢;(0) = ;(T) = @ (T) =0, ¢;(0) # 0, multiplying
of ((8), (9), and (11I)) respectively, then integrate on [0,T'], and then integrating by parts
twice the 1st expression in LHS in each acquired inequalities, then subtracting each equality
from the each corresponding one of ((44)), (46), and (49)) respectively, to acquire

(32, 01)@,(0) = (3(0),0)@}(0), V1=1,2,3,4.
From the above two previous cases, one acquires the ICs equation (12).
7y, integrate on [0,T], to acquire that

To prove y ,,
L21,V)

T
15 2D = 1Y e ONG + 5, ¥ 0, T nXT) =5, Y, 5 n)(O0) = fo s(t, Y n, ¥ ni)dt

-] (53 + G, (55)
where
(65a) = 2((=b2y2n + b3y3n — b4Yan, Y1n)r2) + (b2Y1n — b5Y3n + b6Yan, Yon)r2(q)
+(=b3y1n + b5Y2n + b7Y4n, ¥3n)r2() + (b4Y1n — b6Yon — b7Y3n, Yant)r2)» (55a)
(55b) = 2((f1,y1nt)L2(Q) + (u1,y1nt)Lz(5Q) + (f2ay2nt)L2(Q) + (u2,y2nt)L2(5Q)
+(f3,¥3n8)2() + (U3, ¥3n8)1250) + (F45 Yant)r2() + (U4, Yant)L2(50)- (55b)

Now, replace y;, =y;, V [ =1,2,3,4, in (33), integrate the resulting equality on [0,7'] to acquire

T
I (TG = IV (ONIG +5(8, 5, YNT) = s(t, 75, ¥)(0) - fo sdt,y, ¥ )dt

T
= f ((56a) + (56b))d ¢, (56)
0
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where

(56a) = 2((=boy2 + b3ys — bays, y1:)r2(q) +(b2y1 — b5Y3 + beya, yar)r2(q)

+(=b3y1+bsy2 +b7y4,¥3)12(0) + (b4y1 — bey2 — 073, yar)12(q)s (56a)
(66b) = 2((f1, y1)r2() + (W1, Y1) 12(50) + (F2, Y2 L2y + (W2, y2e)L250) + (F3, ¥3)L2(00)
+ (u3>y3t)L2(5Q) +(f3, y4t)L2(Q) + (u4, y4t)L2(5Q))- (56b)

Since
15 (D) =V (D 2y = 1V 00 = F O o) + 8, V= 5, ¥ o= YU

—

T
I e S 1) fo it T T ne— T Ot

= ((67a) — (57b) - (B7d)), (57)

where

(572) = 1Y 0T 72y = 1T n(O 72y + 5, F s ¥ XT) = 5(2, Y 1, ¥ n)(O)
- fo Tst(t,?n,?v’nt)dt, (57a)
(570) = (¥ ne(T), ¥ «(T) = (¥ n2(0), ¥ 1(0)) + 52, Y n, ¥ XT)
—5(£, Y n, ¥)0) - fo Tst(t,i’n,?t)dt (57b)
(570) = (Y UT), ¥ ne — ¥ (TN = (¥ 1(0), ¥ 5e(0) = ¥ (0N +5(t, ¥ p, ¥ n — ¥ UT)
—5(t, Y n, Yn— ¥ )N0) - fo Tst<t,?n,§’m -y dt, (57c)
thus,

T T
(57a) = L.HS. of (55) = f (553 + GBR)dt = f (563 + BBR))d+.
0 0
A similar manner which utilized to get (2I), utilizes also here to obtain
Y ut(T) —— ¥ (D). (58)
L2(Q)

y, then utilizing and in (57b), it yields that

On the other hand, since ¥,
L2(1,V)

— L.H.S. (56) = J (562 + (B6h)dt.
Beside these convergences, all the expressions in (57¢) imply to zero, in addition the first two
expressions in LHS of (57); hence gives

T
— — 92
fo |y n(®)— y(t)IIHl(Q)dt—>0 as n— oo

thus, we get

— —

Yn Y.
L2(I,V)

Uniqueness of the QSVS: Assume that ¥ and ? are two QSVS of the WFO ((8)-(12)), then
subtracting each equality form its conforming one and letting v = y — ¥, utilizing [12,
Lemma 2.1] for the 1st expression in each equality and then gathering all the above equalities,
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utilizing HYPOS and integrating from O to ¢, to acquire
fo T = il g+ (T - y)llHl(Q)]dtSfO BIT = 320y dL-

Utilizing the ICs,
IG5 = D22, + 10T = TN ) < B fo T = Tl +BIT = ey,
where A1 =min(1,a), hg = max(1,b), hg = ho/h1.
Employing the inequality of Gronwall, to acquire the uniqueness of the QSVS as follow
15 = 3Oy =0, Vel
= (5 =)D, =0

= J=73.
4. Existence of a Boundary Quaternary Control Vector

The following lemma is very useful in the study of the existence of a CQBCV.
Lemma 4.1. Besides to HYPOS, consider y and y +0y are the QSVS conforming corresponding

to the bounded CBCQV U and u + Su respectively, then fro K € R*.
(1) ||57||Loo([,L2(Q) <K|6u Iz2(z), ||57||L2(Q) <K|6u Iz2(z), ”67”L2(I,V) $K||57||L2(z)-
(ii) The operator © — 77 holds the Lipschitz continuity (LC) property from L%(Q) in to
— U and o >0, then

(or in to L%(I, V) or into L*(Q)).
Su =

beyy

L®I,LA(Q))
Proof. (i) Assume 7, % € L%(0Q), then @, = @ + 087 € L2(Q), with
by Theorem (3.1, ¥ =¥, ¥ = ¥ 7, are their QSVS, thus (@)-(12)) for
(59)

Y10tt,01) + 11, Y10, 01 + (@ 1510, V1D 12() — (0220, V1)12(0) + (03Y30,V1)12(0) — (D4Ya0, V112

y :70” give

= (flavl)L2(Q) + (u]_a',v]_)L2(Q),
<y20'tt, UZ) + I‘2(t,y2a, 02) + (a2y20', UZ)LQ(Q) + (bzy]_g-, v2)L2(Q) — (b5y30-, UZ)LQ(Q) + (b6y40_, UZ)LQ(Q)
(60)

= (f2> UZ)LQ(Q) + (ugg, 02)L2(6Q)>
(¥301t,U3) +13(¢, ¥30,03) + (@3Y30,U3)12() — (03Y10,U3)12(0) + (D5Y25,V3)1200) + (B7Y40,V3) 120
(61)

= (f3,v3)12() + (W30, U3)12(50)
(Yaott,04) +74(t, Y40,04) +(@4Y10,Va)2(0) +(b4Y10,V4)L2(0) ~ (B6Y20, Va)L2(02) — (B7Y30,Va)L2(0)
(62)
(63)

=(f1,v4)12(0) + (W40,V4) 1250
(y?m vl)LZ(Q) = (y1(0), Ul)L2(Q) and (3’110, UZ)LZ(Q) = (ylt(O),U1)L2(Q), YveV,1=1,23,4.

Subtracting ((8)-(12)) from ((59)-(63)), putting y, -y =6y ,, they acquire
(610t v1)+71(2,0Y145,v1)+(@10Y145,01)12(0)~ (020 Y94, V1) 12(0) H(D30 Y34, V1) 12(00) — (040 Y45, V1) L2
(64)
(65)

=(06u14,v1)12(50)5
(060Y45,V2)12(0) = (00U, V2) 1250
(6y301t,03) +73(t,8¥35,03)+(@30Y34,03)1.2(0)— (030 Y145, U3)12(0) +(D50 Y20, V3)1.2(0) + (070 Y 455, U3) 1200
(66)

= (05u30—, 03)L2(5Q)’
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<5y4o'tt) U4> +r4(t’ 5.’)’40, U4)+(a453’4g, v4)L2(Q) +(b45y]_0'7 v4)L2(Q) _(b65y20" v4)L2(Q) —(5753’30, v4)L2(Q)
=(06u40,04)12(50)5 (67)
(6yloo,vl)Lz(Q) =0 and (5yl10,vz)Lz(Q) =0, VYveV,1=1,23,4. (68)

By letting v; = 8y;4¢, for [ =1,2,3,4 in ((64)-(68)), then applying [12, Lemma 2.1] for the 1st
term in the LHS of each resulting equality, then utilizing the same manner which utilized to
acquire (26), a similar equality will be gotten but within position of y ,,, then integrating on
[0,¢], applying the Cauchy inequality, with setting |b;| <¢; >0,1=2,...,7 to acquire

18501220y + 8o O3 0,

<b fo 12 g
+ 2f0t[cz 10y20 L2 + €3110Y36 L2y + €all0V 40 L2y + lo6U L2000 10 Y164 I L2000y A E
+ 2f0t[cz 165152 + €510 Y35 llL2() + 610V a5l L2() + 0 U2 L2600 16 Y20t Il 20000 A E
+ 2f0t[03 16510122 + €510y26 I L2() + €710 45 IL2() + l00Us I L2(60) 10304 L2000y B

t
+ 2[() [calléyiollL2) +c6ll6yaq ey + c7l6ysqllL2) + l00UallL200) 16 Y 40t 20000 A E -

Utilizing the trace operator, Young’s inequality for products, the relations between the norms
and then gathering the same terms, it yields to

Csll16yot D72 + 1656l 70 )]
t
< [ 18yl 1,0+E518Y10:1 25,0 + C6ll0Vo0 120 +C71050s 12 0,0, + Ca 16 Vans |22 JdE
= 0 Yo HY(Q) 5010Y10¢ L2(Q) 6110Y25¢ L2(Q) 710Y35¢ L2(Q) 8110Y 40t L2(Q)
t
+ | Teall6yop 2o, + €3ll8y3o 1120, + Call6yag 2o o + O I0U1N2 5 0 IdE
0 2110Y 24 L2(Q) 310Y3q L2(Q) 4110Y 40 L2(Q) 1 L2(3Q)
t
+ [ Lealldyi1o02 0,00+ €516Y30 120,y + C6l8Vag 122 o + T8N, - 1dE
0 21010 L2(Q) 510Y34 L2(Q) 6110Y40 L2(Q) 2 L2(6Q))
t
+ | Lesly112 0,00+ 51895120,y + €716y a0 120, + T I0Us |25 10 IdE
0 310Y14 L2(Q) 510Y94 L2(Q) 710Y 4o L2(Q) 3 L2(3Q)
t
+ | Lealldy1o0Z e, o0 + C6l6Yop 120 + €TI0V 122 0 + TI18uNZ 5, o 1dE
0 4 lolip2(q) 6110Y2s L2(Q) 71034 L2(Q) 4lir250)

t t

< fo (B18y0 11,0 + C818Y5 1220l + fo [eollBy s 1210y + T 18UN2 s 50 M1,
where ¢c1 =co+cg+cy, Co=cog+cs+cg,Cg=c3+c5+cC7,C4=Cq4+Cg+C7,C5=C1+0,Cg=Co+0,
c7=c¢c3+0,cg=cy4+0, cg=max(cs,cq,C7,C8), cg =max(cy,C2,C3,C4q).
Hence

— — — t —

16Y5: @17 20 + 18y O 771q) < c1116u@IIF + c10 fo 1655172y + 167517710
where cg = min(1,a), cg = max(b, cg,cg), c10 = c9/Cg, c11 = o/cg.
By employing the inequality of Gronwall, with 22 = ¢11e7¢10 > 0, it yields

1655125 + 185Dy < R2ISUDIZ, Y tel
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= 16ysO21 ) < EX10u@I3 and 16ys/Ol72 ., <k 16u@I3, ¥ iel.

The other results acquire immediately.

G)Ifu, - U then y, y then from part (i), |y o — YIILOO(I 12) < Kluys- T[IIQ it
L2(@) ’

Loo(1,L%(Q))
acquires immediately that w — y — is LC from L2(X) in to L°°(I,L?(Q2)). The other two results
are come by the same manner. O

Lemma 4.2. The OF defines in (7) is WLSC.

Proof. Since |4 ||s is weakly lower semi continuous (WLSC), now when u —— U, then
L4(%)

y and then |y — ¥4Il < lim inf |y % — ¥ 4ll. Thus, Go(w) is WLSC. O
k—00YEEVE

Yk
L2AQ)

Theorem 4.1. The problem under consideration has a CBOCQV if the Go(W) is coercive.

Proof. From the coercive property of Go(%), with Go(%) = 0 then there exists a minimum
sequence {w e W, V k, s.t. ’}im Go(up)= inf Go(w),and |ul <c.
—00 - —
ureWw
Then by theorem of Alaglou the sequence {%}, has a subsequence let be {#};} again, s.t.

U — U, as k — 0co. From Theorem 3.1} the sequence of the CBCQV {%}, has conforming
LX)

sequence of the unique QSVS {7y}, = 77}%} with ||y Iz2.vys 1Y 2 l2(q) are bounded, and then by
theorem of Alaglou the sequence of QSVS {7y 3} has a subsequence, let be {y 1}, s.t. ¥z, — ,
LAQ)

L2(I,V) I

Now, for any %, the QSVS 7y, satisfies the WFO ((I15)-(19)), multiplying every equality by
¢ €C?[0,T1, ¥V 1=1,2,3,4, with ¢;(T) = @) (T) =0, ¢1(0) #0, ¢;(0) # 0, respectively, integrating
on [0, T'], then integrating twice the 1st resulting expression terms, one obtains same inequalities
like ((35)-(42)) with setting v;,, = v; and the RHS of each equality will be,

kL

T
«[0 ((fl’vl)L2(Q) +(uik, UZ)L2(aQ))(Pl(t)dta V1=1,2,3,4, and V k. (69)

To passage the limit as £ — oo, in the above four mentioned equality, the same technique which
employed in the proof of Theorem will also be employ her and the convergence obtain in
the both sides of each equality (to avoid any repetition in the steps of proof)except the new
expression in (69), and since u;;, LQ—(Z)) uj, then it is convergent to

T
fo (1002 + Wi, vz @i(Ddt, ¥ 1=1,2,3,4,  E.

This mean that the QSVS satisfies the WFO ((8)-(11)) also, by the same steps that utilized in
the proof of Case 2 and Case 3 in Theorem can also be utilized here to get the ICs is held.
and thus the limit point y = (y1, y2,¥3, y4) is a solution of the QSE.

Lastly, since Go(%) is WLSC and u;, - U then from Lemma
L2(Q)

Go(Z) < lim inf Go(%}) = lim Go(Zp) = inf Go(%) = Go(%)= min Go(%).
—>007k€W n—oo ﬁkEW l_[kEW

Therefore ¥ is a CQBOCV.
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The Adjiont Equations and the Directional Derivative: The QAEs associated with the QSEs are
formulate and the DD of the OF in (7)) is derived in the following:

Theorem 4.2. The QAEs of the QSEs ((I)-(5)) are formulated as

2 0 021

214 — — a1 j5—|+a1z21 +baza —b3z3 +bszs = y1— Y14, (70)
2.9 0z9

Zou— ) agij=— | tagzg —boz1+b523—bezs = yo — yod, (71)
2 0 023

234 — —|a3;j=—|+a3z3+b3z1—bsza —br24 = y3—¥34, (72)
2.9 0z4

Z4st — ~— |a4ijz=— |+t a424 —byz1 + beza + b723 = Y4 — Y44, (73)

z1(x,t)=0, zj;(x,8)=0, [1=1,2,3,40n (), (74)

on;z;=0, [=1,2,3,4 on Z. (75)

Then for U € V_[;, the DD of Gy is

DG(T. T - ) = lim 2 T IO —G)
o—0 o R

Hﬂ'(xa t7 7777?)(5 - T[)dq

Proof. The WFO of the QAEs V vq,v9,v3,04€V (a.e.on I)is

(211,v1) +T1(¢,21,01) +(bazg,v1) — (b323,v1) + (b424,v1) = (¥1 — Y14, V1), (76)
(221t,v2) —Ta(t,z2,v2) — (b2z1,v2) + (b523,V2) — (b624,V2) = (y2 — Y2q,V2), (77
(231t,v3) —T3(t,23,03) +(b3z1,v3) — (b522,v3) — (b724,V3) = (¥3 — ¥34,V3), (78)
(241t,v4) —T4(t,24,24) — (ba21,04) + (be22,V4) +(b723,V4) = (V4 — Yad,V4), (79)
(z)(T),v4) = (z44(T),v4) =0, 1=1,2,3,4, (80)

where 7;(¢,2;,v;) = r(t,21,v7) +(a;21,01) 21y, ¥V 1 = 1,2,3,4.
Replacing v; =6y, ¥V 1 =1,2,3,4 in ((76)-(79)) respectively and integrating on [0, T'], to acquire

T T
fo (2106, 0y10)dt + fo (r1(t,21,8y10) + (@121, 6510012 + (b222,6310) 1201
T
—(5323,53’10)[,2(9)+(b424,5y10)L2(Q))dt:fo ((y1 = y1d,0¥10)12())d 1, (81)
T T
fo (Zztt,5yzo)dt+f0 (ro(t,22,0y9,) +(@222,6¥20)12(q) — (b221,0¥20)1.2(q)
T
+(b523,0y20)12(0) — (b624,0¥25)2(0))d :fo ((y2 — y2d,0¥20)12(0))dt, (82)
T T
fo (2300, 5y30)dlt + fo (r3(t, 23,8 y5) + (@323, 8930) 20 + (b321, 630 L2000
T
_(b522,6y30)L2(Q)_(b7z4,6y30)L2(Q))dt :j; ((y3 —y3d,5y3a)L2(Q))dt, (83)
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T T
fo (2410, 0ya0)dt + fo (ralt,24,64) + (@424, 8Y40 )20 — (Ba21, 840120

T
+ (5622,5}’40)1;2(9) + (5723,5.)’40)L2(Q))dt = ](; ((ya— y4d,5y4a)L2(g))dt. (84)

—

Now, let 2,7 € (L2Q), 67 = & - %, By = T + 06T € (L2Q))* with for 0 > 0 then by
Theorem Y =¥u, Yo =¥z, are QSVSs conforming to the CBCQV %, u,. Setting
5Ys=79yos— 9y, then replacing v; =2;, V [ =1,2,3,4 in ((59)-(62)) respectively, integrating on
[0,T1], then integrating by parts twice the 1st expression in the LHS of each equality, they yield

T T
j(; (5y10,21tt)dt+f0 (rl(t’6y10'7zl)+(a26y10'7zl)L2(Q)_(b26y20"zl)L2(Q)
T
+(b35y3a,21)Lz(Q)—(b45y4a,21)L2(g))dt :fO (Uéulaazl)m(ag)dt, (85)
T T
fo (5yzg,22tt)dt+f0 (rao(t,6y20,22) +(a20y25,22)12(q) + (b20Y15,22)12(q)
T
—(b56y30,22)12(0) + (D60 Y40,22)12(0))d :/(; (06ugs,22)12000)at, (86)
T T
fo (6y30,23tt)dt+f0 (r3(t,0y35,23) +(a36y30,23)12() — (036 y15,23)12(02)
T
+(b56y20,23)2(0) T (070 Y40,23)2(0))d :L (06u3q,23)12(00) 91, (87)

T T
f()(@y4g,24tt)dt+f0 (ra(t,0y40,24) +(@46y40,20)12() + (D46 Y15,24)12(02)

T
—(b66y25,24) — (b76y3a,24)L2(Q))dt = f() (05u4a,24)L2(aQ)dt~ (88)
Subtract ((85)-(88)) from ((81)-(84)), then gathering all the outcome equality, yield to
4 T 4 ,T
o) ; ((Bug,z1))r20)dt = Zfo (V1 = ¥1d,0¥15)12() A1 (89)
=1 =1

Beside this, one has

4 T T
GO(UU)_GO(Z_[):Z j(; (yl_yld,éj&’l(r)]:,?((z)dt"'O'YfO ((6ul,ul))L2(aQ)dt +01(2), (90)
I=1

where 01(2) = 31675112, + 502 16ull%, ;) — 0, a5 7 — 0.
Applying in the RHS of (90), it yields

Go(T ) -Go(W) =0 fa (6w, Z) +(y@,0u)dq + 01(c), with O1(c) — 0 as o — 0.
The DD of G is obtained aft(Zr dividing both sides by o and taking o — 0,

DGy(T, 7 -%) = faQ(? +yW)- 67 dq,

(Z +yuW) = (21 +yuq,22 +yu2,23+yu3,24+yu4)T. O

Theorem 4.3. The CBOCQV of the above problem is y =y — and Z =z -.
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Proof. If © is a CBOCQV of the QBOCP, then
Go(Z)=minGo(%), VT eLX@),

UeWw
ie.,
DGy(%@, 7 -%)=0 = Z+yu=0, 6u=0-12
The NCOis (Z +y%,6%) 20 or (Z +7%, %) =(Z +y%,%), V & € (L2Q))". O

5. Conclusions

From the study of the QBOCP controlling by QLHS. The QSVS of the WFO for the QLHS
was proved existence a unique through employing the MG under suitable hypos when the
CBCQV is known. The continuity of the LC between the QSVS and the conforming QBOCP is
proved. The existence of CBCOQYV for the problem was proved under suitable hypos. The QALS
associated with the QLHS was formulated and studied. The DD for the OF was obtained.
The theorem of the necessary conditions for optimality was studied.
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