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were done so that the authenticity of the author’s numerical analytical approach using parameter
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1. Introduction
Ecology and epidemiology, as separate fields of study, have gained considerable prominence.
In contemporary research, there is a growing focus on the interdisciplinary domain known
as eco-epidemiology. This discipline delves into the study of how hosts interact with a range
of pathogens, viruses, and illnesses, impacting both human and wildlife communities on a
population and ecosystem scale. A practical application of this research lies in enhancing
our comprehension of dynamic systems through the utilization of mathematical models.
In the existing literature, two distinct areas stand out: theoretical ecology and epidemiology, as
highlighted by Arino et al. [2] in their work on infection dynamics (also see, Sarangi and Raw
[15]). In many instances, ecological systems are intricately linked to their historical context,
and models can be tailored to reflect real-world scenarios by incorporating a time lag or delay.
The introduction of a time-delay parameter in a mathematical model can have a profound
impact on stability, often introducing increased complexity to the system. A substantial body of
literature explores ecological models that incorporate time delays in their governing equations.
Researchers have extensively examined time-delayed eco-epidemiological models, as evidenced
by studies such as those conducted by Qi and Zhao [13] and Ruan [14] on system dynamics on
stability considerations. Their researches focused on modeling and analyzing an eco-epidemic
system of the predator-prey type, incorporating time delays. While numerous models developed
by Qi and Zhao [13] and Tripathi and Singh [17] have explored diseases in prey populations,
there is a noticeable gap in understanding models involving diseases in predator populations.
To address this gap, the researchers constructed a delayed eco-epidemiological model wherein
the predator population is influenced by an infectious disease. Infected predators are assumed
to be weakened, rendering them unable to capture prey, and only susceptible predators partake
in hunting using the functional response of Holling type-I. Hethcote et al. [9], Kumar and Sinha
[10], Sharma and Samanta [16], and Venturino [19] have dedicated their consideration towards
the diseases spread studies within prey-predator populations. The potency of the Allee effect
is inversely related to the level of chaotic behavior observed in ecological models (Sarangi and
Raw [15]). Functional response describes how predators consume prey over time. Different
functional responses, such as the Holling type-I, Holling type-II, and ratio-dependent functional
responses, are utilized in mathematical analyses of eco-epidemiological systems. Among
the ratio-dependent functional response is oft regarded as very emphatic in modeling prey-
predator interactions (Arditi and Ginzburg [1]). Other studies have considered scenarios in
which healthy prey exhibit greater activity than infected ones, making them less susceptible to
predation by predators. Certain mathematicians like Belvisi and Venturino [3], and Haque and
Venturino [7] have developed models incorporating diseases in predator populations, positing
that infected predators are unable to effectively hunt healthy prey. These investigations seek to
elucidate the efficacy of infection delay at the dynamics of prey-predator interactions within
populations. In the realm of predator-prey interactions, diseases can manifest by spreading
solely within the prey or predator population or by affecting both simultaneously. This scenario
exemplifies disease spreading among prey populations. Conversely, diseases in predators, such
as fox rabies, can be transmitted among foxes (Vulpis) and to their prey, rabbits, through
biting in regions like Europe and North America. Further instances of such dynamics are
documented by Tripathi et al. [18]. From a mathematical epidemiology standpoint, particular
attention is warranted in understanding the dynamics of infected predators to discern whether
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the presence of prey enables the survival of a portion of the predator population. On the contrary,
in the natural world, species coexist within ecosystems, and an increasing body of research
indicates that population growth is significantly influenced by the competition for resources and
space, along with the impact of infectious diseases. Therefore, the integration of these factors
is crucial for a comprehensive understanding of population dynamics. To provide a clearer
overview, here is a revised version of the structure: Section 2: Model formulation of the eco-
epidemiological model with detailed explanations. Section 3: Positivity and boundedness analysis
of the model’s solution. Section 4: Exploration of eventual equilibria for the deterministic system.
Section 5: Investigation of stability behavior, incorporating the fundamental reproduction
number and various bifurcations. Section 6: Formulation of the model and studies on the
existence and uniqueness of global positive solutions, along with conditions for species
extinction. Section 7: Formulation for the delay model studies. Section 8: Sensitivity analysis to
determine the impact of system parameters on the reproduction number. Section 9: Numerical
simulations supporting analytical findings and including biological interpretation results from
both deterministic systems. Section 10: Discussion and summary of research outcomes.

2. Model Formulation
This section suggests a non-linear four-dimensional eco-epidemic model, we consider a prey-
predator model which is:

(i) There are four types of population, namely, the susceptible prey (S(t)), infected prey (I(t)),
the susceptible predator (X (t)), and the infected predator (Y (t)).

(ii) N(t)= I(t)+S(t) denoted the number of prey at time t. The prey population experiences
logistic growth, influenced by the intrinsic growth rate denoted as r. Consequently,
the differential equation with logistic growth dN

dt = rN
(
1− N

K
) = rS

(
1− S

K
)

accurately
models the dynamics of the total prey population (where K = the carrying capacity).

(iii) The disease system does not immediately manifest the population of infected predators.
Instead, there exists a time delay, referred to as the incubation period (τ), between
the occurrence of events within the system and the onset of infection. This delay is
recognized as an integral component of the dynamics.

(iv) Predators afflicted with the disease do not undergo recovery; instead, they succumb to
the infection at a rate denoted as d1.

We employ the Holling type-II functional response to describe both predation and
disease transmission dynamics. The model, incorporating the assumptions outlined above,
is represented in the following manner:

dS
dt

= rS
(
1− S

k

)
− βIS

1+bS
− αSX

1+b1S
,

dI
dt

= βIS
1+bS

−γX I −dI,

dX
dt

= α1SX
1+b1S

−d1X +γ2Y (t−τ),

dY
dt

= γ1IX −γ2Y (t−τ)−d2Y


(2.1)
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with initial condition S(0) > 0, I(0) > 0, X (0) > 0, Y (0) > 0. To know the expression of
the suggested model (2.1). The biological importance of each parameter and its values are
distributed in Table 1. Here, it may be applicable that the parameters used in Table 1 are for
the infectious diseases that are spread as a result of natural disasters. The interpretation of
the four key players of the model is given like this.

Table 1. Model parameter values, biological interpretation

Parameter Description

K Carrying capacity

r Per capita intrinsic growth rate per day

β Transmission rate between susceptible and infected individuals per day

γ,γ1 Daily predation rates on infected prey by susceptible and infected predators

d1,d2 Total mortality rate of both susceptible and infected individual

α,α1 Conversion rate

d Infected mortality rate per day

b,b1 Constant half-saturation per unit of area

τ Incubation period

γ2 Overall mortality rate of susceptible and infected individuals

3. Theoretical Studies of Model
In this section, we discussed the positivity and bounded analysis of the proposed model,
discussed in Subsection 3.1, and 3.2:

3.1 Positive Invariance
Theorem 3.1. For all t ≥ 0, the solutions of the considered system (2.1) with the initial condition
are positive.

Proof. Assume that the solutions of the suggested model (i)-(iv) with non-negative initial
populations are (S(t), I(t), X (t),Y (t)).

Using properties (i) and (ii), prey population is non-negative,
dS
dt

= rS
(
1− S

K
− βIS

1+bS
− αSX

1+b1S

)
,

S(t)≥ S(0)exp
∫ t

0

(
r
(
1− S

K

)
− βI

1+bS
− αX

1+b1S

)
dt.

 (3.1)

Using property (ii),
dI
dt

= βSI
1+bS

−γX I −dI,

I(t)≥ I(0)exp
∫ t

0

(
βS

1+bS
−γX −d

)
dt.

 (3.2)
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Using property (iii), can be written as
dX
dt

= α1SX
1+b1S

−d1X +γ2Y (t−τ),

X (t)≥ X (0)exp{−d1t}.

 (3.3)

Using property (iv), can be written as
dY
dt

= γ1IX −γ2Y (t−τ)−d2Y ,

Y (t)≥Y (0){e−(γ2+d2)t}.

 (3.4)

3.2 Boundedness of the System
Theorem 3.2. All solutions of system (2.1) starting in R4+ confined to the region

R4
+ =

{
(S, I, X ,Y ) | 0≤ S(t)+ I(t)+ X (t)+Y (t)≤ rk

δ

}
.

Remain bounded regardless of the initial conditions, where δ=min{r,d,d1,d2}.

Proof. Let’s define N(t) = S(t)+ I(t)+ X (t)+Y (t). Now, if we N(t) for t, we obtain the rate of
change of the total population over time,

dN(t)
dt

≤ rS
(
1− S

K

)
−δ(S+ I + X +Y ). (3.5)

For δ=min{r,d,d1,d2}, we obtained that
dN
dt

+δN ≤ rK ,

as t →∞, we have

0≤ N(t)≤ N(0)e−δt + rK
δ

. (3.6)

After solving the aforementioned expression we observe that, 0< N(t)< N(0)e−δt + rK
δ

. If we let
t →∞, then we obtain, 0< N(t)< rK

δ
. Consequently, N(t) remains bounded. Thus, the solution

of the system with the initial condition is uniformly bounded in R4+.

Section 4 provides a discussion on the classification and circumstances for the possibility of
steady states for the system represented by equation (2.1).

4. Equilibrium Analysis
The system (2.1) has a trivial equilibrium point equilibrium point E0(0,0,0,0) and equilibrium
point E1(k,0,0,0) always exist. The predator-free equilibrium point E2(Ŝ, Î,0,0) exists.

• The predator-free equilibrium point E2(Ŝ, Î,0,0) exists,

where Ŝ = d
β−db , Î = r(βK−bdK−d)

(β−bd)2 K , only when

β>
{

db+ d
K

}
. (4.1)
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• The equilibrium without any disease E3(S0,0, X0,0) exists,

where S0 = d1
α1−d1b1

, X0 = α1r(Kα1−Kb1d1−d1)
αK(α1−b1d1)2 , only when

α1 >
{

d1b1 + b1

K

}
. (4.2)

• The interior equilibrium point E4(S⋆, I⋆, X⋆,Y⋆),

where Y⋆ =
(
γ1I⋆X⋆

γ2+d2

)
, X⋆ =

(
βS⋆−d−dbS⋆
γ(1+bS⋆)

)
and I⋆ = (γ2+d2)(d1+d1b1S⋆−α1S⋆)

γ1γ2(1+b1S⋆) ,

−AS⋆3 +BS⋆2 +CS⋆+D = 0,

where A =−bb1γγ1γ2r,
B = γγ1γ2(bb1Kr−br−b1r),
C = Kβγ(d2α1 −b1d1d2 −b1d1γ2 +α1γ2)+Kγ1γ2(bdα−βα+brγ+b1rγ)− rγγ1γ2,
D = Kγ2γ1(rγ+α1d)−d1Kγ(γ2 −d2).

Using Descartes’s rule of signs one positive root and two negative roots.

We will calculate the fundamental reproduction number in Section 5.

5. Fundamental Reproduction Number
The fundamental reproduction number R0, alternatively known as the basic reproduction ratio
or rate, serves as an epidemiological measure employed to characterize the degree of contagion
or transmissibility exhibited by infectious agents. R0 - The fundamental reproduction number
can be calculated using the upcoming generation matrix formula. Regarding this, the following
theorem (2.1),

R0 = βd1αK(α1 −b1d1)2

(α1 +bd1 −b1d1)[(α1 −b1d1)2αKd+Kα1r(Kα1 −Kb1d−d1)]
.

In Section 6, the discussion primarily revolves around analyzing the stability and bifurcation
patterns of the equilibria in the system described by eq. (2.1). This investigation particularly
emphasizes situations where there is no time delay involved.

6. Examination of the Investigated Model Without the Time Delay
Reveals

If there is no delay, the system described by eq. (2.1) transforms to:
dI
dt

= βIS
1+bS

−γX I −dI,

dS
dt

= rS
(
1− S

k

)
− βIS

1+bS
− αSX

1+b1S
,

dX
dt

= α1SX
1+b1S

−d1X +γ2Y ,

dY
dt

= γ1IX −γ2Y −d2Y .


(6.1)

The system is considered under the initial conditions: S(0)≥ 0, I(0)≥ 0, X (0)≥ 0, Y (0)≥ 0.
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6.1 Examining Local Stability
The local stability of the proposed model has been estimated under Theorems 6.1–6.4 as follows:

Theorem 6.1. The system (2.1) is trivial equilibrium E0(0,0,0) is inherently unstable.

Proof. At E0, the Jacobian matrix of system (2.1). The eigenvalues of the variational matrix
are λ1 =−d, λ2 =−d1, λ3 =−(γ2+d2), λ4 = r. As there is a minimum of one positive eigenvalue,
that E0(0,0,0,0) is an unstable trivial equilibrium.

Theorem 6.2. If K <min
{ d
β−d , d1

α−d1b1

}
, then the axial equilibrium E1(K ,0,0,0) of system (2.1)

is locally asymptotically stable; otherwise, it is unstable.

Proof. The Jacobian matrix corresponding to the axial equilibrium E1(K ,0,0,0) is as follows:
The eigenvalue are λ1 =−r, λ2 = βK

1+bK −d, λ3 = αK
1+b1K −d1, λ4 =−(γ2 +d2). The eigenvalue λ2

and λ3 are negative if K(β−b)< d and αK < d1(1+b1K) holds. Hence, axial equilibrium E1 is
locally asymptotically stable if K <min

{ d
β−d , d1

α−d1b1

}
, else unstable.

Theorem 6.3. For system (6.1), it is found that, given certain assumptions, the free for-disease
equilibrium E3(S0,0, X0,0) is locally asymptotically stable if:

(α1 −b1d1)2(βd1αK −αKd(α1 −d1b1 +bd1)−Kαr(Kα1 −Kb1d1 +bd1)(α1 −d1b1 +bd1)< 0,
(6.2)

else, it becomes unstable.

Proof. The V (E3) of model (2.1) at E3(S0,0, X0,0), the Jacobian matrix is as follows:

V (E3)=


b11 b12 b13 0
0 0 0 0

b31 0 0 b34
0 b42 0 b44

 ,

where b11 = r(1− 2S0
K )− αX0

(1+b1S0)2 , b12 = −βS0
(1+bS0) , b13 = −αS0

1+b1S0
, b31 = αX0

(1+b1S0)2 , b34 = γ2, b42 = γ1X0,
b44 =−(γ2 +d2).

The population is free of the disease if the fundamental reproduction number R0 =
βd1

d(α+bd1−b1d1) < 1, which is feasible when, in addition to conditions (4.1) and (4.2) is satisfied
as well. Thus, the free of disease equilibrium E4(S0,0, X0,0), if, (4.1) and (6.2) holds then, it is
locally asymptotically stable.

Theorem 6.4. The coexistence equilibrium E0(S∗, I∗, X∗,Y ∗) of system (6.1) obtains locally
asymptotically stability.

Proof. The coexistence equilibrium E4(S⋆, I⋆, X⋆,Y⋆), the jacobian matrix of (6.1):

V (E4)=


c11 c12 c13 0
c21 0 c23 0
c31 0 c33 c34
0 c42 c43 c44

 ,

where c11 =− r
K + βId

(1+bS⋆)2 +
αb1 X⋆

(1+b1S⋆)2 , c12 = −β
(1+bS⋆) , c13 = −α

1+bS⋆ , c21 = β

(1+bS⋆)2 , c23 =−γ,
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c31 = α1
(1+b1S⋆)2 , c33 = γ2Y

(X⋆)2 , c34 = −γ
X⋆ , c42 = α1

(1+b1S⋆)2 , c43 = γ1I⋆, c44 =−(γ2 +d2).

The characteristic equation of the Jacobian matrix J(E4) is as follows,

λ4 +C1λ
3 +C2λ

2 +C3λ+C4 = 0, (6.3)

where C1 =−(c11 + c33 + c44), C2 = c11(c33 + c44)+ c33c44 + c13c31 − c12c21 − c34c43,
C3 = c11(c33c44 − c34c43)+ c12c21(c33 + c44)+ c23c34c42 + c31(c13c44 + c12c23),
C4 = c23(c11c34c42 −C12c31c44)+ c12c21(c34c43 −C33c44).

Then evaluation of the determinant of the characteristic equation |A−λI| = 0 gives a fourth-
order algebraic equation of the form λ4+C1λ

3+C2λ
2+C3λ+C4 = 0. Using the Hurwitz criterion

the coexistence will be stable if the following conditions are satisfied. According to the Routh-
Hurwitz criterion, the characteristic equation (6.3) will possess eigenvalues with negative real
parts under the conditions: C1 > 0, C3 > 0, C4 > 0, C1C2 −C3 > 0, and C1C2C3 > C2

3 +C2
1C4. If

these conditions are not met, the system is considered unstable.

Section 7 delves into the examination of local stability and Transcritical bifurcation
phenomena within the context of delay model (2.1), focusing particularly on the coexistence
state. Furthermore, the discourse will encompass discussions regarding the disease-free state.

7. Investigation of the Delay Model
The model (2.1) now includes a non-linear incidence rate, governing how susceptible prey
transform into infected individuals. In this context, the predator exclusively consumes
the infected prey-predator based on the population’s functional response. Introducing a time lag
is pivotal for the conversion of susceptible predators into infected ones, thereby transforming
the present model into a delayed eco-epidemic model. The local stability and the occurrence of
bifurcation phenomena have been discussed in Section 7.1.

7.1 Analyzing the Coexistence Equilibrium’s Local Stability and Bifurcation
Phenomena

At the coexistence equilibrium E4(S∗, I∗, X∗,Y ∗), for system (6.1), the Jacobian matrix is:

V (E4)=


c11 c12 c13 0
c21 0 c23 0
c31 0 c33 c34 +γe−λτ

0 c42 c43 c44 −γe−λτ

 ,

where c11, c12, c13, c21, c23, c31, c33, c34c42, c43, c44 are provided in Theorem 6.4. Utilizing matrix
row operations, specifically, R3− > R3 + R4, R1− > c23R2 − c13R2 and R4− > c21R4 − R3,
R3−> c31R2 − c21R3 we modify the final matrix into the following form,

V (E4)=


d11 d12 0 0
d21 0 d23 0
0 d32 d33 d34
0 0 d43 d44

 ,

where d11 = c23(c11 − c23), d12 = c12c23, d21 = c21, d23 = c23, d32 = c42c21, d33 = c21(c33 + c42)−
c23c31, d34 = c21(c34 + c44), d43 = c21(c43 − c42 − c33)+ c23c31, d44 =−c21(c34 +γe−δτ).
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We express characteristic equation of model (2.1) at E4 as following transcendental equation,

λ4 +F1λ
3 +F2λ

2 +F3λ+F4 + (F5λ
3 +F6λ

2 +F7λ+F8)= 0, (7.1)

where F1 = −(d11 +d33), F2 = d11d33 −d23d32 −d12d21 −d34d43, F3 = d11d23d32 +d11c34d43 +
d12d21d33, F4 =−d12d21d34d43, F5 =−d44, F6 = d11d44−d33d44, F7 = d12d21d44+d23d32d44−
d11d33d44, F8 =−d11d23d32d44 −d12d21d33d44.

The local stability of the equilibrium E4 has also been studied, utilizing lemmas of Kumar
et al. [11], and Ruan [14] for the transcendental polynomial equation. The transcendental
polynomial equation of the first degree is as follows:

F(λ)= (v+λ+ qe−λτ)= 0 . (7.2)

According to [11,14], if:

(A1) q+v > 0,
(A2) v2 − q2 < 0,
(A3) v2 − q2 > 0.

Consider the lemma that follows [11,14].

Lemma 7.1. Concerning eq. (7.2) states the following:

(1) Assuming that (A1)-(A3) are met, every root of (7.2) will have negative real portions for
any τ≥ 0.

(2) Here, eq. (7.2) has two totally imaginary roots, ±ω, if conditions (A1)-(A3) are satisfied
and τ= τ+j . Every root of (7.2), with the exception of ±ω, exhibits negative real portions at
τ= τ+j .

Proof. Case I: Let τ= 0, we have

λ4 +λ3(F1 +F5)+λ2(F2 +F6)+λ(F3 +F7)+F4 +F8)= 0 (7.3)

if F1 +F5 > 0, F2 +F6 > 0, F3 +F4 > 0,

(F1 +F5)(F2 +F6)− (F3 +F7)> 0.

All values are negative real roots the steady state is asymptotically locally stable.

Case II: Let τ> 0, so the value is negative or real root hence, it becomes locally asymptotically
stable.

Equilibrium E5 become unstable, put λ= iω (eq. (7.3)). Comparing real and imaginary parts
of

ω4 −F1ω
3i−F2ω

2 +F3iω+F4 + (−F5iω3 −F6ω
2 +F7iω+F8)eiωτ = 0,

(−F6ω
2 +F8)cosωτ+ (−F5ω

3 −F7ω)sinωτ=−(ω4 +F2ω
2 −F4),

(−F5ω
3 +F7ω)cosωτ+ (F6ω

2 −F8)sinωτ=−(F1ω
3 −F2ω),

(−F6ω
2 +F8)cosωτ+ (−F5ω

3 −F7ω)sinωτ=−(ω4 +F2ω
2 −F4),

(−F5ω
3 +F7ω)cosωτ+ (F6ω

2 −F8)sinωτ=−(F1ω
3 −F2ω) .

}
(7.4)

Upon solving the system of eq. (7.4), we obtain the following results,

cos[τω]= −(ω4 +F2ω
2 −F4)(−F6ω

2 +F8)+ (F1ω
3 −F2ω)(−F5ω

3 +F7ω)
(F6ω2 −F8)(−F6ω2 +F8)− (−F5ω3 +F7ω)(F7ω−F5ω3)

.
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The above implies that,

τk
+ = 1

ω
arccos

[
V1ω

6 +V2ω
4 +V3ω

2 −V4

−(F6ω2 −F8)2 + (F5ω3 −F7ω)2

]
+ 2πK

ω
,

where V1 =−(F6 +F1F5), V2 = (F1F7 +F3F5 +F8), V3 = (F2F6 −F2F8 −F6F4 −F3F7), V4 = F4F8.
It is evident that τ∗ is a function of ω. By squaring and adding the two equations, we obtain

the algebraic eq. (7.4), in ω,

ω8 + (F2
1 −2F2 −F2

5 )ω6 + (F2
2 −2F4 −2F5F7 −2F1F3 −F2

6 )ω4

+ (F2
3 −F2

7 −2F2F4 +2F5F8)ω2 −F2
8 +F2

4 = 0 .
(7.5)

Now, (7.5) possesses at least one positive root if F2
4 −F2

8 < 0. Suppose ω is a root of equation
(7.5); thus, −+iω is a root of the characteristic (7.2). Upon differentiating (7.2), we obtain(

dλ
dτ

)−1
= (4λ3 +3F1λ

2 +2F2λ+F3)eλτ+ (3F5λ
2 +2F6λ+F7)

λ(F5λ3 +F6λ2 +F7λ+F8)
− τ

λ
. (7.6)

Substitute λ= iω in (7.6), we have(
dλ
dτ

)−1
= LU −V M

(L2 +M2)
,

where L = F5ω
2 −F5ω, M = (F8 −F6ω

2), U = (F4ω
3 −2F2ω)sin[ωτ]+ (−3F1ω

2 +F3)cos[ωτ]+
(−3F5ω

2 +F7), V =−(4ω3 −2F2ω)cos[ωτ]+ (−3F1ω
2 +F3)sin[ωτ]+2F6ω.

Moreover, the critical requirement for the occurrence of bifurcation at τ=τ+, is Re
(dλ

dτ
)−1
τ=τ+ ̸=0.

This condition is met only if LU ̸= V M. Thus, bifurcation transpires at τ= τ+, if L(ω)U(ω)−
M(ω)V (ω) ̸= 0. This concludes the proof.

8. Analysis of Sensitivity
Considering the parameter values specified in [4,5], we set the following parameters value are:
α= 2.5, β= 0.5, r = 4, d1 = 0.07, d = 0.02, K = 100, α1 = 0.6, b = 50, b1 = 20. These values fall
within the observed range, except where model solutions were not obtained. Sensitivity analysis
reveals that parameters α, β, b1, d, and d1 positively influence R0, while r, b, and α1 have a
negative impact on R0. Additionally, the remaining parameters do not significantly affect R0.

Table 2. Sensitivity analysis

Parameters RV

α 1.00017

α1 −1.97317

β 1

b −1.2963

b1 2.270347

d 0.000166549

d1 1.97317

r −1.00017

K 0
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9. Numerical Experimentation
In this section, we present numerical examples to illustrate our analytical results. Due to
the challenges associated with obtaining precise parameter values from real-world observations,
we employ biologically plausible data for numerical computations. It is important to note that
our focus is on qualitative rather than quantitative results. For numerical simulations, we
primarily utilize MATLAB and MATHEMATICA software. The parameter values used in our
simulations are as follows:
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Figure 1. When τ= 0 for set of value of parameters: (a) is a interior equilibrium for behaviour is stable,
and (b) is a disease-free population α= 0.1, d1= 0.05, γ2 = 0.1, b = 0.02, d = 0.03, b1 = 0.03,
α1 = 0.02, d2 = 0.05
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Figure 2. When τ= 0, i.e., without delay: (a) predator-free equilibrium, and (b) is a time series. For set
of value of parameters α= 0.2, d1 = 0.05, γ2 = 0.05, b = 0.02, d = 0.05, b1 = 0.05, α1 = 0.01,
d2 = 0.02, β= 0.4, r = 1.8, k = 6, γ1 = 0.095, γ= 0.35
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Figure 3. When τ = 12, i.e., with delay α = 0.086, α1 = 0.028, β = 0.065, k = 100, d = 0.6, d1 = 0.5,
d2 = 0.04, b = 0.066, b1 = 0.028, r = 0.95, γ= 0.0065, γ1 = 0.0049, γ2 = 0.082, τ= 12
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Figure 4. When τ > 25, the system shows threshold value, i.e., with delay α = 0.086, α1 = 0.028,
β = 0.075, k = 100, d = 0.6, d1 = 0.5, d2 = 0.04, b = 0.066, b1 = 0.028, r = 0.95, γ = 0.0065,
γ1 = 0.0049, γ2 = 0.082, τ= 25

10. Discussion and Conclusion
In this research paper, we investigate a predator-prey model that integrates infectious diseases
within the predator population, considering the impact of delay-induced predator behaviors
and a fear effect represented by the parameter k, which leads to a reduction in the prey’s birth
rate. Our study involves a thorough stability analysis of equilibria for the proposed system
(denoted as (2.1)), revealing the occurrence of bifurcation. The paper introduces a comprehensive
four-compartment eco-epidemiological model, providing valuable insights into both ecological
and epidemiological aspects. The analysis covers every biologically feasible sustainable state of
the model and evaluates the serenity of each equilibrium. The coexistence of species is shown
to depend on specific parametric constraints, with the recovery predator playing a pivotal role
in overall system dynamics (Figures 1-2). Furthermore, the paper explores limit cycle and
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periodic oscillation behaviors observed at the bifurcation point around the interior equilibrium,
as illustrated in phase portraits with delay (Figures 3-4). The primary objective is to make
significant contributions to the advancement of research in ecology, eco-epidemiology, and
related fields, with a particular emphasis on biodiversity protection and effective management
strategies. Additionally, the paper suggests potential directions for future research, proposing
the incorporation of gestation delay to enhance the existing model. This envisioned addition
could provide further insights and broaden the applicability of the model in understanding
ecological and epidemiological dynamics. The paper also discusses the eco-epidemic model
involving the predator population about disease, incorporating recovery delay. While most
eco-epidemic models have previously focused on gestation delay, this study uniquely considers
recovery delay in predators as well as disease transmission delay. Initially, the paper establishes
the positivity and boundness of the suggested system’s solutions. Subsequently, it identifies all
possible equilibrium points and deduces their local stability criteria in the absence and presence
of recovery delay, thereby enriching the understanding of the system’s behavior.
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