
Communications in Mathematics and Applications
Vol. 16, No. 1, pp. 127–141, 2025
ISSN 0975-8607 (online); 0976-5905 (print)
Published by RGN Publications http://www.rgnpublications.com

DOI: 10.26713/cma.v16i1.2946

Research Article

Natural Cubic Spline for Hyperbolic Equations
With Constant Coefficients

M. Santoshi Kumari*1,2 , H. Y. Shrivalli2 and B. Mallikarjuna2

1Department of Mathematics, Chaitanya Bharathi Institute of Technology (affiliated to Osmania University ),
Hyderabad 500075, Telangana, India

2Department of Mathematics, B.M.S College of Engineering (affiliated to Visvesvaraya Technological University,
Belagavi), Basavanagudi, Bangalore 560019, Karnataka, India

*Corresponding author: santoshikumari_maths@cbit.ac.in

Received: November 24, 2024 Revised: January 6, 2025 Accepted: February 19, 2025

Abstract. In this paper, we have considered second-order hyperbolic equations by implementing
Natural Cubic Spline (NCS) method. Wave propagation and dynamic systems represents hyperbolic
equations. We have considered the class of hyperbolic partial differential equations (PDEs)
with constant coefficients and implemented NCS method both explicitly and implicitly. In our
implementation we replaced spatial derivatives by second derivative of Natural cubic spline and time
derivatives by central finite difference operator. To show the effectiveness of proposed method we have
considered numerical examples having both Dirichlet and Neumann conditions. In order to evaluate
the NCS method’s performance in managing various boundary behaviours which are frequently
seen in real-world applications like heat conduction issues or wave propagation in bounded domains.
The results are represented graphically exhibiting the accuracy of proposed NCS method. To check
the efficiency of the NCS method we compared the results with analytical solution. The research
not only demonstrates the Natural Cubic Spline’s flexibility in resolving hyperbolic PDEs, but also
emphasizes its benefits, including its capacity to smooth spatial discretization, adjust to different
boundary conditions, and work with both explicit and implicit time integration schemes. The findings
verify that the NCS approach is a reliable tool for numerical simulations in domains where hyperbolic
equations are used, including fluid dynamics, acoustics, and other domains.
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1. Introduction
In many branches of science and engineering, the hyperbolic partial differential equations
appear. They serve as the foundation for the basic equations of atomic physics and simulate
the vibrations of structures (such as buildings, beams, and machinery). The telegraph, Klein-
Gordon, and sine-Gordon equations are examples of hyperbolic PDEs. The telegraph equation
is crucial for simulating a number of pertinent issues, including wave propagation (Banasiak
and Mika [2]), random theory (El-Azab and El-Gamel [4]), and signal analysis (Weston and
He [8]). Numerous applications, including solid state physics, nonlinear optics, quantum field
theory, and mathematical physics, depend on the Klein-Gordon equation. The sine-Gordon
equation can be found in many scientific domains, including the motion of a rigid pendulum,
solid state physics, nonlinear optics, and the stability of fluid motions. Other uses for hyperbolic
equations include dissipative nonlinear wave equations and nonlinear waves of the Vander
Pol type. Additionally, the study of viscoelasticity, thermo elasticity, plasma physics, medical
research and chemical heterogeneity all include PDEs. They also occur in non-Newtonian fluid
flows, radioactive nuclear decay, semi-conductor modelling, sub surface water flows in porous
media, and non-local reactive transport.

The 2nd order hyperbolic PDE solutions have received a great deal of interest recently
in the literature. Dehghan and Shokri [3] suggested a numerical method to approximate the
solution of the one-dimensional hyperbolic telegraph problem using thin plate splines and
radial basis function. The Taylor polynomial approximation was used by Bülbül and Sezer [1] to
solve hyperbolic PDEs with constant coefficients. An improved Taylor matrix method has been
described for solving integral and integro-differential equations as well as ordinary differential
equations. Karunanithi et al. [6] used the Lax-Wendroff scheme to solve the 2nd-order linear
wave equation in one dimension. Finite difference techniques were used by Esmailzadeh et
al. [5] to solve hyperbolic PDEs with piecewise constant parameters and variable coefficients.
For the approximate solution of one-dimensional PDEs, Singh et al. [7] created an effective
Wavelet computational approach based on the operational matrices of integration of Legendre
and Chebyshev wavelets.

Here, we have considered Natural Cubic Spline in solving linear hyperbolic equations.
The type of procedures such as explicit and implicit is discussed in detail with different types of
boundary conditions. In Section 2 we have explained NCS procedure and Section 3 comprises of
examples of hyperbolic PDE with NCS explicit and implicit method. Here the change of matrix
form in solving hyperbolic PDE with different types of boundary conditions using NCS explicit
and implicit method is given in detail.

2. Natural Cubic Spline
Let the cubic spline S(x) interpolates y(x) at the mesh a = x0 < x1 < . . .< xn = b.
Since S(x) is piecewise cubic spline, its second order derivative S′′(x) is piecewise linear on the
interval [xi−1, xi].
Using linear Lagrange interpolating formula, we have

S′′(x)= S′′(xi−1)
xi − x

xi − xi−1
+S′′(xi)

x− xi−1

xi − xi−1
. (2.0)
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Putting Mi = S′′(xi) and Mi−1 = S′′(xi−1), the above expression becomes

S′′(x)= 1
h

(Mi−1(xi − x)+Mi(x− xi−1)) . (2.1)

Integrating (2.1) twice, we get

S(x)= Mi−1
(xi − x)3

6h
+Mi

(x− xi−1)3

6h
+C1x+C2 , (2.2)

where C1 and C2 are constants of integration to be determined.
Evaluating S(x) at xiand xi−1, we have

yi−1 = Mi−1
h2

6
+C1xi−1 +C2 , (2.3)

yi = Mi
h2

6
+C1xi +C2 . (2.4)

Solving (2.3) and (2.4) for C1 and C2, we get

C1 =
(

h
6

Mi−1 − h
6

Mi

)
+ (yi − yi−1)

h
,

C2 = yi − h2

6
Mi −

[
h
6

(Mi−1 −Mi)+ yi − yi−1

h

]
xi .

Substituting the values of C1 and C2 in (2.4), we have

S(x)= 1
6h

(Mi−1(xi − x)3 +Mi(x− xi−1)3)+
(
yi−1 − h2

6
Mi−1

)( xi − x
h

)
+

(
yi − h2

6
Mi

)( x− xi−1

h

)
. (2.5)

The function S(x)in the interval [xi, xi+1] is obtained by replacing i by i+1 in eq. (2.5). Thus,

S(x)= Mi
(xi+1 − x)3

6h
+Mi

(x− xi)3

6h
+

(
yi − h2

6
Mi

)( xi+1 − x
h

)
+

(
yi+1 − h2

6
Mi+1

)( x− xi

h

)
. (2.6)

Differentiating (2.5) and (2.6),

S′(x)= 1
2h

(−Mi−1(xi − x)2 +Mi(x− xi−1)2)+ yi − yi−1

h
− (Mi −Mi−1)

6
h (2.7)

=−Mi
(xi+1 − x)2

2h
+Mi+1

(x− xi)2

2h
+ yi+1 − yi

h
− (Mi +Mi+1)

6
h . (2.8)

Calculating S′(x) at x = xi ,

S′(x−i )= h
6

Mi−1 + h
3

Mi + yi − yi−1

h
, i = 1,2, . . . ,n, (2.9)

S′(x+i )=−h
3

Mi − h
6

Mi+1 + yi+1 − yi

h
, i = 0,1, . . . ,n−1. (2.10)

Using continuity condition of the cubic spline, we have
h2

6
(Mi−1 +4Mi +Mi+1)= (yi−1 −2yi + yi+1), i = 1,2, . . . ,n. (2.11)

The relation in eq. (2.11) is called the continuity or consistency relations of the cubic spline.
The cubic spline can be assumed as

S j(x)= M j
i−1

(xi − x)3

6h
+M j

i
(x− xi−1)3

6h
+

(
u j

i−1 −
h2

6
M j

i−1

)( xi − x
h

)
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+
(
u j

i −
h2

6
M j

i

)( x− xi−1

h

)
, i = 1,2, . . . ,n.

Let

L j
i = S′(x+i )=−h

3
M j

i −
h
6

M j
i+1 +

u j
i+1 −u j

i

h
, i = 0,1, . . . ,n−1, (2.12)

L j
i = S′(x−i )= h

3
M j

i +
h
6

M j
i−1 +

u j
i −u j

i−1

h
, i = 0,1, . . . ,n. (2.13)

From (2.12) and (2.13), we have

−L j
i −

h
6

M j
i+1 +

u j
i+1 −u j

i

h
= h

3
M j

i , i = 0,1, . . . ,n−1, (2.14)

L j
i −

h
6

M j
i−1 −

u j
i −u j

i−1

h
= h

3
M j

i , i = 0,1, . . . ,n. (2.15)

Equating (2.15) and (2.14),

−L j
i −

h
6

M j
i+1 +

u j
i+1 −u j

i

h
= L j

i −
h
6

M j
i−1 −

(
u j

i −u j
i−1

h

)
,

−L j
i −

1
2

[
L j

i+1 −
h
6

M j
i −

(
u j

i+1 −u j
i

h

)]
+

(
u j

i+1 −u j
i

h

)

= L j
i +

1
2

[
L j

i−1 +
h
6

M j
i −

(
u j

i −u j
i−1

h

)]
−

(
u j

i −u j
i−1

h

)
,

2L j
i +

1
2

L j
i−1 +

1
2

L j
i+1 −

1
2

(
u j

i −u j
i−1

h

)
− 1

2

(
u j

i+1 −u j
i

h

)
−

(
u j

i −u j
i−1

h

)
−

(
u j

i+1 −u j
i

h

)
= 0,

2L j
i +

1
2

L j
i−1 +

1
2

L j
i+1 −

1
h

(
u j

i

2
− u j

i−1

2
+u j

i −u j
i−1

)
− 1

h2+

(
u j

i+1

2
− u j

i

2
+u j

i+1 −u j
i

)
= 0,

2L j
i +

1
2

L j
i−1 +

1
2

L j
i+1 −

1
h

(
3u j

i

2
− 3u j

i−1

2

)
− 1

h

(
3u j

i+1

2
− 3u j

i

2

)
= 0,

implies

4L j
i +L j

i−1 +L j
i+1 −

1
h

[3u j
i −3u j

i−1 +3u j
i+1 −3u j

i ]= 0,

L j
i−1 +L j

i+1 +4L j
i =

1
h

[3u j
i+1 −3u j

i−1].

Dividing by 6 throughout
1
6

L j
i−1 +

2
3

L j
i +

1
6

L j
i+1 =

1
2h

(u j
i+1 −u j

i−1).

This is called recurrence relation in L j
i .

3. Numerical Results
In this section, we have considered hyperbolic PDEs with both Dirichlet and both Neumann
conditions.
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Example 3.1. Consider the following wave equation:

utt = uxx, 0< x <π, t > 0 (3.1)

subject to: u(x,0)= sin x, ut(x,0)= 0, 0≤ x ≤π and u(0, t)= u(π, t)= 0, t ≥ 0.

Exact solution: u(x, t)= sin xcos t.

Explicit Method
Let x denote the space variable and t denote the time variable. The time and space derivatives
are replaced by central finite difference operator and second derivative of natural cubic spline
in (3.1), we have

u j+1
i −2u j

i +u j−1
i

k2 = M j
i . (3.2)

From (2.11),

1
6

M j
i−1 +

2
3

M j
i +

1
6

M j
i+1 =

(
u j

i−1 −2u j
i +u j

i+1

h2

)
, i = 1,2, . . . ,n−1. (3.3)

Using (2.11), eq. (3.2) becomes

u j+1
i−1 +4u j+1

i +u j+1
i+1 = (2+6r2)u j

i−1 + (8−12r2)u j
i + (2+6r2)u j

i+1 −u j−1
i−1 −4u j−1

i −u j−1
i+1 . (3.4)

Given ut(x,0)= 0

=⇒ u j+1
i −u j−1

i

2k
= 0

=⇒ u j−1
i = u j+1

i , i = 0,1,2, . . . , Nx.

Thus, equation (3.4) becomes

u j+1
i−1 +4u j+1

i +u j+1
i+1 = (1+3r2)u j

i−1 + (4−6r2)u j
i + (1+3r2)u j

i+1, i = 1,2, . . . ,n−1, (3.5)

where r2 = k2

h2 . Matrix form of (3.5) is
1 4 1 0 0 · · · · · · · · · · · · 0 0
0 1 4 1 0 · · · · · · · · · · · · 0 0
0 0 1 4 1 · · · · · · · · · · · · 0 0
...

...
...

...
... . . . ...

...
...

...
...

0 0 · · · · · · · · · · · · 0 0 1 4 1
0 0 · · · · · · · · · · · · · · · · · · 0 1 4





u j+1
0

u j+1
1...

u j+1
Nx−1

u j+1
Nx



=


l m n 0 0 · · · · · · · · · · · · 0 0
0 l m n 0 · · · · · · · · · · · · 0 0
0 0 l m n · · · · · · · · · · · · 0 0
...

...
...

... . . . ...
...

...
...

...
0 0 · · · · · · · · · · · · 0 0 l m n
0 0 · · · · · · · · · · · · · · · · · · 0 l m





u j
0

u j
1...

u j
Nx−1

u j
Nx

 ,

for j = 0,1,2, . . . , Nt, where l = 1+3r2, m = 4−6r2 and n = 1+3r2.
Given u(0, t)= 0 =⇒ u j

0 = 0, j ≥ 0,

u j+1
0 +4u j+1

1 +u j+1
2 = (1+3r)u j

0 + (4−6r2)u j
1 + (1+3r2)u j

2, i = 1

=⇒ 4u j+1
1 +u j+1

2 = (4−6r2)u j
1 + (1+3r2)u j

2
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and u(π, t)= 0 =⇒ u j
Nx

= 0, j ≥ 0,

u j+1
n−2 +4u j+1

n−1 +u j+1
n = (1+3r2)u j

n−2 + (4−6r2)u j
n−1 + (1+3r2)u j

n, i = n−1

=⇒ u j+1
n−2 +4u j+1

n−1 = (4−6r2)u j
n−1 + (1+3r2)u j

n−2 .

Thus, the above matrix representation simplifies to

4 1 0 · · · · · · · · · 0 0 0
1 4 1 0 · · · · · · 0 0 0
0 1 4 1 0 · · · · · · 0 0
...

...
...

... . . . ...
...

...
...

0 0 0 · · · · · · 0 1 4 1
0 0 0 · · · · · · 0 0 1 4





u j+1
1

u j+1
2
...

u j+1
Nx−2

u j+1
Nx−1


=



m n 0 · · · · · · · · · 0 0 0
l m n 0 · · · · · · 0 0 0
0 l m n 0 · · · · · · 0 0
...

...
...

... . . . ...
...

...
...

0 0 0 · · · · · · 0 l m n
0 0 0 · · · · · · 0 0 l m





u j
1

u j
2
...

u j
Nx−2

u j
Nx−1


.

In short form

ML X j+1 = MR X j .

Therefore, the required solution is

X j+1 = (ML)−1[MR X j] . (3.6)

By the inverse operation, solution is obtained and presented in Figure 1. The NCS solution is
comparing with analytical solution. It shows that NCS method results correlate with analytical
solution. To check the accuracy of the NCS method, absolute error at t = 0.5 is calculated and
presented in Figure 1 at different step sizes along space coordinates. It is also observed that at
step size 10−3, accuracy of 10−7 is obtained for NCS method.
The accuracy of the NCS explicit with analytical solution for Example 3.1 is shown in Figure 1.

(a) (b)

Figure 1. Solution of Example 3.1 using (a) NCS explicit method and (b) analytical solution

Natural Cubic Spline Implicit Method
Let x denote the space variable ant t denote the time variable. Replacing time derivative by
central finite difference operator and space derivatives by second derivative of natural cubic
spline in equation (3.1), we have

u j+1
i −2u j

i +u j−1
i

k2 = M j
i .
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Now writing M j
i implicitly as 1

2 (M j−1
i +M j+1

i ), then

u j+1
i −2u j

i +u j−1
i

k2 = 1
2

(M j−1
i +M j+1

i ). (3.7)

From (2.11), eqn. (3.7) becomes

(1−3r2)u j+1
i−1 + (4+6r2)u j+1

i + (1−3r2)u j+1
i+1

= 2(u j
i+1 +4u j

i +u j
i−1)+ (3r2 −1)u j−1

i+1 − (6r2 +4)u j−1
i + (3r2 −1)u j−1

i+1 , r2 = k2

h2 . (3.8)

Given ut(x,0)= 0,

=⇒ u j+1
i −u j−1

i

2k
= 0

=⇒ u j+1
i = u j−1

i .

Eq. (3.8) becomes

(1−3r2)u j+1
i−1 + (4+6r2)u j+1

i + (1−3r2)u j+1
i+1 = u j

i+1 +4u j
i +u j

i−1, r2 = k2

h2 . (3.9)

Matrix form of (3.9) is

a b c 0 0 · · · · · · · · · · · · 0 0

0 a b c 0 · · · · · · · · · · · · 0 0

0 0 a b c · · · · · · · · · · · · 0 0
...

...
...

...
... . . . ...

...
...

...
...

0 0 · · · · · · · · · · · · 0 0 a b c

0 0 · · · · · · · · · · · · · · · · · · 0 a b





u j+1
0

u j+1
1
...

u j+1
Nx−1

u j+1
Nx



=



1 4 1 0 0 · · · · · · · · · · · · 0 0

0 1 4 1 0 · · · · · · · · · · · · 0 0

0 0 1 4 1 · · · · · · · · · · · · 0 0
...

...
...

...
... . . . ...

...
...

...
...

0 0 · · · · · · · · · · · · 0 0 1 4 1

0 0 · · · · · · · · · · · · · · · · · · 0 1 4





u j
0

u j
1
...

u j
Nx−1

u j
Nx


,

for j = 0,1,2, . . . , Nt, where a = 1−3r2, b = 4+6r2 and c = 1−3r2.
Since u(0, t)= 0 =⇒ u j

0 = 0, j ≥ 0,

(1−3r2)u j+1
0 + (4+6r2)u j+1

1 + (1−3r2)u j+1
2 = u j

0 +4u j
1 +u j

2, for i = 1

=⇒ (4+6r2)u j+1
1 + (1−3r2)u j+1

2 = 4u j
1 +u j

2

and u(π, t)= 0 =⇒ u j
Nx

= 0, j ≥ 0,

(1−3r2)u j+1
Nx−2 + (4+6r2)u j+1

Nx−1 + (1−3r2)u j+1
Nx

= u j
Nx−2 +4u j

Nx−1 +u j
Nx

, for i = Nx −1

=⇒ (1−3r2)u j+1
Nx−2 + (4+6r2)u j+1

Nx−1 = u j
Nx−2 +4u j

Nx−1
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Therefore, the above matrix (eq. (3.9)) reduces to

b c 0 · · · · · · · · · 0 0 0

a b c 0 · · · · · · 0 0 0

0 a b c 0 · · · · · · 0 0
...

...
...

... . . . ...
...

...
...

0 0 0 · · · · · · 0 a b c

0 0 0 · · · · · · 0 0 a b





u j+1
1

u j+1
2
...

u j+1
Nx−2

u j+1
Nx−1


=



4 1 0 · · · · · · · · · 0 0 0

1 4 1 0 · · · · · · 0 0 0

0 1 4 1 0 · · · · · · 0 0
...

...
...

... . . . ...
...

...
...

0 0 0 · · · · · · 0 1 4 1

0 0 0 · · · · · · 0 0 1 4





u j
1

u j
2

. . .
u j

Nx−2

u j
Nx−1


.

In short form,

ML X j+1 = MR X j .

Therefore, the required solution is

X j+1 = (ML)−1[MR X j]. (3.10)

The accuracy of the NCS implicit with analytical solution for Example 3.1 is shown in Figure 2.

(a) (b)

Figure 2. Solution of Example 3.1 using (a) NCS implicit method and (b) analytical solution

Example 3.2. Consider the following wave equation

utt = uxx, 0< x < 1, t > 0 (3.11)

subject to: u(x,0)= sin2πx, ut(x,0)= 2πsin2πx, 0≤ x ≤ 1 and u(0, t)= u(1, t)= 0, t ≥ 0

Exact solution: u(x, t)= sin2πx(cos2πt+sin2πt).

Explicit Method
By NCS explicit method, (3.11) becomes

u j+1
i−1 +4u j+1

i +u j+1
i+1 = (2+6r2)u j

i−1 + (8−12r2)u j
i + (2+6r2)u j

i+1 −u j−1
i−1 −4u j−1

i −u j−1
i+1 . (3.12)

Given ut(x,0)= 2πsin2πx

=⇒ u j+1
i −u j−1

i

2k
= 2πsin2πxi

=⇒ u j+1
i = u j−1

i +2k(2πsin2πxi), i = 0,1,2, . . . , Nx
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Therefore, eq. (3.12) becomes

u j+1
i−1 +4u j+1

i +u j+1
i+1 = (1+3r2)u j

i−1 + (4−6r2)u j
i + (1+3r2)u j

i+1 +6kπ(2πsin2πxi), (3.13)

where r2 = k2

h2 . The matrix form of eq. (3.13) is

1 4 1 0 0 · · · · · · · · · · · · 0 0
0 1 4 1 0 · · · · · · · · · · · · 0 0
0 0 1 4 1 · · · · · · · · · · · · 0 0
...

...
...

...
... . . . ...

...
...

...
...

0 0 · · · · · · · · · · · · 0 0 1 4 1
0 0 · · · · · · · · · · · · · · · · · · 0 1 4





u j+1
0

u j+1
1
...

u j+1
Nx−1

u j+1
Nx



=



l m n 0 0 · · · · · · · · · · · · 0 0
0 l m n 0 · · · · · · · · · · · · 0 0
0 0 l m n · · · · · · · · · · · · 0 0
...

...
...

...
... . . . ...

...
...

...
...

0 0 · · · · · · · · · · · · 0 0 l m n
0 0 · · · · · · · · · · · · · · · · · · 0 l m





u j
0

u j
1
...

u j
Nx−1

u j
Nx


+


6kπ(sin2πx)

...
6kπ(sin2πx)

 ,

for j = 0,1,2, . . . , Nt, where l = 1+3r2, m = 4−6r2 and n = 1+3r2.
From the given boundary conditions u(0, t)= 0⇒ u j

0 = 0, and u(1, t)= 0=⇒ u j
Nx

= 0, the above
matrix becomes

4 1 0 · · · · · · · · · 0 0 0

1 4 1 0 · · · · · · 0 0 0

0 1 4 1 0 · · · · · · 0 0
...

...
...

... . . . ...
...

...
...

0 0 0 · · · · · · 0 1 4 1

0 0 0 · · · · · · 0 0 1 4





u j+1
1

u j+1
2
...

u j+1
Nx−2

u j+1
Nx−1



=



m n 0 · · · · · · · · · 0 0 0
l m n 0 · · · · · · 0 0 0
0 l m n 0 · · · · · · 0 0
...

...
...

... . . . ...
...

...
...

0 0 0 · · · · · · 0 l m n
0 0 0 · · · · · · 0 0 l m





u j
1

u j
2
...

u j
Nx−2

u j
Nx−1


+CR

where CR =

6kπ(sin2πx)
...

6kπ(sin2πx)

.

In short form,

ML X j+1 = MR X j +CR .

Thus, the required solution is

X j+1 = (ML)−1[MR X j +CR] . (3.14)
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The accuracy of the NCS explicit with analytical solution for Example 3.2 is shown in Figure 3.

(a) (b)

Figure 3. Solution of Example 3.2 using (a) NCS explicit method and (b) analytical solution

Implicit Method
By NCS implicit method, (3.11) becomes

(1−3r2)u j+1
i−1 + (4+6r2)u j+1

i + (1−3r2)u j+1
i+1

= (3r2 +1)u j−1
i+1 + (6r2 +4)u j−1

i + (3r2 −1)u j−1
i+1 +2(u j

i+1 +4u j
i +u j

i−1), (3.15)

where r2 = k2

h2 , given that

ut(x,0)= 2πsin2πx

=⇒ u j+1
i −u j−1

i

2k
= 2πsin2πxi

=⇒ u j+1
i = u j−1

i +2k(2πsin2πxi), i = 0,1,2, . . . , Nx.

Therefore, (3.15) becomes,

(1−3r2)u j+1
i−1 + (4+6r2)u j+1

i + (1−3r2)u j+1
i+1 = u j

i+1 +4u j
i +u j

i−1 +6kπsin2πxi . (3.16)

Incorporating given conditions in eq. (3.16) and represents in matrix form as

b c 0 · · · · · · · · · 0 0 0
a b c 0 · · · · · · 0 0 0
0 a b c 0 · · · · · · 0 0
...

...
...

... . . . ...
...

...
...

0 0 0 · · · · · · 0 a b c
0 0 0 · · · · · · 0 0 a b





u j+1
1

u j+1
2
...

u j+1
Nx−2

u j+1
Nx−1



=



4 1 0 · · · · · · · · · 0 0 0
1 4 1 0 · · · · · · 0 0 0
0 1 4 1 0 · · · · · · 0 0
...

...
...

... . . . ...
...

...
...

0 0 0 · · · · · · 0 1 4 1
0 0 0 · · · · · · 0 0 1 4





u j
1

u j
2
...

u j
Nx−2

u j
Nx−1

+

c6kπsin2πx
...

6kπsin2πx

 .
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In short form

ML X j+1 = MR X j +CR .

Thus, the solution is

X j+1 = (ML)−1[MR X j +CR].

The accuracy of the NCS implicit with analytical solution for Example 3.2 is shown in Figure 4.

(a) (b)

Figure 4. Solution of Example 3.2 using (a) NCS implicit method and (b) analytical solution

Example 3.3. Consider the following wave equation of the form:

utt = 1
4

uxx, 0< x < 1, t > 0 (3.17)

subject to: u(x,0)= x, ut(x,0)= ex, 0< x < 1

and ux(0, t)= 2sinh(t/2)+1, and ux(1, t)= 2esinh(t/2)+1, t > 0

Exact solution: u(x, t)= 2ex sinh(t/2)+ x

Explicit Method
By NCS explicit procedure, eq. (3.17) becomes

u j+1
i−1 +4u j+1

i +u j+1
i+1

=
(
2+ 3

2
r2

)
u j

i−1 + (8−3r2)u j
i +

(
2+ 3

2
r2

)
u j

i+1 −u j−1
i−1 −4u j−1

i −u j−1
i+1 . (3.18)

Given ut(x,0)= ex

=⇒ u j+1
i −u j−1

i

2k
= exi

=⇒ u j+1
i = u j−1

i +2k(exi ), i = 0,1,2, . . . , Nx.

Equation (3.18) becomes

u j+1
i−1 +4u j+1

i +u j+1
i+1 =

(
1+ 3

4
r2

)
u j

i−1 +
(
4− 3

2
r2

)
u j

i +
(
1+ 3

4
r2

)
u j

i+1 +3k(exi ), (3.19)
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where r2 = k2

h2 . The matrix form of (3.19) is

1 4 1 0 0 · · · · · · · · · · · · 0 0
0 1 4 1 0 · · · · · · · · · · · · 0 0
0 0 1 4 1 · · · · · · · · · · · · 0 0
...

...
...

...
... . . . ...

...
...

...
...

0 0 · · · · · · · · · · · · 0 0 1 4 1
0 0 · · · · · · · · · · · · · · · · · · 0 1 4





u j+1
0

u j+1
1
...

u j+1
Nx−1

u j+1
Nx



=



l m n 0 0 · · · · · · · · · · · · 0 0
0 l m n 0 · · · · · · · · · · · · 0 0
0 0 l m n · · · · · · · · · · · · 0 0
...

...
...

...
... . . . ...

...
...

...
...

0 0 · · · · · · · · · · · · 0 0 l m n
0 0 · · · · · · · · · · · · · · · · · · 0 l m





u j
0

u j
1
...

u j
Nx−1

u j
Nx


+

3kex

...
3kex



for j = 0,1,2, . . . , Nt, where l = 1+ 3
4 r2, m = 4− 3

2 r2 and n = 1+ 3
4 r2.

From boundary conditions

ux(0, t)= 2sinh(t/2)+1=⇒ u j
i+1 −u j

i−1

2h
= 2sinh(t j/2)+1, j ≥ 0

=⇒ u j
1 = u j

−1 +2h(2sinh(t j/2)+1), j ≥ 0

and

ux(1, t)= 2esinh(t/2)+1=⇒ u j
i+1 −u j

i−1

2h
= 2esinh(t j/2)+1, j ≥ 0

=⇒ u j
Nx+1 = u j

Nx−1 +2h(2esinh(t j/2)+1), j ≥ 0

The above matrix reduces to

4 2(1) 0 0 0 · · · · · · · · · · · · 0 0
0 1 4 1 0 · · · · · · · · · · · · 0 0
0 0 1 4 1 · · · · · · · · · · · · 0 0
...

...
...

...
... . . . ...

...
...

...
...

0 0 · · · · · · · · · · · · 0 0 1 4 1
0 0 · · · · · · · · · · · · · · · · · · 0 2(1) 4





u j+1
0

u j+1
1
...

u j+1
Nx−1

u j+1
Nx


+


2h(2hsinh(t/2)+1)

0
...
0

2h(2hsinh(t/2)+1)



=



m 2n 0 0 0 · · · · · · · · · · · · 0 0
0 l m n 0 · · · · · · · · · · · · 0 0
0 0 l m n · · · · · · · · · · · · 0 0
...

...
...

...
... . . . ...

...
...

...
...

0 0 · · · · · · · · · · · · 0 0 l m n
0 0 · · · · · · · · · · · · · · · · · · 0 2l m





u j
0

u j
1
...

u j
Nx−1

u j
Nx


+


2h(2hsinh(t/2)+1)+3kex

3kex

...
3kex

2h(2hsinh(t/2)+1)+3kex

 .

In short form

ML X j+1 +CL = MR X j +CR .

Thus, the solution can be obtained from

X j+1 = (ML)−1[MR X j +CR −CL].
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The accuracy of the NCS explicit with analytical solution for Example 3.3 is shown in Figure 5.

(a) (b)

Figure 5. Solution of Example 3.3 using (a) NCS explicit method and (b) analytical solution

Implicit Method
By NCS implicit method, eq. (3.17) becomes

(4−3r2)u j+1
i−1 + (16+6r2)u j+1

i + (4−3r2)u j+1
i+1 (3.20)

= (3r2 −4)u j−1
i+1 − (6r2 +4)u j−1

i + (3r2 −4)u j−1
i+1 +8(u j

i+1 +4u j
i +u j

i−1), (3.21)

where r2 = k2

h2 . From the given initial condition,

ut(x,0)= ex ⇒ u j+1
i −u j−1

i

2k
= ex

Eq. (3.20) reduces to(
1− 3

4
r2

)
u j+1

i−1 +
(
4+ 3

2
r2

)
u j+1

i +
(
1− 3

4
r2

)
u j+1

i+1 = u j
i+1 +4u j

i +u j
i−1 +3kex j

i . (3.22)

Matrix form of (3.22) becomes

a b c 0 0 · · · · · · · · · · · · 0 0
0 a b c 0 · · · · · · · · · · · · 0 0
0 0 a b c · · · · · · · · · · · · 0 0
...

...
...

...
... . . . ...

...
...

...
...

0 0 · · · · · · · · · · · · 0 0 a b c
0 0 · · · · · · · · · · · · · · · · · · 0 a b





u j+1
0

u j+1
1
...

u j+1
Nx−1

u j+1
Nx



=



1 4 1 0 0 · · · · · · · · · · · · 0 0
0 1 4 1 0 · · · · · · · · · · · · 0 0
0 0 1 4 1 · · · · · · · · · · · · 0 0
...

...
...

...
... . . . ...

...
...

...
...

0 0 · · · · · · · · · · · · 0 0 1 4 1
0 0 · · · · · · · · · · · · · · · · · · 0 1 4





u j
0

u j
1
...

u j
Nx−1

u j
Nx


+

3kex

...
3kex

 ,

where a = 1− 3
4 r2, b = 4+ 3

2 r2 and c = 1− 3
4 r2.

From boundary conditions,

u(0, t)= 2sinh(t/2)+1=⇒ u j
i+1 −u j

i−1

2h
= 2sinh(t j/2)+1, j ≥ 0
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=⇒ u j
1 = u j

−1 +2h(2sinh(t j/2)+1), j ≥ 0

another condition:

ux(1, t)= 2esinh(t/2)+1=⇒ u j
i+1 −u j

i−1

2h
= 2esinh(t j/2)+1, j ≥ 0

=⇒ u j
Nx+1 = u j

Nx−1 +2h(2esinh(t j/2)+1), j ≥ 0

Therefore, matrix form reduces to

m 2n 0 0 0 · · · · · · · · · · · · 0 0
0 l m n 0 · · · · · · · · · · · · 0 0
0 0 l m n · · · · · · · · · · · · 0 0
...

...
...

...
... . . . ...

...
...

...
...

0 0 · · · · · · · · · · · · 0 0 l m n
0 0 · · · · · · · · · · · · · · · · · · 0 2l m





u j+1
0

u j+1
1
...

u j+1
Nx−1

u j+1
Nx


+



2h(2hsinh(t/2)+1)
0
...
0

2h(2hsinh(t/2)+1)



=



4 2(1) 0 0 0 · · · · · · · · · · · · 0 0
0 1 4 1 0 · · · · · · · · · · · · 0 0
0 0 1 4 1 · · · · · · · · · · · · 0 0
...

...
...

...
... . . . ...

...
...

...
...

0 0 · · · · · · · · · · · · 0 0 1 4 1
0 0 · · · · · · · · · · · · · · · · · · 0 2(1) 4





u j
0

u j
1
...

u j
Nx−1

u j
Nx


+



2h(2hsinh(t/2)+1)+3kex

3kex

...
3kex

2h(2hsinh(t/2)+1)+3kex


=⇒ ML X j+1 +CL = MR X j +CR

=⇒ X j+1 = (ML)−1[MR X j +CR −CL]

The accuracy of the NCS explicit with analytical solution for Example 3.3 is shown in Figure 6.

(a) (b)

Figure 6. Solution of Example 3.3 using (a) NCS implicit method and (b) analytical solution

4. Conclusion
NCS method is employed to solve hyperbolic PDE in this paper. The detailed procedure is
explained for NCS method for two different types such as explicit and implicit. The time and
space derivatives are replaced by forward finite difference operator and NCS derivatives.
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A tri-diagonal system of equations is obtained for different index values and converted
into matrix form. With the given initial condition, matrix form is revised and incorporated
the boundary conditions. The resultant matrix is solved using inverse method. We took different
examples to check the developed NCS method. We demonstrated the NCS method for different
PDEs with different examples and presented their results graphically.
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