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Abstract. A mathematical model for studying the consequences of a moving high-frequency induction
heater on a ferromagnetic plate material was presented in the context of Maxwell’s equation.
Conducting currents are generated when the material is exposed to electromagnetic fields operating
at high frequency. The losses due to conducting currents and the hysteresis effect are summed and
considered as the total heat loss of the problem. The expressions for heat losses, temperature field,
elastic field, and magnetic field are obtained across the plate material in the context of Maxwell’s
equations and Ohm’s law and are solved using the double finite Fourier sine and Marchi-Fasulo
integral transforms. Lastly, the effects of the plate dimensions, frequency, and velocity of the heater and
the resistivity are discussed and analyzed graphically. The result of the presented investigation will
enable us to ensure the feasibility of the efficient design and construction of electric devices with
magnetic circuits characterized by reduced heat losses.
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1. Introduction
Ferromagnetic materials have an extensive application in various electromagnetic equipment,
including the magnetic circuits of motors, generators, inductors, magnetically levitated high-
speed terrestrial vehicles, energy storage systems in electromagnetic fields, fusion reactors,
and devices relying on electromagnetic propulsion. Compared to conventional structures that
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encounter mechanical stresses, ferromagnetic structures inside strong magnetic fields are often
influenced by magnetic force aroused due to the time-varying magnetic fields. The intense
magnetic field causes deformation, significantly affecting material stability (Moon [15]).

Eddy-current losses have garnered significant attention from various scientific disciplines in
the last several decades (Dresner [4], Sikora et al. [22], and Stoll [23]). Eddy currents generate
power losses and subsequently thermal heating in conducting elements [25], which could
negatively impact system efficiency and performance. The uneven propagation of the electric
current across the surface or the skin of the current-carrying conductor is sometimes known as
the “skin effect”. Skin depth plays an important role in understanding the various consequences
of the time-varying electromagnetic field. The dependency of skin depth on various material
parameters is given by the relation:

δ= 1√
π f µσ

. (1)

The analytical formulations most typically employed in determining the heat losses due to
eddy currents are described by Jassal et al. [7]. The harmful consequences of eddy currents
in vacuum chambers have been previously reported by Kim et al. [9]. The thermal energy
produced by eddy currents is widely used in several areas mentioned by Ebrahimi et al. [5],
Park et al. [17], Rudnev et al. [20], and Tsopelas and Siakavellas [24] in their works. The study
of the interactions of mechanical, thermal, and magnetic fields in a thermoelastic material
exposed to a magnetic field is known as magneto-thermoelasticity. Magneto-thermoelasticity
also covers theories like classical elasticity theory, electromagnetic theory, and heat conduction
theory. The scientific notion of magneto-thermoelasticity was proposed by Chadwick [3], Knopoff
[10] and later expanded upon by Kaliski and Petykiewicz [8]. Paria [16] investigated a thermo-
elastic material inside a magnetic field analyzed the propagation of the plane waves and
established a theoretical framework for the progress of magneto-thermoelasticity. Wilson [26]
examined the propagation of magnetothermo–elastic waves in a non-rotating medium. Shen
et al. [21] developed the suitable and most efficient heat-generating rate model to determine
the temperature in induction heating using the finite element method. Roychoudhary and
Banerjee [19] performed a brief study for the propagation of time-harmonic plane waves
permeated by a uniform primary external magnetic field in an infinite rotating conducting,
thermoelastic solid. Miloševic et al. [12], analyzed the effect of impulsive electromagnetic
radiation on temperature and elastic fields on a metallic plate using the linear theory of
thermoelasticity. Miloševic et al. [13] introduced a comparable theory for thick plates with
suitable non-linear distribution. Miloševic [14] analyzed the behavior of thin metallic plates
exposed to electromagnetic waves using the integral transform technique. Ezzat et al. [6]
developed a new one-dimensional mathematical model for a perfectly conducting half-space
exposed to a constant magnetic field using Laplace transforms and the state-space approach.
Biswas and Abo-Dahab [2] studied a three-dimensional coupled problem of electro-magneto-
thermoelastic using normal mode analysis and an eigenvalue approach for a conducting solid
exposed to time-dependent thermal shock. Baksi et al. [1] investigate a three-dimensional
problem in an infinite rotating medium in the context of magneto-thermoelasticity with thermal
relaxation along with heat source.

In this work, we proposed a three-dimensional mathematical model based on the analytical
solution of Maxwell’s equations by employing the integral transform technique. By applying
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the appropriate boundary conditions the consequences of the moving high-frequency induction
heater in terms of eddy current loss and hysteresis loss taking into account of skin effect
are obtained analytically. Differential equations describing the various distributions of field
parameters are analytically solved and obtained by employing the integral-transform technique.
The effects of the time-varying electromagnetic field (and its consequences) on various field
parameters of the ferromagnetic material are examined based on theoretically determined
conclusions.

Interestingly, any electromagnetic device or system may be fitted with the analytic model
presented in this paper. However, the primary limitation is that the conducting component
needs to have a rectangular geometry. Secondly, the examined material is to be essentially made
up of ferromagnetic material as we have considered the hysteresis effect which is observed
only in the case of the ferromagnetic material. The most vital input is that the magnetic field
to which the plate material is exposed needs to be time-varying and spatially homogenous.
A numerical code is written using MATLAB® environment which allows us to derive the various
graphical interpretations.

2. Governing Fundamental Equations

Electromagnetic Field
We consider the problem of a three-dimensional rectangular conducting plate that is made
up of an isotropic, elastic, soft ferromagnetic material possessing a good electric conductivity
occupying the space D : 0≤ x ≤ a, 0≤ y≤ b, −h/2≤ z ≤ h/2. Figure 1, represents the geometry of
the conducting plate along with the coordinate system used.

Figure 1. Conducting plate with moving frequency induction heater

The conducting rectangular plate is exposed to a linear-frequency electromagnetic heater
which is moving along the y-axis of the plate geometry at constant velocity vh. The assumptions
used in the presented mathematical model are: (i) The component of magnetic induction Bx is
neglected as compared to By due to the movement of the heater in the y-direction, (ii) the skin
effect is significant, due to which the component Bz is considered negligible as compared
to By, (iii) the presented model is rectangular and is supposed to be in 3-dimensional geometry,
(iv) the magnetic material is considered to be isotropic.
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The set of Maxwell’s equations corresponding to the magnetic field of the plate material
(neglecting charge density and displacement current) is given by:

∇⃗× H⃗ = J⃗, ∇⃗× E⃗ =−∂B⃗
∂t

, ∇⃗ · E⃗ = 0, ∇⃗ · H⃗ = 0. (2)

The corresponding auxiliary equations including Ohm’s law are expressed as:

B⃗ =µH⃗, J⃗ =σ(E⃗+ ˙⃗u× B⃗). (3)

The component form of the magnetic field and the induced electric field vectors are respectively
given by H⃗ = (0,Hy,0), E⃗ = (Ex,0,Ez). The component form of the current density using
equation (2), is expressed as follows:

(Jx, Jz)=
(
− ∂

∂z
,
∂

∂x

)
Hy. (4)

In the case of orthotropic conductivity, Ohm’s law given by the relation (3)2 is further reduced
to:

Jx =σxEx, Jz =σzEz, (5)

where σxand σzrepresents the conductivity in respective directions.
Magnetic flux density in the components is obtained from the relation (3)1 as:

By =µHy. (6)

The electric field intensity components are obtained from equations (4) and (5):

Ex =− 1
σx

∂Hy

∂z
, Ez = 1

σz

∂Hy

∂x
. (7)

Using equations (6) and (7), Faraday’s law of electromagnetism i.e. relation (2)2 reduces to
the uncoupled equation of magnetic field as:

1
σz

∂2Hy

∂x2 + 1
σx

∂2Hy

∂z2 =µ0µr
∂Hy

∂t
. (8)

In this problem we consider the plate material to be isotropic, i.e., σx = σz, and δx = δz = δ=√
2/ωσµ0µr . With this, equation (8) modifies to:

∂2Hy

∂x2 + ∂2Hy

∂z2 = 2
δ2 Hy . (9)

The pre-requisite boundary conditions are considered as:

H(x, z, t)
∣∣∣
x=0,a

= Hos , H(x, z, t)
∣∣∣
z=0,b

= Hos . (10)

Temperature field: The expressions for considered heat losses due to eddy current and the
hysteresis phenomenon are given by [14]:

Weddy =
1

2σ
[J2

x + J2
z ], (11)

Whyste(z, t)= kHµ f H2
y . (12)

The fundamental equations of the temperature field with prerequisite boundary and initial
conditions are expressed as [13]:

∇2T + Wtotal

λ0
= Cρ

α

∂T
∂t

, (13)
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T
∣∣
t=0 = 0, T

∣∣
y=0,b = 0,

∂T
∂x

∣∣∣
x=0,a

= 0,
∂T
∂z

∣∣∣
z=±h/2

= 0. (14)

The term Wtotal represents the total heat loss and is treated as the heat source of the problem.

Elastic field: In addition to the resistive heat losses, the metallic plate is likewise subjected to
the Lorentz force, f⃗ = J⃗× B⃗. With the help of equation (4) and equation (6), the Lorentz force is
further deduced into component form as:

( fx, fz)=−µ
2
×

(
∂

∂x
(Hy)2,

∂

∂z
(Hy)2

)
. (15)

The constitutive relations are [20]:

σi j = 2µe i j + (λe−βT)δi j, e i j = 1
2

(ui, j +u j,i). (16)

Using equation (16), the expressions for stress fields are further reduced in component form as:

σxx = 2µ
∂u
∂x

+λe−βT,σyy = 2µ
∂v
∂y

+λe−βT , (17)

σzz = 2µ
∂w
∂z

+λe−βT,σxy =µ
(
∂u
∂y

+ ∂v
∂x

)
, (18)

σxz =µ
(
∂u
∂z

+ ∂w
∂x

)
,σyz =µ

(
∂v
∂z

+ ∂w
∂y

)
, e = ∂u

∂x
+ ∂v
∂y

+ ∂w
∂z

. (19)

The equation of motion accounting for the existence of Lorentz force is:

ρ
∂2ui

∂t2 = ∂σik

∂xk
+ (J×B)i . (20)

Further simplifying the above equations, we obtain:

ρ
∂2u
∂t2 =

[
(2µ+λ)

∂2u
∂x2 +λ

(
∂2v
∂x∂y

+ ∂2w
∂x∂z

)
−β∂T

∂x

]
− µ

2
∂

∂x
(Hy)2, (21)

ρ
∂2v
∂t2 =

[
(2µ+λ)

∂2v
∂y2 +λ

(
∂2u
∂y∂x

+ ∂2w
∂y∂z

)
−β∂T

∂y

]
, (22)

ρ
∂2w
∂t2 =

[
(2µ+λ)

∂2w
∂z2 +λ

(
∂2u
∂z∂x

+ ∂2v
∂z∂y

)
−β∂T

∂z

]
− µ

2
∂

∂z
(Hy)2 . (23)

The mechanical and the initial boundary conditions are:(
∂u
∂x

)
x=0,a

=
(
∂v
∂y

)
y=0,b

=
(
∂w
∂z

)
z=±h/2

=
(

β

2µ+λ
)

T, (24)

(u)t=0 = (v)t=0 = (w)t=0 = 0. (25)

3. Solutions
Determination of Magnetic Field. We must convert the inhomogeneous boundary conditions
presented in equation (10) into homogeneous ones to determine the magnetic field expression.
In light of this, we presume

H(x, z)=℘(x, z)+Hos . (26)

Using equation (26) in equations (9) and (10), we obtain
∂2℘

∂x2 + ∂2℘

∂z2 = 2
δ2 (℘+Hos), (27)
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℘(x, z)
∣∣
x=0,a = 0, ℘(x, z)

∣∣
z=± h

2
= 0 . (28)

Applying the double finite Fourier sine transform [18] to equation (27) and further using it in
equation (26), we obtain

H(x, z)= Hos −ℑ1

∞∑
m=1

∞∑
n=1

ξmn sin(ζmx)sin(ζmz). (29)

The intensity of the magnetic field at any time t is expressed as:

H(x, z, t)=
[

Hos −ℑ1

∞∑
m=1

∞∑
n=1

ξmn sin(ζmx)sin(ζmz)

]
eωt. (30)

Current density expressions in equation (4) are modified to:

Jx(x, z)= aℑ2

[ ∞∑
m=1

∞∑
n=1

nξmn sin(ζmx)cos(ζmz)

]
eωt, (31)

Jz(x, z)=−hℑ2

[ ∞∑
m=1

∞∑
n=1

mξmn cos(ζmx)sin(ζmz)

]
eωt. (32)

Using equations (31)-(32) in equation (11) and equation (30) in equation (12), we obtain the
expressions for Eddy current loss and Hysteresis loss as:

Weddy(x, z, t)=ℑ3

∞∑
m=1

∞∑
n=1

ξ2
mn

[(n
h

sin(ζmx)cos(ζnz)
)2 +

(m
a

cos(ζmx)sin(ζnz)
)2

]
e2ωt, (33)

Whyste(x, z, t)= kHµ f

[
Hos −ℑ1

∞∑
m=1

∞∑
n=1

ξmn sin(ζmx)sin(ζmz)

]2

e2ωt. (34)

The heat source of the considered problem is the sum of the above heat losses and is
mathematically expressed as:

Wtotal(x, z, t)=Weddy(x, z, t)+Whyste(x, z, t), (35)

where ℑ1 = 8Hos
ahδ2 , ℑ2 = 4µσωπHos

a2h2 , ℑ3 = 8σ
(
µωπHos

ah

)2
, ζm = mπ

a , ζn = nπ
h ,

∆mn =
[

((−1)m −1)((−1)n −1)
mnπ2

]
, ξmn =∆mn/

[
π2

(
m2

a2 + n2

h2

)
+ 2
δ2

]
.

Dimensionless Quantities. For the sake of simplicity, we transform all the field equations and
variables in the dimensionless form and for that will use the following dimensionless variables:

x̄ = x
b

, ȳ= y
b

, z̄ = z
b

, c̄ = c
b

, d̄ = d
b

, H̄y =
Hy

Hos
, τ= t

σµb2 , (Jx, Jz)= b
Hos

(−Jx, Jz),

W̄E = σb2WE

H2
os

, W̄H = WH

kHµ f H2
os

, T̄ = CρT
µH2

os
, ( f̄x, f̄z)= b( fx, fz)

µH2
os

, σ̄i j =
σ̄i j

µH2
os/2

. (36)

Determination of Temperature Field. The temperature field equations considering the
width hw and velocity vh of the moving heater, in dimensionless form, are presented as (dropping
the bar notation for convenience):

∂2T
∂x2 + ∂2T

∂y2 + ∂2T
∂z2 −ζ1

∂T
∂τ

=−ζ2W δ(x)
∏(

y−vht
hw

)[
H(t)−H

(
t− b

vh

)]
, (37)

T
∣∣
t=0 = 0, T

∣∣
y=0,b = 0,

∂T
∂x

∣∣∣∣
x=0,a

= 0,
∂T
∂z

∣∣∣∣
z=±h/2

= 0. (38)
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In equation (37), the position of the heat source is described by the Dirac (δ) and the Pulsating
function (Π). The heat source is assumed to be acting over the time interval [t, t1], which is
mathematically expressed in terms of the Heaviside function (H).

Applying finite Fourier sine and cosine transform for y and x respectively, we obtain:(
−∆mn + ∂2

∂z2 −ζ1∂t

) ̂̃T(n,m)=−2hlWtotal

βmλ0

[
H(t)−H

(
t− b

vh

)]
sin(βmvht)sin

(
βmhw

2

)
. (39)

Next, we apply the finite Marchi-Fasulo integral transform [11] concerning the variable z to
equation (39), to obtain:

[(∆mn +a2
p)+ζ1∂t]

Ù̃̂
T(n,m, p)=

(
2hlÙW
βmλ0

) [
H(t)−H

(
t− b

vh

)]
sin(βmvht)sin

(
βmhw

2

)
. (40)

where the eigenvalues ap ’s are the positive roots of the equation:

[α1acos(ak)+β1 sin(ak)]× [β2 cos(ak)+α2asin(ak)]

= [α2acos(ak)−β2 sin(ak)]× [β1 cos(ak)−α1asin(ak)], (41)

and α1, α2, β1, β2 are the constants.
Applying the Laplace transform and its inversion to equation (40), we obtainÙ̃̂

T(n,m, p,τ)=
(

2hlÙWtotal(−1)m

λ0βm

)
H

(
τ− b

vh

)
×sin

(
βmhw

2

)
·
[{

(∆mn +a2
p)sin

[
βmvh

(
τ− b

vh

)]
−βmvh cos

[
βmvh

(
τ− b

vh

)]
+βmvhe−

(
τ− b

vh

)
(∆mn+a2

p)
}/

((βmvh)2 + (∆mn +a2
p)2)

]
. (41′)

Next, we apply the inverse finite Marchi-Fasulo integral transform followed by the inverse
finite Fourier sine and cosine transform to equation (41′) and obtain:

T(x, y, z,τ)= 8hlWtotal

abλ0
H(τ−bvh)

∞∑
n=1

∞∑
m=1

(−1)m

βm
sin

(
βmhw

2

)
sin(βm y)cos(αnx)

×
∞∑

p=1

1
λp

[{
(∆mn +a2

p)sin
[
βmvh

(
τ− b

vh

)]
−βmvh cos

[
βmvh

(
τ− b

vh

)]
+βmvhe−

(
τ− b

vh

)
(∆mn+a2

p)
}/

((βmvh)2 + (∆mn +a2
p)2)

]
Pp(x). (42)

Equation (42) represents the dimensionless temperature field.

Determination of Elastic Field. Simplifying equations (21)-(23) further and dropping
the inertia term we get:

∂2u
∂x2 = β

(2µ+λ)
∂T
∂x

+ µ

2(2µ+λ)
∂

∂x
(Hy)2, (43)

∂2v
∂y2 = β

2µ+λ
∂T
∂y

, (44)

∂2w
∂z2 = β

2µ+λ
∂T
∂z

+ µ

2(2µ+λ)
∂

∂z
(Hy)2. (45)
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Solving equations (43)-(45) further, we obtain the displacement components as:

u ≡ ux = β

2µ+λ
∫

T(x, y, z, t)dx+ µ

2(2µ+λ)

∫
H(x, z, t)2dx, (46)

v ≡ uy = β

2µ+λ
∫

T(x, y, z, t)d y, (47)

w ≡ uz = β

2µ+λ
∫

T(x, y, z, t)dz+ µ

2(2µ+λ)

∫
H(x, z, t)2dz. (48)

The stress components in the dimensionless form are obtained by solving equations (17)-(19)
further with the help of equations (46)-(48), as:

σxx = 1
2µ+λ [µ(µ+λ)H(x, z, t)2 +2βλT(x, y, z, t)], (49)

σyy = λ

2µ+λ [µH(x, z, t)2 +2βT(x, y, z, t)], (50)

σzz = 1
2µ+λ [µ(µ+λ)H(x, z, t)2 +2βλT(x, y, z, t)], (51)

σxy =µ
(
∂u
∂y

+ ∂v
∂x

)
, σxz =µ

(
∂u
∂z

+ ∂w
∂x

)
, σyz =µ

(
∂v
∂z

+ ∂w
∂y

)
. (52)

4. Numerical Results and Discussions
Soft ferromagnetic materials possess low coercivity and high permeability, which makes them
highly suitable for the construction of various electromagnetic devices such as transformers that
operate at minimum power losses during the operation. Magnetic Steel is one of the suitable
example for soft ferromagnetic material and hence is considered for numerical assessments.
The material properties considered for the steel metal to understand the numerical calculations
are as defined in [13]:

µ0 = 1.26×10−4 [H/m], µ= 79.3 [GPa], σ= 7.7×106 [S/m], ν= 0.28,

ρ = 7663 [kg/m3], α= 12×10−6 [K−1], C = 502.416 [J/kg K], κ= 1.4×10−3 [m2/sec],

λ0 = 50 [W/mK].

Figure 2a demonstrates the relationship between skin depth and electromagnetic wave
frequency for various levels of magnetic permeability. These findings indicate that the skin
depth declines noticeably with increasing frequency.

Magnetic field intensity is observed to be symmetrical in both directions and it resembles
a fishnet-like structure as seen in Figure 2b. Figure 3a, shows that the heat loss due to eddy
current is lower at the higher resistivity values of the plate material. Figure 3b shows that the
total heat loss is getting larger and larger with an increase in the frequency, meanwhile, the
magnetic flux density remains constant.
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(a)
 

 (b)

Figure 2. (a) Skin depth dependency on frequency, (b) Distribution of magnetic field intensity

  

(a)

 

(b)

Figure 3. (a)Eddy current loss dependency on resistivity, (b) distribution of total heat loss versus flux
density

Figure 4a, demonstrates variations of heat losses with frequency. We note that at low
frequencies, the Hysteresis loss is a little bigger than the eddy current loss. Meanwhile, when
the frequency increases over 150 Hz, the eddy current loss is significant compared to hysteresis
loss. Further, when frequency increases slowly, both losses also increase. Figure 4b represents
the variations in magnetic flux density (B) for steel, iron, and air with magnetic field intensity
(H). We may note that variation in magnetic field density is proportional to the Magnetic field
strength until it reaches a certain value from which it does not grow anymore and remains
practically constant and stable while the strength of the Magnetic field continues to ascend. For
Steel, the magnetic flux density increases up to 1.5 T and this point in the graph is referred to
as the Magnetic Saturation. Thus, the phenomenon of Magnetic Saturation in the B-H Curve
is observed. Figure 5a demonstrates the dependency of the temperature field for the various
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values of the moving heater velocities. Figure 5b is a three-dimensional graph that reflects the
distribution of temperature along the length and the width of the plate for various values of
the thickness of the plate material. It can be observed that the temperature attains the larger
values at the lower thickness and it reduces with an increase in plate thickness.

 

(a)

 

 .   

(b)

Figure 4. (a) Comparison of various heat losses, (b) B-H curve comparison for Air, steel, and Iron
material

Figure 6 demonstrates the variation in the displacement along the length of the plate
material at three different time values, and it can be seen that the component always begins
from zero value and satisfies the corresponding boundary conditions. Also, it is concluded that
the displacement component decreases as time increases. Since there is not much significant
difference in the variations of the other displacement components, therefore we have ignored
them in graphical analysis.

 

(a)
 

(b)

Figure 5. (a) Temperature dependence on time and heater velocity, (b) Temperature variations along the
thickness of the plate
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Figure 6. Displacement distribution along the length of the plate

5. Conclusion
Modeling of magneto-thermoelastic problems subjected to a high-frequency induction heater
in the case of soft ferromagnetic material was successfully proposed in the present study,
and the influence of frequency, heater velocity, and various parameters on the thermal and
elastic fields were analyzed. The expressions for eddy current, hysteresis loss, temperature,
displacement, and stress functions were obtained. The integral transform technique —
a very appropriate method— was used to derive the analytical solution to the problem
under consideration. Numerical results were obtained considering a special case involving
a rectangular conducting plate made of magnetic steel metal, and the results were presented
graphically. The conclusions are summarized below:

(i) Magnetic field shows symmetrical distribution over the plate material.

(ii) Variation in the magnetic field induces eddy current and leads to eddy current loss.

(iii) The skin depth for the considered plate material is inversely proportional to the wave
frequency, hence the eddy current loss can be controlled and adjusted up to any desired
depth of material by adjusting the input frequency supply.

(iv) Resistivity is the key element impacting the Eddy current loss of the plate material.
Therefore by using high-resistivity materials for insulation, one can reduce the Eddy
current loss to the maximum extent.

(v) Frequency has an enormous impact on both Eddy current loss and Hysteresis loss as well
as on the basic characteristics of ferromagnetic materials.

(vi) The phenomenon of magnetic saturation is observed.
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(vii) The temperature of the plate material is higher at the low heater velocity and it reduces
as the heater velocity increases. Therefore the temperature of the plate material and the
heater velocity are inversely proportional.

(viii) Temperature of the plate material decreases along the thickness of the plate which justifies
the skin effect.

The present investigation will be beneficial to researchers and scientists in working on the
development of new electromagnetic devices and machines that reduce heat loss and increase
efficiency.
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