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Abstract. This work concerns with the study of the continuous classical quaternary boundary optimal
control problem or for brief quaternary boundary optimal control problem (QBOCP) controlling by
quaternary linear hyperbolic system (QLHS). The existence theorem for a unique quaternary state
vector solution (QSVS) for the QLHS as well as for its quaternary adjoint linear system (QALS)
is proved via the method of Galerkin (MG) with given continuous boundary control quaternary
vector (CBCQV). The existence theorem of a continuous boundary optimal control quaternary vector
(CBOCQV) controlling by the QLHS is demonstrated. The directional derivative (DDV) for the objective
functional (OF) is derived. Lastly, the necessity conditions for optimality (NCO) of the problem is
studied.
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1. Introduction
Various real-life applications are classified as ideal optimal control problems (OCPs). It has been
used in many fields, like dynamic system (Kruse and Strack [9]), economic science (Barzegar
et al. [2]), chemical reactor (Nurmagambetov [11]), engineering (Wang et al. [12]). In the field
of applied mathematics OCPs usually are controlled by ODEs and PDEs and they were

http://doi.org/10.26713/cma.v16i1.2951
https://orcid.org/0009-0000-8806-8250
https://orcid.org/0000-0002-7225-8030


248 Continues Classical Quaternary Boundary Optimal Control. . . : M. A. Fadhel and J. A. A. Al-Hawasy

investigated by numerous research, e.g., Gerdts [6], and Manzoni et al. [10]. Other investigators,
Casas and Yong [4], Gugat and Herty [7] and Kouri and Surowiec [8] interested about OCPs
controlled by PDES of the kinds; elliptic, parabolic and hyperbolic respectively, whilst the
interested about studding boundary OCP (BOCP) which are controlled by couple of PDES
(CPDES) of the above three mentioned kinds, as well as the study of the boundary OCP
(BOCP) controlled by triple of PDES (TPDES) of the three kinds all were achieved through
the investigations by Al-Hawasy and Al-Ajeeli [1]. On the other hand, the investigation of the
QBOCP controlling by Quaternary PDES (QPDES) of the kinds elliptic and parabolic by Diwan
et al. [5]. All these investigations encourage us to aim about investigating QBOCP controlling by
QLHS. This work is started with giving a description about the problem, the weak formulation
(WFO) for the QLHS is formulated, and then the method of Galerkin (MG) is employed to
demonstrate the theorem of existence of a unique QSVS for the WFO of the QLHS (of a unique
vector solution of the WFO of the QAES associated the (QLHPDES)) when the CBCQV is fixed,
also the state and demonstration for existence of a COBCQV controlling by QLHS is studied.
Finally, the DDV for the OF is derived and the necessary conditions for optimality (NCO) of this
OCP is studied.

In this paper, Section 2 deals with the description of the problem including the equations
and their boundary conditions, then the WFO for the QLHS are found, at the end of this section
some hypotheses are considered. Section 3 deals with the theorem of existence of unique solution
for the resulting WFO through employing the MG under suitable hypos when the CBCQV is
known. In Section 4, the existence of a CBCOQV is studied after the LC property from different
spaces are proved. Then, the QAEs associated with the QSEs are formulate and the DD of
the OF is derived. Finally, the NCO is proved.

2. Problem Description

Let Ω⊂ R2, x = (x1, x2), Q = I ×Ω, I = [0,T], Σ= ∂Q = ∂Ω× I , the QBOCP consists of the QLHS
which is given in Q by:

y1tt −
2∑

i, j=1

∂

∂xi

(
a1i j

∂y1

∂x j

)
+a1 y1 −b2 y2 +b3 y3 −b4 y4 = f1(x, t), (1)

y2tt −
2∑

i, j=1

∂

δxi

(
a2i j

∂y2

∂x j

)
+a2 y2 +b2 y1 −b5 y3 +b6 y4 = f2(x, t), (2)

y3tt −
2∑

i, j=1

∂

δxi

(
a3i j

∂y3

∂x j

)
+a3 y3 −b3 y1 +b5 y2 +b7 y4 = f3(x, t), (3)

y4tt −
2∑

i, j=1

∂

δxi

(
a4i j

∂y4

∂x j

)
+a4 y4 +b4 y1 −b6 y2 −b7 y3 = f4(x, t), (4)

yl(x,0)= y0
l (x), ylt(x,0)= y1

l (x), l = 1,2,3,4 on Ω, (5)

∂nl yl =
2∑

i, j=1
al i j, ∂x j yl cos(nl , x j)= ul(x, t), l = 1,2,3,4 on Σ , (6)
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where nl , for l = 1,2,3,4 is an outer normal vector on Σ, the angle between the x j-axis and
nl and is referred by (nl , x j)−→y = (y1, y2, y3, y4) ∈ (H2(Q))4 is the QSVS, −→u = (u1,u2,u3,u4) ∈
(L2(Σ))4 = L2(Σ) is the QCBCV, ( f 1, f2, f3, f4) ∈ (L2(Q))4 = L2(Q), is given, al i j = al i j(x, t) ∈ L∞(Q),
al = al(x, t) ∈ L∞(Q), bk = bk(x, t) ∈ L∞(Q), k = 2,3,4,5,7.

The set of admissible QCBCV is
−→
W = {−→u ∈ L2(Σ) :−→u ∈−→

U a.e.
−→
U ⊂R4,

−→
U convex} and the OF is

G0(−→u )= 1
2

4∑
l=1

∥yl − yld∥2
Q + γ

2

4∑
l=1

∥ul∥2
Σ, γ ∈R+ . (7)

Let
−→
V =V ×V ×V ×V = H1(Ω),

−→
V = {−→v :−→v = (v1,v2,v3,v4) ∈ H1(Ω)}.

2.1 The Weak Formulation (WFO)
The WFO of the QLHS ((1)-(6)) is

〈y1tt,v1〉+ r1(t, y1,v1)+ (a1 y1,v1)L2(Ω) − (b2 y2,v1)L2(Ω) + (b3 y3,v1)L2(Ω) − (b4 y4,v1)L2(Ω)

= ( f1,v1)L2(Ω) + (u1,v1)L2(δΩ), (8)

〈y2tt,v2〉+ r2(t, y2,v2)+ (a2 y2,v2)L2(Ω) + (b2 y1,v2)L2(Ω) − (b5 y3,v2)L2(Ω) + (b6 y4,v2)L2(Ω)

= ( f2,v2)L2(Ω) + (u2,v2)L2(δΩ), (9)

〈y3tt,v3〉+ r3(t, y3,v3)+ (a3 y3,v3)L2(Ω) − (b3 y1,v3)L2(Ω) + (b5 y2,v3)L2(Ω) + (b7 y4,v3)L2(Ω)

= ( f3,v3)L2(Ω) + (u3,v3)L2(δΩ), (10)

〈y4tt,v4〉+ r4(t, y4,v4)+ (a4 y4,v4)L2(Ω) + (b4 y1,v4)L2(Ω) − (b6 y2,v4)L2(Ω) − (b7 y3,v4)L2(Ω)

= ( f4,v4)L2(Ω) + (u4,v4)L2(δΩ), (11)

(y0
l ,vl)Ω = (yl(0),v1)Ω and (y1

l ,vl)Ω = (ylt(0),v1)Ω, ∀ vl ∈Vl , l = 1,2,3,4, (12)

where r l(t, yl ,vl)=∑2
i, j=1

Î
Ωαl i j

∂yl
∂xi

∂vl
∂x j

dx, for l = 1,2,3,4.

2.2 Hypotheses (HYPOS)

s(t,−→y ,−→v )= r1(t, y1,v1)+ (a1 y1,v1)Ω+ r2(t, y2,v2)+ (a2 y2,v2)L2(Ω) + r3t, y3,v3)

+ (a3 y3,v3)L2(Ω) + r4(t, y4,v4)+ (a4 y4,v4)L2(Ω),

|s(t,−→y ,−→v )| ≤ a∥−→y ∥1∥−→v ∥1,

s(t,−→y ,−→y )≥ a∥−→y ∥2
1,

|st(t,−→y ,−→v )| ≤ b∥−→y ∥1∥−→v ∥1,

st(t,−→y ,−→y )≥ b∥−→y ∥2
1,

where st(t,−→y ,−→v )=Î
Ω

∑2
i, j=1

∂αl i j
∂t

∂yl
∂xi

∂vl
∂x j

dx, and a,a,b,b ∈R+.
In this work, the notations −−−−→

L2(Q)
, −−−−→

L2(Q)
, (−−−−−→

L2(I,V )
,−−−−−→

L2(I,V )
) will be referred to the convergent

strongly in L2(Q), L2(Q), (L2(I,V ),L2(I,V )), respectively, and −−−−→
L2(Q)

, −−−−→
L2(Q)

(−−−−−→
L2(I,V )

,−−−−−→
L2(I,V )

)

to the convergent weakly in L2(Q), L2(Q) (L2(I,V ),L2(I,V )), respectively.

3. Main Results
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The Existence of a Unique Solution for the WFO
The next theorem deals with the existence of a unique QSVS for the WFO ((8)-(12)).

Theorem 3.1. Let −→u ∈ L2(Q) be a given QBOC, then the WFO ((8)-(12)) has a unique QSVS −→y ,
with −→y ∈ (L2(I,V ))4 = L2(I,V ) and −→y t = (y1t, y2t, y3t, y4t) ∈ L2(I,V∗).

Proof. For every n, let the set of piecewise affine function in Ω be
−→
V n =V1n×V2n×V3n×V4n ⊂−→

V ,
{
−→
V n}∞n=1 be a sequence of subspaces of

−→
V , then by the MG ∀ −→v ∈ −→

V there is a sequence {−→v n},
−→v n ∈−→

V n, ∀ n and −→v n −−−−→
L2(

−→
V )

−→v (thus, −→v n −−−−→
L2(Ω)

−→v ).

Let {−→v j = (v1 j,v2 j,v3 j,v4 j) : j = 1,2, . . . ,n} spans
−→
V n and the approximate Galerkin solution be

yln =
n∑

j=1
cl j(t)vl j(x), (13)

zln =
n∑

j=1
dl j(t)vl j(x), (14)

where cl j(t), dl j(t) are unknown functions of t, ∀ l = 1,2,3,4, j = 1, . . . ,n.
Utilizing yln (with ylnt = zln), and vl ∈Vn, for l = 1,2,3,4 in ((8)-(12)), they yield to

〈z1nt,v1〉+ r1(t, y1n,v1)+ (a1 y1n,v1)L2(Ω) − (b2 y2n,v1)L2(Ω) + (b3 y3n,v1)L2(Ω) − (b4 y4n,v1)L2(Ω)

= ( f1,v1)L2(Ω) + (u1,v1)L2(∂Ω), (15)

〈z2nt,v2〉+ r2(t, y2n,v2)+ (a2 y2n,v2)L2(Ω) + (b2 y1n,v2)L2(Ω) − (b5 y3n,v2)L2(Ω) + (b6 y4n,v2)L2(Ω)

= ( f2,v2)L2(Ω) + (u2,v2)L2(∂Ω), (16)

〈z3nt,v3〉+ r3(t, y3n,v3)+ (a3 y3n,v3)L2(Ω) − (b3 y1n,v3)L2(Ω) + (b5 y2n,v3)L2(Ω) + (b7 y4n,v3)L2(Ω)

= ( f3,v3)L2(Ω) + (u3,v3)L2(∂Ω), (17)

〈z4nt,v4〉+ r4(t, y4n,v4)+ (a4 y4n,v4)L2(Ω) + (b4 y1n,v4)L2(Ω) − (b6 y2n,v4)L2(Ω) − (b7 y3n,v4)L2(Ω)

= ( f4,v4)L2(Ω) + (u4,v4)L2(∂Ω), (18)

(y0
ln,vl)Ω = (y0

l ,v1)Ω and (z1
ln,vl)Ω = (y1

l ,v1)Ω, ∀ vl ∈Vl , l = 1,2,3,4, (19)

where y0
ln = y0

ln(x) = yln(x,0) ∈ Vn, z0
ln = y1

ln = y1
ln(x) = ylnt(x,0) ∈ L2(Ω) be the projection of y0

l
onto V of y1

l = ylt onto L2(Ω), ∀l = 1,2,3,4, i.e.,

y0
ln −−−−→

L2(V )
y0

l , with ∥−→y 0
n∥1 ≤ b0, (20)

y1
ln −−−−→

L2(Ω)
y1

l , with ∥−→y 1
n∥0 ≤ b1. (21)

Substituting (13) and (14) in ((15)-(19)) and setting vl = vl i , ∀ i = 1,2,3,4, . . . ,n, then, the secured
equations will be equivalent to the following 1st order ODEs of linear system with ICs

A1D́1(t)+M1C1(t)−FC2(t)+GC3(t)−HC4(t)= d1, (22)
A2D́2(t)+M2C2(t)+FC1(t)−OC3(t)+RC4(t)= d2, (23)
A3D́3(t)+M3C3(t)−GC1(t)+OC2(t)+PC4(t)= d3, (24)
A4D́4(t)+M4C4(t)+HC1(t)−RC2(t)−PC3(t)= d4, (25)
AlCl(0)= m0

l and AlDl(0)= m1
l , (26)

where Al = (al i j)n×n = (vl j,vl i), Ml = (ml i j)n×n = [r l(t,vl j,vl i) + (alvl j,vl i)L2(Ω)], F =
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( f i j)n×n = (b2v2 j,v2i)L2(Ω), G = (g i j)n×n = (b3v3 j,v1i)L2(Ω), Cl(0) = (cl j(0))n×1, H = (hi j)n×n =
(b4v4 j,v1i)L2(Ω), O = (oi j)n×n = (b5v2 j,v3i)L2(Ω), Cl(t)= (cl j(0))n×1, P = (pi j)n×n = (b7v4 j,v3i)L2(Ω),
R = (r i j)n×n = (b6v2 j,v4i)L2(Ω), Dl(0) = (dl j(0))n×1, dl j = ( f l ,vl i)L2(Ω) + (ul ,vl i)L2(∂Ω), m0

l i =
(y0

l ,vl i), m1
l i = (y1

l ,vl i), Dl(t)= (dl j(t))n×1, ∀ l = 1,2,3,4, j = 1,2, . . . ,n.
Since A−1

l exists ∀ l = 1,2,3,4, then ((22)-(26)) has a unique QSVS −→y n.

In the next steps, the norms ∥−→y n(t)∥L2(Ω) and ∥−→y n(t)∥L2(I,V ) are proved bounded.
Setting vl = ylnt, ∀ l = 1,2,3,4 in ((12)-(15)) respectively, employing [12, Lemma 2.1] for the first
two terms in the LHS for each expression, then gathering the outcome equations, to bring

d
dt

[∥−→y nt(t)∥2
L2(Ω) + s(t,−→y n,−→y n)]− st(t,−→y n,−→y n)

= 2[( f1, y1nt)L2(Ω) + (u1, y1nt)L2(∂Ω) + (b2 y2n +b3 y3n −b4 y4n, y1nt)L2(Ω)

+ ( f2, y2nt)L2(Ω) + (u2, y2nt)L2(∂Ω) + (b2 y1n −b5 y3n +b6 y4n, y2nt)L2(Ω)

+ ( f3, y3nt)L2(Ω) + (u3, y3nt)L2(∂Ω) + (b5 y2n −b3 y1n +b7 y4n, y3nt)L2(Ω)

+ ( f4, y4nt)L2(Ω) + (u4, y4nt)L2(∂Ω) + (b4 y1n −b6 y2n −b7 y3n, y4nt)L2(Ω)]. (27)

Employing HYPOS, after take the absolute values of (27) it yields to:
d
dt

[∥−→y nt(t)∥2
L2(Ω) +a∥−→y n∥2

H1(Ω)]

≤ b∥−→y n∥2
H1(Ω) +2(|(b2 y2n, y1nt)L2(Ω)|+ |(b3 y3n, y1nt)L2(Ω)|+ |(b4 y4n, y1nt)L2(Ω)|

+ |(b2 y1n, y2nt)L2(Ω)|+ |(b6 y4n, y2nt)L2(Ω)|+ |(b5 y3n, y2nt)L2(Ω)|+ |(b5 y2n, y3nt)L2(Ω)|
+ |(b7 y4n, y3nt)L2(Ω)|+ |(b3 y1n, y3nt)L2(Ω)|+ |(b4 y1n, y4nt)L2(Ω)|+ |(b6 y2n, y4nt)L2(Ω)|
+ |(b7 y3n, y4nt)L2(Ω)|+ |( f1, y1nt)L2(Ω)|+ |( f2, y2nt)L2(Ω)|+ |( f3, y3nt)L2(Ω)|
+ |( f4, y4nt)L2(Ω)|+ |(u1, y1nt)L2(∂Ω)|+ |(u2, y2nt)L2(∂Ω)|+ |(u3, y3nt)L2(∂Ω)|
+ |(u4, y4nt)L2(∂Ω)|. (28)

Applying the inequality of Cauchy for the RHS of (30), integrating on (0, t), take in account
that ∥yln∥L2(Ω) ≤ ∥yln∥H1(Ω) ≤ ∥−→y ln∥1(Ω)

H , ∥ylnt∥L2(Ω) ≤ ∥−→y nt∥L2(Ω), ∥ylnt∥L2(∂Ω) ≤ cl∥ylnt∥H1(Ω),
∥ul∥L2(∂Q) ≤ el , ∥ f l∥L2(∂Q) ≤ e l , then utilizing the trace theorem, and HYPOS, to secure∫ t

0

d
dt

[∥−→y nt(t)∥2
L2(Ω) +a∥−→y n∥2

H1(Ω)]dt

≤
∫ t

0
[h1∥−→y nt∥2

L2(Ω) +h2∥−→y n∥2
H1(Ω)]dt+

4∑
l=1

(∥ f l∥2
Q +∥ul∥2

L2(∂Q))

≤ h4 +h3

∫ t

0
(|−→y nt∥2

L2(Ω) +∥−→y nt∥2
H1(Ω))dt, (29)

where |bi| ≤ hi , i = 2,3,4,5,6,7, h8 = 3 max
2≤i≤6

hi , h9 = max
1≤l≤4

cl , h1 = h8 + h9 + 1, h2 = h8 + b,

h3 =max(h1,h2), h4 = 4e l +4el .
Since ∥−→y 0

n∥H1(Q) ≤ b1 and ∥−→y 1
n∥L2(Ω) ≤ b0 with h5 = b0 +ab1 +h4, hence (29) turn into

h6[∥−→y nt(t)∥2
L2(Ω) +∥−→y n(t)∥2

H1(Q)]≤ h5 +h3

∫ t

0
[∥−→y nt∥2

0 +∥−→y n∥2
H1(Q)]dt (h6 =min(1,a))

≤ h7 +h3

∫ t

0
[∥−→y nt∥2

0 +∥−→y n∥2
H1(Q)]dt

Communications in Mathematics and Applications, Vol. 16, No. 1, pp. 247–263, 2025



252 Continues Classical Quaternary Boundary Optimal Control. . . : M. A. Fadhel and J. A. A. Al-Hawasy

with h7 = h5

h6
, h8 = h3

h6
.

Applying the inequality for Gronwall, it yields that ∀ t ∈ [0,T],

∥−→y nt(t)∥2
L2(Ω) +∥−→y n(t)∥2

H1(Q) ≤ h7eh3 = b2(c)

⇒ ∥−→y nt(t)∥2
L2(Ω) ≤ b2(c) and ∥−→y n∥2

H1(Q) ≤ b2(c), ∀ t ∈ [0,T].

Therefore, ∥−→y nt(t)∥L2(Q) ≤ b1(c) and ∥−→y n(t)∥L2(I,V ) ≤ b(c).

The QSVS convergence: Assume
−→
V has a sequence of subspace of {

−→
V n}∞n=1 s.t. ∀ −→v ∈−→

V , there
is a subsequence {

−→
V n} with −→v n ∈ −→

V n, ∀ n for which −→v n −→
V

−→v and −→v n −−−−→
L2(Q)

−→v but for any n,

with
−→
V n ⊂−→

V , problem ((8)-(12) has a unique QSVS −→y n = (y1n, y2n, y3n, y4n), hence corresponding
to the sequence of spaces {

−→
V n}∞n=1, there is a sequence of approximation problem of the from

((8)-(12), allow −→v l =−→v ln = (v1n,v2n,v3n,v4n) in them ∀ n = 1,2, . . .,

〈y1tt,v1n〉+ r1(t, y1,v1n)+ (a1 y1,v1n)L2(Ω) − (b2 y2,v1n)L2(Ω) + (b3 y3,v1n)L2(Ω) − (b4 y4,v1n)L2(Ω)

= ( f1,v1n)L2(Ω) + (u1,v1n)L2(∂Ω), (30)

〈y2tt,v2n〉+ r2(t, y2,v2n)+ (a2 y2,v2n)L2(Ω) + (b2 y1,v2n)L2(Ω) − (b5 y3,v2n)L2(Ω) + (b6 y4,v2n)L2(Ω)

= ( f2,v2n)L2(Ω) + (u2,v2n)L2(∂Ω), (31)

〈y3tt,v3n〉+ r3(t, y3,v3n)+ (a3 y3,v3n)L2(Ω) − (b3 y1,v3n)L2(Ω) + (b5 y2,v3n)L2(Ω) + (b7 y4,v3n)L2(Ω)

= ( f3,v3n)L2(Ω) + (u3,v3n)L2(∂Ω), (32)

〈y4tt,v4n〉+ r4(t, y4,v4n)+ (a4 y4,v4n)L2(Ω) + (b4 y1,v4n)L2(Ω) − (b6 y2,v4n)L2(Ω) − (b7 y3,v4n)L2(Ω)

= ( f4,v4n)L2(Ω) + (u4,v4n)L2(∂Ω), (33)

(y0
l ,vln)Ω = (yl(0),v1n)Ω and (y1

l ,vln)Ω = (ylt(0),v1n)Ω, ∀ vln ∈Vln, l = 1,2,3,4 . (34)

Of course ((30)-(34)) has a sequence of QSVS {−→y n}∞n=1 with ∥−→y n(t)∥L2(Q) and ∥−→y n(t)∥L2(I,V )
are bounded. By applying theorem of Alaglou (Borthwick [3]) there is a subsequence of
{−→y n}n∈N , let for simplicity be {−→y n}n∈N , s.t. −→y n −−−−*

L2(Q)

−→y and −→y n −−−−−*
L2(I,V )

−→y , and since L2(I,V )⊂
L2(Q)∼= (L2(Q))∗ ⊂ L2(I,V∗), then by applying the theorem of Aubin (Borthwick [3]), there is a
subsequence of {−→y n}n∈N say a gain {−→y n}n∈N s.t. −→y n −−−−→

L2(Q)

−→y .

Now, multiplying ((30)-(34)) by ϕl(t) ∈ C2[0,T], ∀ l = 1,2,3,4, ϕl(T) = ϕ′
l(T) = 0, ϕl(0) ̸= 0,

ϕ′
l(0) ̸= 0 integrating on [0,T], then integrating by parts twice the 1st expression in each

acquired inequalities, to bring

−
∫ T

0

d
dt

(y1nt,v1n)ϕ′
1(t)dt+

∫ T

0
[r1(t, y1n,v1n)+ (b3 y3n −b2 y2n −b4 y4n,v1n)L2(Ω)]ϕ1(t)dt

=
∫ T

0
(( f1,v1n)L2(Ω) + (u1,v1n)L2(∂Ω))ϕ1(t)dt+ (y1

1n,v1n)L2(Ω)ϕ1,0, (35)∫ T

0
(y1nt,v1n)ϕ′′(t)dt+

∫ T

0
[r1(t, y1n,v1n)+ (b3 y3n −b2 y2n −b4 y4n,v1n)L2(Ω)]ϕ1(t)dt

=
∫ T

0
(( f1,v1n)L2(Ω) + (u1,v1n)L2(∂Ω))ϕ1(t)dt+ (y1

1n,v1n)L2(Ω)ϕ1,0 − (y0
1n,v1n)L2(Ω)ϕ

′
1,0, (36)
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−
∫ T

0

d
dt

(y2nt,v2n)ϕ′
2(t)dt+

∫ T

0
[r2(t, y2n,v2n)+ (b2 y1n −b5 y3n +b6 y4n,v2n)L2(Ω)]ϕ2(t)dt

=
∫ T

0
(( f2,v2n)L2(Ω) + (u2,v2n)L2(∂Ω))ϕ2(t)dt+ (y1

2n,v2n)L2(Ω)ϕ2,0, (37)∫ T

0
(y2nt,v2n)ϕ′′

2(t)dt+
∫ T

0
[r2(t, y2n,v2n)+ (b2 y1n −b5 y3n +b6 y4n,v2n)L2(Ω)]ϕ2(t)dt

=
∫ T

0
(( f2,v2n)L2(Ω) + (u2,v2n)L2(∂Ω))ϕ2(t)dt+ (y1

2n,v2n)L2(Ωϕ2,0 − (y0
2n,v2n)L2(Ω)ϕ

′
2,0, (38)

−
∫ T

0

d
dt

(y3nt,v3n)ϕ′
3(t)dt+

∫ T

0
[r3(t, y3n,v3n)+ (b5 y2 −b3 y1n +b7 y4,v3n)L2(Ω)]ϕ3(t)dt

=
∫ T

0
(( f3,v3n)L2(Ω) + (u3,v3n)L2(∂Ω))ϕ3(t)dt+ (y1

3n,v3n)L2(Ω)ϕ3,0, (39)∫ T

0
(y3nt,v3n)ϕ′′

3(t)dt+
∫ T

0
[r3(t, y3n,v3n)+ (b5 y2n −b3 y1n +b7 y4n,v3n)L2(Ω)]ϕ3(t)dt

=
∫ T

0
(( f3,v3n)L2(Ω) + (u3,v3n)L2(∂Ω))ϕ3(t)dt+ (y1

3n,v3n)L2(Ω)ϕ3,0 − (y0
3n,v3n)L2(Ω)ϕ

′
3,0, (40)

−
∫ T

0

d
dt

(y4nt,v4n)ϕ′
4(t)dt+

∫ T

0
[r4(t, y4n,v4n)+ (b4 y1n −b6 y2n−b7 y3n,v4n)(L2(Ω)]ϕ4(t)dt

=
∫ T

0
(( f4,v4n)L2(Ω) + (u4,v4n)L2(∂Ω))ϕ4(t)dt+ (y1

4n,v4n)(L2(Ω)ϕ4,0, (41)∫ T

0
(y4nt,v4n)ϕ′′

4(t)dt+
∫ T

0
[r4(t, y4n,v4n)+ (b4 y1n −b6 y2n −b7 y3n,v4n)L2(Ω)]ϕ4(t)dt

=
∫ T

0
(( f4,v4n)L2(Ω) + (u4,v4n)L2(∂Ω))ϕ4(t)dt+ (y1

4n,v4n)L2(Ω)ϕ4,0 − (y0
4n,v4n)L2(Ω)ϕ

′
4,0 (42)

with rl(t, yln,vln)= r l(t, yln,vln)+ (al yln,vln)L2(Ω), ϕl,0 =ϕl(0) and ϕ′
l,0 =ϕ′

l(0), l = 1,2,3,4.
First, since ∀ l = 1,2,3,4,

vln −→
V

vl ⇒



vlnϕl(t)−−−−−→
L2(I,

−→
V )

vlϕl(t),

vlnϕ
′
l(t)→ [L2(I,

−→
V )]vlϕ

′
l(t),

vlnϕl(0)−−−−→
L2(Ω)

vlϕl(0)

and

vln −−−−→
L2(Ω)

vl ⇒




vlnϕ

′
l(t)−−−−→L2(Q)

vlϕ
′
l(t),

vlnϕ
′′
l (t)−−−−→

L2(Q)
vlϕ

′′
l (t),

vlnϕ
′
l(0)−−−−→

L2(Ω)
vlϕ

′
l(0)

Second, ylnt −−−−→
L2(Q)

ylt and yln −−−−−→
L2(I,V )

yl and yln −−−−→
L2(Q)

yl .

Third, since vlnϕl −−−−→
L2(Q)

vlϕl , then ∀ l = 1,2,3,4, then∫ T

0
(( f l ,vln)L2(Ω) + (ul ,vln)L2(∂Ω))ϕl(t)dt
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⇒
∫ T

0
(( f l ,vl)L2(Ω) + (ul ,vl)L2(∂Ω))ϕl(t)dt .

These above three points helps to passage the limits in ((35)-(42)), to turn out

−
∫ T

0

d
dt

(y1t,v1)ϕ′
1(t)dt+

∫ T

0
[r1(t, y1,v1)+ (a1 y1 −b2 y2 +b3 y3 −b4 y4,v1)L2(Ω)]ϕ1(t)dt

=
∫ T

0
(( f1,v1)L2(Ω) + (u1,v1)L2(∂Ω))ϕ1(t)dt+ (y1

1 ,v1)L2(Ω)ϕ1,0, (43)∫ T

0
(y1,v1)ϕ′′(t)dt+

∫ T

0
[r1(t, y1,v1)+ (a1 y1 −b2 y2 +b3 y3 −b4 y4,v1)L2(Ω)]ϕ1(t)dt

=
∫ T

0
(( f1,v1)L2(Ω) + (u1,v1)L2(∂Ω))ϕ1(t)dt+ (y1

1 ,v1)L2(Ω)ϕ1,0 − (y0
1 ,v1)L2(Ω)ϕ

′
1,0, (44)

−
∫ T

0

d
dt

(y2t,v2)ϕ′
2(t)dt+

∫ T

0
[r2(t, y2,v2)+ (a2 y2 +b2 y1 −b5 y3 +b6 y4,v2)L2(Ω)]ϕ2(t)dt

=
∫ T

0
(( f2,v2)L2(Ω) + (u2,v2)L2(∂Ω))ϕ2(t)dt+ (y1

2 ,v2)L2(Ω)ϕ2,0, (45)∫ T

0
(y2,v2)ϕ′′

2(t)dt+
∫ T

0
[r2(t, y2,v2)+ (a2 y2 +b2 y1 −b5 y3 +b6 y4,v2)L2(Ω)]ϕ2(t)dt

=
∫ T

0
(( f2,v2)L2(Ω) + (u2,v2)L2(∂Ω))ϕ2(t)dt+ (y1

2 ,v2)L2(Ωϕ2,0 − (y0
2 ,v2)L2(Ω)ϕ

′
2,0, (46)

−
∫ T

0

d
dt

(y3t,v3)ϕ′
3(t)dt+

∫ T

0
[r3(t, y3,v3)+ (a3 y3 −b3 y1 +b5 y2 +b7 y4,v3)L2(Ω)]ϕ3(t)dt

=
∫ T

0
(( f3,v3)L2(Ω) + (u3,v3)L2(∂Ω))ϕ3(t)dt+ (y1

3 ,v3)L2(Ω)ϕ3,0, (47)∫ T

0
(y3,v3)ϕ′′

3(t)dt+
∫ T

0
[r3(t, y3n,v3n)+ (a3 y3n −b3 y1n +b5 y2 +b7 y4,v3n)L2(Ω)]ϕ3(t)dt

=
∫ T

0
(( f3,v3)L2(Ω) + (u3,v3)L2(∂Ω))ϕ3(t)dt+ (y1

3 ,v3)L2(Ω)ϕ3,0 − (y0
3 ,v3)L2(Ω)ϕ

′
3,0, (48)

−
∫ T

0

d
dt

(y4t,v4)ϕ′
4(t)dt+

∫ T

0
[r4(t, y4,v4)+ (a4 y4 +b4 y1 −b6 y2 −b7 y3,v4)L2(Ω)]ϕ4(t)dt

=
∫ T

0
(( f4,v4)L2(Ω) + (u4,v4)L2(∂Ω))ϕ4(t)dt+ (y1

4 ,v4)(L2(Ω)ϕ4,0, (49)∫ T

0
(y4,v4)ϕ′′

4(t)dt+
∫ T

0
[r4(t, y4,v4)+ (a4 y4 +b4 y1 −b6 y2 −b7 y3,v4)L2(Ω)]ϕ4(t)dt

=
∫ T

0
(( f4,v4)L2(Ω) + (u4,v4)L2(∂Ω))ϕ4(t)dt+ (y1

4 ,v4)L2(Ω)ϕ4,0 − (y0
4 ,v4)L2(Ω)ϕ

′
4,0 . (50)

Case 1: Pick out ϕl ∈ C2[0,T] (∀ l = 1,2,3,4), in (44), (46), (48) and (49) with ϕl(0) =ϕ′
l(0) = 0,

ϕ′
l(T)=ϕl(T)= 0, then integrating twice the first expression in their LHS, they yield to∫ T

0
(y1tt,v1)ϕ(t)dt+

∫ T

0
(r1(t, y1,v1)+ (a1 y1 −b2 y2 +b3 y3 −b4 y4,v1)L2(Ω))ϕ1(t)dt

=
∫ T

0
(( f1,v1)L2(Ω) + (u1,v1)L2(∂Ω))ϕ1(t)dt, (51)
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∫ T

0
(y2tt,v2)ϕ2(t)dt+

∫ T

0
(r2(t, y2,v2)+ (a2 y2 +b2 y1 −b5 y3 +b6 y4,v2)L2(Ω))ϕ2(t)dt

=
∫ T

0
(( f2,v2)L2(Ω) + (u2,v2)L2(∂Ω))ϕ2(t)dt, (52)∫ T

0
(y3tt,v3)ϕ3(t)dt+

∫ T

0
(r3(t, y3n,v3n)+ (a3 y3n −b3 y1n +b5 y2 +b7 y4,v3n)L2(Ω))ϕ3(t)dt

=
∫ T

0
(( f3,v3)L2(Ω) + (u3,v3)L2(∂Ω))ϕ3(t)dt, (53)∫ T

0
(y4tt,v4)ϕ4(t)dt+

∫ T

0
(r4(t, y4,v4)+ (a4 y4 +b4 y1 −b6 y2 −b7 y3,v4)L2(Ω))ϕ4(t)dt

=
∫ T

0
(( f4,v4)L2(Ω) + (u4,v4)L2(∂Ω))ϕ4(t)dt. (54)

Hence −→y is a QSVS of ((8)-(11)) a.e. on I .

Case 2: Pick out ϕl ∈ C2[0,T], ∀ l = 1,2,3,4, s.t. ϕl(t) = ϕ′
l(0) = ϕ′

l(T) = 0 and ϕl(0) ̸= 0, MBS
((8), (9), (10), (11) by ϕ1(t), ϕ2(t), ϕ3(t) and ϕ4(t) respectively, then integrate on [0,T], and then
integrating the 1st expression in LHS in each acquired inequalities, then subtracting each
equality from the each corresponding one of ((43), (45), (47) and (48)) respectively, to acquire

(ylt(0),vl)ϕl(0)= (y1
l ,vi)ϕl(0), ∀ l = 1,2,3,4.

Case 3: Pick out ϕl ∈ C2[0,T], ∀ l = 1,2,3,4, with ϕl(0)=ϕl(T)=ϕ′
l(T)= 0, ϕ′

l(0) ̸= 0, multiplying
of ((8), (9), (10) and (11)) respectively, then integrate on [0,T], and then integrating by parts
twice the 1st expression in LHS in each acquired inequalities, then subtracting each equality
from the each corresponding one of ((44), (46), (48) and (49)) respectively, to acquire

(y0
l ,vl)ϕ′

l(0)= (yl(0),vl)ϕ′
l(0), ∀ l = 1,2,3,4.

From the above two previous cases, one acquires the ICs equation (12).
To prove −→y n −−−−−→

L2(I,V )

−→y , integrate (27) on [0,T], to acquire that

∥−→y nt(T)∥2
Q −∥−→y nt(0)∥2

Q + s(t,−→y n,−→y n)(T)− s(t,−→y n,−→y n)(0)−
∫ T

0
st(t,−→y n,−→y nt)dt

=
∫ T

0
((55a)+ (55b))dt, (55)

where

(55a)= 2((−b2 y2n +b3 y3n −b4 y4n, y1nt)L2(Ω) + (b2 y1n −b5 y3n +b6 y4n, y2nt)L2(Ω)

+ (−b3 y1n +b5 y2n +b7 y4n, y3nt)L2(Ω) + (b4 y1n −b6 y2n −b7 y3n, y4nt)L2(Ω), (55a)

(55b)= 2(( f1, y1nt)L2(Ω) + (u1, y1nt)L2(δΩ) + ( f2, y2nt)L2(Ω) + (u2, y2nt)L2(δΩ)

+ ( f3, y3nt)L2(Ω) + (u3, y3nt)L2(δΩ) + ( f4, y4nt)L2(Ω) + (u4, y4nt)L2(δΩ)). (55b)

Now, replace yln = yl , ∀ l = 1,2,3,4, in (33), integrate the resulting equality on [0,T] to acquire

∥−→y t(T)∥2
Q −∥−→y t(0)∥2

Q + s(t,−→y ,−→y )(T)− s(t,−→y ,−→y )(0)−
∫ T

0
st(t,−→y ,−→y t)dt

=
∫ T

0
((56a)+ (56b))dt, (56)
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where

(56a)= 2((−b2 y2 +b3 y3 −b4 y4, y1t)L2(Ω) + (b2 y1 −b5 y3 +b6 y4, y2t)L2(Ω)

+ (−b3 y1 +b5 y2 +b7 y4, y3t)L2(Ω) + (b4 y1 −b6 y2 −b7 y3, y4t)L2(Ω), (56a)

(56b)= 2(( f1, y1t)L2(Ω) + (u1, y1t)L2(δΩ) + ( f2, y2t)L2(Ω) + (u2, y2t)L2(δΩ) + ( f3, y3t)L2(Ω)

+ (u3, y3t)L2(δΩ) + ( f4, y4t)L2(Ω) + (u4, y4t)L2(δΩ)). (56b)

Since

∥−→y nt(T)−−→y t(T)∥2
L2(Ω) −∥−→y nt(0)−−→y t(0)∥2

L2(Ω) + s(t,−→y n −−→y ,−→y n −−→y )(T)

− s(t,−→y n −−→y ,−→y n −−→y )(0)−
∫ T

0
st(t,−→y n −−→y ,−→y nt −−→y t)dt

= ((57a)− (57b)− (57c)), (57)

where

(57a)= ∥−→y nt(T)∥2
L2(Q) −∥−→y n(0)∥2

L2(Ω) + s(t,−→y n,−→y n)(T)− s(t,−→y n,−→y n)(0)

−
∫ T

0
st(t,−→y n,−→y nt)dt, (57a)

(57b)= (−→y nt(T),−→y t(T))− (−→y nt(0),−→y t(0))+ s(t,−→y n,−→y )(T)

− s(t,−→y n,−→y )(0)−
∫ T

0
st(t,−→y n,−→y t)dt (57b)

(57c)= (−→y t(T),−→y nt −−→y t(T))− (−→y t(0),−→y nt(0)−−→y t(0))+ s(t,−→y n,−→y n −−→y )(T)

− s(t,−→y n,−→y n −−→y )(0)−
∫ T

0
st(t,−→y n,−→y nt −−→y t)dt, (57c)

thus,

(57a)=L.H.S. of (55)=
∫ T

0
((55a)+ (55b))dt ⇒

∫ T

0
((56a)+ (56b))dt.

A similar manner which utilized to get (21), utilizes also here to obtain
−→y nt(T)−−−−→

L2(Ω)

−→y t(T) . (58)

On the other hand, since −→y n −−−−−→
L2(I,V )

−→y , then utilizing (21) and (58) in (57b), it yields that (57b)

→ L.H.S. (56) = ∫ T
0 (56a) + (56b)dt.

Beside these convergences, all the expressions in (57c) imply to zero, in addition the first two
expressions in LHS of (57); hence (57) gives∫ T

0
∥−→y n(t)−−→y (t)∥2

H1(Q)dt → 0 as n →∞
thus, we get

−→y n −−−−−→
L2(I,V )

−→y .

Uniqueness of the QSVS: Assume that −→y and
−→
y are two QSVS of the WFO ((8)-(12)), then

subtracting each equality form its conforming one and letting −→v = −→y −−→
y , utilizing [12,

Lemma 2.1] for the 1st expression in each equality and then gathering all the above equalities,
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utilizing HYPOS and integrating from 0 to t, to acquire∫ t

0

d
dt

[∥(−→y −−→
y )t∥2

L2(Q) +a∥(−→y −−→
y )∥2

H1(Ω)]dt ≤
∫ t

0
b∥(−→y −−→

y )∥2
H1(Ω)dt.

Utilizing the ICs,

∥(−→y −−→
y )t(t)∥2

L2(Q) +∥(−→y −−→
y )(t)∥2

H1(Ω) ≤ h3

∫ t

0
[∥(−→y −−→

y )t∥2
L2(Ω) +b∥(−→y −−→

y )∥2
H1(Ω)]dt,

where h1 =min(1,a), h2 =max(1,b), h3 = h2/h1.
Employing the inequality of Gronwall, to acquire the uniqueness of the QSVS as follow

∥(−→y −−→
y )(t)∥2

H1(Ω) = 0, ∀ t ∈ I

=⇒ ∥(−→y −−→
y )(t)∥2

L2(I,V ) = 0

=⇒ −→y =−→
y .

4. Existence of a Boundary Quaternary Control Vector
The following lemma is very useful in the study of the existence of a CQBCV.

Lemma 4.1. Besides to HYPOS, consider −→y and −→y +δ−→y are the QSVS conforming corresponding
to the bounded CBCQV −→u and −→u +−→

δu respectively, then fro K ∈R+.

(i) ∥δ−→y ∥L∞(I,L2(Ω) ≤ K∥δ−→u ∥L2(Σ), ∥δ−→y ∥L2(Q) ≤ K∥δ−→u ∥L2(Σ), ∥δ−→y ∥L2(I,V ) ≤ K∥δ−→u ∥L2(Σ).
(ii) The operator −→u −→−→y −→u holds the Lipschitz continuity (LC) property from L2(Q) in to

L∞(I,L2(Ω)) (or in to L2(I,V ) or into L2(Q)).

Proof. (i) Assume −→u ,
−→
u ∈ L2(∂Q), then −→u σ =−→u +σδ−→u ∈ L2(Q), with

−→
δu =−→

u −−→u and σ> 0, then
by Theorem 3.1, −→y =−→y −→u , −→y σ =−→y −→u σ

are their QSVS, thus ((8)-(12)) for −→y =−→y σ, give

〈y1σtt,v1〉+ r1(t, y1σ,v1)+ (a1 y1σ,v1)L2(Ω) − (b2 y2σ,v1)L2(Ω) + (b3 y3σ,v1)L2(Ω) − (b4 y4σ,v1)L2(Ω)

= ( f1,v1)L2(Ω) + (u1σ,v1)L2(Ω), (59)

〈y2σtt,v2〉+ r2(t, y2σ,v2)+ (a2 y2σ,v2)L2(Ω) + (b2 y1σ,v2)L2(Ω) − (b5 y3σ,v2)L2(Ω) + (b6 y4σ,v2)L2(Ω)

= ( f2,v2)L2(Ω) + (u2σ,v2)L2(δΩ), (60)

〈y3σtt,v3〉+ r3(t, y3σ,v3)+ (a3 y3σ,v3)L2(Ω) − (b3 y1σ,v3)L2(Ω) + (b5 y2σ,v3)L2(Ω) + (b7 y4σ,v3)L2(Ω)

= ( f3,v3)L2(Ω) + (u3σ,v3)L2(δΩ), (61)

〈y4σtt,v4〉+ r4(t, y4σ,v4)+ (a4 y4σ,v4)L2(Ω) + (b4 y1σ,v4)L2(Ω) − (b6 y2σ,v4)L2(Ω) − (b7 y3σ,v4)L2(Ω)

= ( f4,v4)L2(Ω) + (u4σ,v4)L2(δΩ) (62)

(y0
lσ,vl)L2(Ω) = (yl(0),v1)L2(Ω) and (y1

lσ,vl)L2(Ω) = (ylt(0),v1)L2(Ω), ∀ vl ∈Vl , l = 1,2,3,4. (63)

Subtracting ((8)-(12)) from ((59)-(63)), putting −→y σ−−→y = δ−→y σ, they acquire

〈δy1σtt,v1〉+r1(t,δy1σ,v1)+(a1δy1σ,v1)L2(Ω)−(b2δy2σ,v1)L2(Ω)+(b3δy3σ,v1)L2(Ω)−(b4δy4σ,v1)L2(Ω)

= (σδu1σ,v1)L2(δΩ), (64)

(b6δy4σ,v2)L2(Ω) = (σδu2σ,v2)L2(δΩ), (65)

〈δy3σtt,v3〉+r3(t,δy3σ,v3)+(a3δy3σ,v3)L2(Ω)−(b3δy1σ,v3)L2(Ω)+(b5δy2σ,v3)L2(Ω)+(b7δy4σ,v3)L2(Ω)

= (σδu3σ,v3)L2(δΩ), (66)
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〈δy4σtt,v4〉+r4(t,δy4σ,v4)+(a4δy4σ,v4)L2(Ω)+(b4δy1σ,v4)L2(Ω)−(b6δy2σ,v4)L2(Ω)−(b7δy3σ,v4)L2(Ω)

= (σδu4σ,v4)L2(δΩ), (67)

(δy0
lσ,vl)L2(Ω) = 0 and (δy1

lσ,vl)L2(Ω) = 0, ∀ vl ∈Vl , l = 1,2,3,4. (68)

By letting vl = δylσt, for l = 1,2,3,4 in ((64)-(68)), then applying [12, Lemma 2.1] for the 1st
term in the LHS of each resulting equality, then utilizing the same manner which utilized to
acquire (26), a similar equality will be gotten but within position of −→y n, then integrating on
[0, t], applying the Cauchy inequality, with setting |bi| ≤ ci > 0, i = 2, . . . ,7 to acquire

∥−→δyσt(t)∥2
L2(Ω) +a∥−→δyσ(t)∥2

H1(Ω)

≤ b
∫ t

0
∥−→δyσ∥2

H1(Ω)dt

+2
∫ t

0
[c2∥δy2σ∥L2(Ω) + c3∥δy3σ∥L2(Ω) + c4∥δy4σ∥L2(Ω) +∥σδu1∥L2(∂Ω)]∥δy1σt∥L2(∂Ω)dt

+2
∫ t

0
[c2∥δy1σ∥L2(Ω) + c5∥δy3σ∥L2(Ω) + c6∥δy4σ∥L2(Ω) +∥σδu2∥L2(∂Ω)]∥δy2σt∥L2(∂Ω)dt

+2
∫ t

0
[c3∥δy1σ∥L2(Ω) + c5∥δy2σ∥L2(Ω) + c7∥δy4σ∥L2(Ω) +∥σδu3∥L2(∂Ω)]∥δy3σt∥L2(∂Ω)dt

+2
∫ t

0
[c4∥δy1σ∥L2(Ω) + c6∥δy2σ∥L2(Ω) + c7∥δy3σ∥L2(Ω) +∥σδu4∥L2(∂Ω)]∥δy4σt∥L2(∂Ω))dt .

Utilizing the trace operator, Young’s inequality for products, the relations between the norms
and then gathering the same terms, it yields to

c8[∥−→δyσt(t)∥2
L2(Ω) +∥−→δyσ(t)∥2

H1(Ω)]

≤
∫ t

0
[b∥−→δyσ∥2

H1(Ω) + c5∥δy1σt∥2
L2(Ω) + c6∥δy2σt∥2

L2(Ω) + c7∥δy3σt∥2
L2(Ω) + c8∥δy4σt∥2

L2(Ω)]dt

+
∫ t

0
[c2∥δy2σ∥2

L2(Ω) + c3∥δy3σ∥2
L2(Ω) + c4∥δy4σ∥2

L2(Ω) +σ∥δu1∥2
L2(∂Ω)]dt

+
∫ t

0
[c2∥δy1σ∥2

L2(Ω) + c5∥δy3σ∥2
L2(Ω) + c6∥δy4σ∥2

L2(Ω) +σ∥δu2∥2
L2(∂Ω)]dt

+
∫ t

0
[c3∥δy1σ∥2

L2(Ω) + c5∥δy2σ∥2
L2(Ω) + c7∥δy4σ∥2

L2(Ω) +σ∥δu3∥2
L2(∂Ω)]dt

+
∫ t

0
[c4∥δy1σ∥2

L2(Ω) + c6∥δy2σ∥2
L2(Ω) + c7∥δy3σ∥2

L2(Ω) +σ∥δu4∥2
L2(∂Ω)]dt

≤
∫ t

0
[b∥−→δyσ∥2

H1(Ω) + c8∥−→δyΣt∥2
L2(Ω)]dt+

∫ t

0
[c9∥−→δyσ∥2

H1(Ω) +σ∥
−→
δu∥2

L2(∂Ω)]dt,

where c1 = c2+ c3+ c4, c2 = c2+ c5+ c6, c3 = c3+ c5+ c7, c4 = c4+ c6+ c7, c5 = c1+σ, c6 = c2+σ,
c7 = c3 +σ, c8 = c4 +σ, c8 =max(c5, c6, c7, c8), c9 =max(c1, c2, c3, c4).
Hence

∥−→δyΣt(t)∥2
L2(Ω) +∥−→δyΣ(t)∥2

H1(Ω) ≤ c11∥−→δu(t)∥2
Σ+ c10

∫ t

0
(∥−→δyΣt∥2

L2(Ω) +∥−→δyΣ∥2
H1(Ω))dt,

where c8 =min(1,a), c9 =max(b, c9, c8), c10 = c9/c8, c11 =σ/c8.
By employing the inequality of Gronwall, with k2 = c11eTc10 > 0, it yields

∥−→δyΣt(t)∥2
L2(Ω) +∥−→δyΣ(t)∥2

H1(Ω) ≤ k2∥−→δu(t)∥2
Σ, ∀ t ∈ I
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⇒ ∥−→δyΣ(t)∥2
H1(Ω) ≤ k2∥−→δu(t)∥2

Σ and ∥−→δyΣt(t)∥2
L2(Ω) ≤ k2∥−→δu(t)∥2

Σ, ∀ t ∈ I.

The other results acquire immediately.

(ii) If −→u σ −−−−→
L2(Q)

−→u then −→y σ −−−−−−−−→
L∞(I,L2(Ω))

−→y then from part (i), ∥−→y σ−−→y ∥L∞(I,L2) ≤ K∥−→u σ−−→u ∥Q it

acquires immediately that −→u −→−→y −→u is LC from L2(Σ) in to L∞(I,L2(Ω)). The other two results
are come by the same manner.

Lemma 4.2. The OF defines in (7) is WLSC.

Proof. Since ∥−→u ∥Σ is weakly lower semi continuous (WLSC), now when −→u k −−−→
L2(Σ)

−→u , then
−→y k −−−−→

L2(Q)

−→y and then ∥−→y −−→y d∥ ≤ lim
k→∞

inf
yk∈vk

∥−→y k −−→y d∥. Thus, G0(−→u ) is WLSC.

Theorem 4.1. The problem under consideration has a CBOCQV if the G0(−→u ) is coercive.

Proof. From the coercive property of G0(−→u ), with G0(−→u ) ≥ 0 then there exists a minimum
sequence {−→u k} ∈−→

W , ∀ k, s.t. lim
n→∞G0(−→u k)= inf−→

u k∈
−→
W

G0(
−→
u ), and ∥−→u k∥ ≤ c.

Then by theorem of Alaglou the sequence {−→u k}, has a subsequence let be {−→u k} again, s.t.−→u k −−−→
L2(Σ)

−→u , as k →∞. From Theorem 3.1, the sequence of the CBCQV {−→u k}, has conforming

sequence of the unique QSVS {−→y k =−→y −→u k
} with ∥−→y k∥L2(I,V ), ∥−→y kt∥L2(Q) are bounded, and then by

theorem of Alaglou the sequence of QSVS {−→y k} has a subsequence, let be {−→y k}, s.t. −→y kt −−−−→
L2(Q)

−→y ,
−→y k −−−−−→

L2(I,V )

−→y .

Now, for any k, the QSVS −→y k satisfies the WFO ((15)-(19)), multiplying every equality by
ϕl ∈ C2[0,T], ∀ l = 1,2,3,4, with ϕl(T)=ϕ′

l(T)= 0, ϕl(0) ̸= 0, ϕ′
l(0) ̸= 0, respectively, integrating

on [0,T], then integrating twice the 1st resulting expression terms, one obtains same inequalities
like ((35)-(42)) with setting vln = vl and the RHS of each equality will be,∫ T

0
(( f l ,vl)L2(Ω) + (ulk,vl)L2(∂Ω))ϕl(t)dt, ∀ l = 1,2,3,4, and ∀ k. (69)

To passage the limit as k →∞, in the above four mentioned equality, the same technique which
employed in the proof of Theorem 3.1, will also be employ her and the convergence obtain in
the both sides of each equality (to avoid any repetition in the steps of proof)except the new
expression in (69), and since ulk −−−→

L2(Σ)
ul , then it is convergent to∫ T

0
(( f l ,vl)L2(Ω) + (ulk,vl)L2(∂Ω))ϕl(t)dt, ∀ l = 1,2,3,4, ∀ k.

This mean that the QSVS satisfies the WFO ((8)-(11)) also, by the same steps that utilized in
the proof of Case 2 and Case 3 in Theorem 3.1, can also be utilized here to get the ICs is held.
and thus the limit point −→y = (y1, y2, y3, y4) is a solution of the QSE.
Lastly, since G0(−→u ) is WLSC and −→u k −−−−→

L2(Ω)

−→u then from Lemma 4.1,

G0(−→u )≤ lim
k→∞

inf−→u k∈
−→
W

G0(−→u k)= lim
n→∞G0(−→u k)= inf−→

u k∈
−→
W

G0(
−→
u ) ⇒ G0(−→u )= min−→u k∈

−→
W

G0(
−→
u ).

Therefore −→u is a CQBOCV.
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The Adjiont Equations and the Directional Derivative: The QAEs associated with the QSEs are
formulate and the DD of the OF in (7) is derived in the following:

Theorem 4.2. The QAEs of the QSEs ((1)-(5)) are formulated as

z1tt −
2∑

i, j=1

∂

∂xi

(
a1i j

∂z1

∂x j

)
+a1z1 +b2z2 −b3z3 +b4z4 = y1 − y1d, (70)

z2tt −
2∑

i, j=1

∂

∂xi

(
a2i j

∂z2

∂x j

)
+a2z2 −b2z1 +b5z3 −b6z4 = y2 − y2d, (71)

z3tt −
2∑

i, j=1

∂

∂xi

(
a3i j

∂z3

∂x j

)
+a3z3 +b3z1 −b5z2 −b7z4 = y3 − y3d, (72)

z4tt −
2∑

i, j=1

∂

∂xi

(
a4i j

∂z4

∂x j

)
+a4z4 −b4z1 +b6z2 +b7z3 = y4 − y4d, (73)

zl(x, t)= 0, zlt(x, t)= 0, l = 1,2,3,4 on Ω, (74)

∂nl zl = 0, l = 1,2,3,4 on Σ. (75)

Then for −→u ∈−→
W , the DD of G0 is

DG(−→u ,
−→
u −−→u )= lim

σ→0

G(−→u +σ−→δu)−G(−→u )
σ

=
∫
∂Q

H−→u (x, t,−→y ,−→u ,−→z ) · (−→u −−→u )dq.

Proof. The WFO of the QAEs ∀ v1,v2,v3,v4 ∈V (a.e. on I) is

〈z1tt,v1〉+ r1(t, z1,v1)+ (b2z2,v1)− (b3z3,v1)+ (b4z4,v1)= (y1 − y1d,v1), (76)

〈z2tt,v2〉− r2(t, z2,v2)− (b2z1,v2)+ (b5z3,v2)− (b6z4,v2)= (y2 − y2d,v2), (77)

〈z3tt,v3〉− r3(t, z3,v3)+ (b3z1,v3)− (b5z2,v3)− (b7z4,v3)= (y3 − y3d,v3), (78)

〈z4tt,v4〉− r4(t, z4, z4)− (b4z1,v4)+ (b6z2,v4)+ (b7z3,v4)= (y4 − y4d,v4), (79)

(zl(T),v4)= (z4t(T),v4)= 0, l = 1,2,3,4, (80)

where rl(t, zl ,vl)= r l(t, zl ,vl)+ (al zl ,vl)L2(Ω), ∀ l = 1,2,3,4.
Replacing vl = δylσ, ∀ l = 1,2,3,4 in ((76)-(79)) respectively and integrating on [0,T], to acquire∫ T

0
(z1tt,δy1σ)dt+

∫ T

0
(r1(t, z1,δy1σ)+ (a1z1,δy1σ)L2(Ω) + (b2z2,δy1σ)L2(Ω)

− (b3z3,δy1σ)L2(Ω) + (b4z4,δy1σ)L2(Ω))dt =
∫ T

0
((y1 − y1d,δy1σ)L2(Ω))dt, (81)∫ T

0
(z2tt,δy2σ)dt+

∫ T

0
(r2(t, z2,δy2σ)+ (a2z2,δy2σ)L2(Ω) − (b2z1,δy2σ)L2(Ω)

+ (b5z3,δy2σ)L2(Ω) − (b6z4,δy2σ)L2(Ω))dt =
∫ T

0
((y2 − y2d,δy2σ)L2(Ω))dt, (82)∫ T

0
(z3tt,δy3σ)dt+

∫ T

0
(r3(t, z3,δy3)+ (a3z3,δy3σ)L2(Ω) + (b3z1,δy3σ)L2(Ω)

− (b5z2,δy3σ)L2(Ω) − (b7z4,δy3σ)L2(Ω))dt =
∫ T

0
((y3 − y3d,δy3σ)L2(Ω))dt, (83)
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∫ T

0
(z4tt,δy4σ)dt+

∫ T

0
(r4(t, z4,δy4)+ (a4z4,δy4σ)L2(Ω) − (b4z1,δy4σ)L2(Ω)

+ (b6z2,δy4σ)L2(Ω) + (b7z3,δy4σ)L2(Ω))dt =
∫ T

0
((y4 − y4d,δy4σ)L2(Ω))dt. (84)

Now, let
−→
u ,−→u ∈ (L2(Q))4, δ−→u = −→

u −−→u , −→u σ = −→u +σδ−→u ∈ (L2(Q))4 with for σ > 0 then by
Theorem 3.1, −→y = −→y −→u , −→y σ = −→y −→u σ

are QSVSs conforming to the CBCQV −→u , −→u σ. Setting
δ−→y σ =−→y σ−−→y , then replacing vl = zl , ∀ l = 1,2,3,4 in ((59)-(62)) respectively, integrating on
[0,T], then integrating by parts twice the 1st expression in the LHS of each equality, they yield∫ T

0
(δy1σ, z1tt)dt+

∫ T

0
(r1(t,δy1σ, z1)+ (a2δy1σ, z1)L2(Ω) − (b2δy2σ, z1)L2(Ω)

+ (b3δy3σ, z1)L2(Ω) − (b4δy4σ, z1)L2(Ω))dt =
∫ T

0
(σδu1σ, z1)L2(∂Ω)dt, (85)∫ T

0
(δy2σ, z2tt)dt+

∫ T

0
(r2(t,δy2σ, z2)+ (a2δy2σ, z2)L2(Ω) + (b2δy1σ, z2)L2(Ω)

− (b5δy3σ, z2)L2(Ω) + (b6δy4σ, z2)L2(Ω))dt =
∫ T

0
(σδu2σ, z2)L2(∂Ω)dt, (86)∫ T

0
(δy3σ, z3tt)dt+

∫ T

0
(r3(t,δy3σ, z3)+ (a3δy3σ, z3)L2(Ω) − (b3δy1σ, z3)L2(Ω)

+ (b5δy2σ, z3)L2(Ω) + (b7δy4σ, z3)L2(Ω))dt =
∫ T

0
(σδu3σ, z3)L2(∂Ω)dt, (87)∫ T

0
(δy4σ, z4tt)dt+

∫ T

0
(r4(t,δy4σ, z4)+ (a4δy4σ, z4)L2(Ω) + (b4δy1σ, z4)L2(Ω)

− (b6δy2σ, z4)− (b7δy3σ, z4)L2(Ω))dt =
∫ T

0
(σδu4σ, z4)L2(∂Ω)dt. (88)

Subtract ((85)-(88)) from ((81)-(84)), then gathering all the outcome equality, yield to

σ
4∑

l=1

∫ T

0
((δul , zl))L2(∂Ω)dt =

4∑
l=1

∫ T

0
(yl − yld,δylσ)L2(Ω)dt. (89)

Beside this, one has

G0(−→u σ)−G0(−→u )=
4∑

l=1

[∫ T

0
(yl − yld,δylσ)L2(Ω)dt+σγ

∫ T

0
((δul ,ul))L2(∂Ω)dt

]
+O1(Σ), (90)

where O1(Σ)= 1
2∥

−→
δyσ∥2

L2(Q) +
γ

2σ
2∥−→δu∥2

L2(Q))→ 0, as σ→ 0.

Applying (89) in the RHS of (90), it yields

G0(−→u σ)−G0(−→u )=σ
∫
∂Q

((
−→
δu,−→z )+ (γ−→u ,

−→
δu))dq+O1(σ), with O1(σ)→ 0 as σ→ 0.

The DD of G0 is obtained after dividing both sides by σ and taking σ→ 0,

DG0(−→u ,
−→
u −−→u )=

∫
∂Q

(−→z +γ−→u ) ·δ−→u dq,

(−→z +γ−→u )= (z1 +γu1, z2 +γu2, z3 +γu3, z4 +γu4)T .

Theorem 4.3. The CBOCQV of the above problem is −→y =−→y −→u and −→z =−→z −→u .
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Proof. If −→u is a CBOCQV of the QBOCP, then

G0(
−→
u )= min−→u∈−→W

G0(−→u ), ∀ −→u ∈ (L2(Q))
4
,

i.e.,

DG0(−→u ,
−→
u −−→u )= 0 =⇒ −→z +γ−→u = 0, δ−→u =−→w −−→

u .

The NCO is (−→z +γ−→u ,δ−→u )≥ 0 or (−→z +γ−→u ,−→w)≥ (−→z +γ−→u ,−→u ), ∀ −→w ∈ (L2(Q))4.

5. Conclusions
From the study of the QBOCP controlling by QLHS. The QSVS of the WFO for the QLHS
was proved existence a unique through employing the MG under suitable hypos when the
CBCQV is known. The continuity of the LC between the QSVS and the conforming QBOCP is
proved. The existence of CBCOQV for the problem was proved under suitable hypos. The QALS
associated with the QLHS was formulated and studied. The DD for the OF was obtained.
The theorem of the necessary conditions for optimality was studied.
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