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1. Introduction
1.1 Preliminaries
Let A represent the family of analytic functions f with normalization f (0) = 0 and f ′(0) = 1
defined on the open unit disk D in the complex plane C. The Taylor series expansion of f ∈A is
of the form

f (z)= z+
∞∑

n=2
anzn , for all z ∈D, where an = f (n)(0)

n!
. (1.1)
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The set of functions f ∈A that are univalent is represented by S. The set B of analytic functions
w(z) defined on D with the conditions w(0) = 0 and |w(z)| < 1, for all z ∈ D is refereed as the
class of Schwarz functions (Goodman [7]).

A function f ∈ A is said to be subordinate to g ∈ A if there exists w ∈ B such that
f (z) = g(w(z)), for all z ∈ D. We denote it by f ≺ g. In particular if g is univalent, then f
is subordinate to g if, and only if, g(0)= f (0) and f (D)⊂ g(D). For more information regarding
univalent function theory, we refer to Pommerenke [22].

The set of starlike and convex functions respectively S∗, C which are subclasses of S and
further extended by Ma and Minda [15] by utilizing the concept of subordination to S∗(ϕ) and
C(ϕ) where ϕ ∈A satisying conditions ℜ{ϕ(z))} > 0, ϕ′(0) > 0, ϕ(D) is symmetric with respect
to real axis and starlike with respect to ϕ(0) = 1. Some Ma-Minda type subclasses of S were
studied by choosing specific function ϕ in the recent past (Arif et al. [3], Gandhi [6], and Sharma
et al. [27]).

The qth Hankel determinant of index n ≥ 1 for a function f ∈A, with a series expansion
given by (1.1), is denoted as Hq,n( f ) (or simply Hq(n)). It is defined as follows:

Hq(n)=

∣∣∣∣∣∣∣∣∣
an an+1 . . . an+q−1

an+1 an+2 . . . an+q
...

... . . . ...
an+q−1 an+q . . . an+2q−2

∣∣∣∣∣∣∣∣∣ , (1.2)

where q ≥ 2 and a1 = 1 (refer to Pommerenke [20,21]).
Similarly, the qth symmetric Toeplitz determinant Tq(n) for a function f ∈A is defined as

follows:

Tq(n)=

∣∣∣∣∣∣∣∣∣
an an+1 . . . an+q−1

an+1 an . . . an+q−2
...

... . . . ...
an+q−1 an+q−2 . . . an

∣∣∣∣∣∣∣∣∣ , (1.3)

where q ≥ 2, n ≥ 1, and a1 = 1 (refer to Ali et al. [1]).
In 1960, Lawrence Zalcman conjecture that the coefficients of f ∈ S with series representation

(1.1) satisfy the inequality (see, Libera and Ziotkiewicz [14])

|a2
n −a2n−1| ≤ (n−1)2 , for n ≥ 2.

Ma [16] proposed generalized Zalcman conjecture for f ∈ S of the form (1.1) that

|anam −an+m−1| ≤ (n−1)(m−1) , for n,m ≥ 2

and proved this conjecture is true for starlike functions and univalent function with real
coefficients.

1.2 Literature Review Concerning Hankel and Toeplitz Determinants in Geometric
Function Theory

The pioneering works of Pommerenke [20, 21], Hayman [8], Babalola [5], Zaprawa [36],
Kowalezyk et al. [13] on second and third Hankel determinants inspired Arif et al. [2] to
estimate an upper bound of |H4,1( f )|, for f ∈R. Subsequently, Srivastava et al. [31], Khan et
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al. [10,11], and Yakaiah et al. [34] computed upper bound for |H4.1( f )| for f being the member of
subclasses of S subordinate to cardioid, sine, modified sigmoid and cosine functions, respectively.

Ali et al. [1] studied the Toeplitz determinant Tq(n) for the class S and certain of its
subclasses. Zhang and Tang [37] studied the upper bounds of the fourth Toeplitz determinant
for the class

S∗(sin)=
{

f ∈ S :
z f ′(z)
f (z)

≺ 1+sin(z)
}

.

Vijayalakshmi et al. [32] studied symmetric Toeplitz determinants for classes defined by post
quantum operators subordinated to the limacon function. Mandal et al. [17] investigated Toeplitz
determinants of logarithmic coefficients of inverse functions for certain classes of univalent
function. For similar type of studies concerning Toeplitz determinant |Tq(n)| for starlike, convex
and bounded boundary rotation functions, we refer to Ali et al. [1] and Radhika et al. [23].

We now provide some more details of recent research done in this direction.
(1) Kaur and Singh [9] proved |H4,1( f )| ≤ 4027899

896000000 for the members of

R1 = { f ∈A :ℜ{ f ′(z)+ z f ′′(z)}> 0}.

(2) Yakaiah and Sharma [33] estimated |H4,1( f )| ≤ 0.136765285, |T4(1)( f )| ≤ 0.0069 and
|T4(2)( f )| ≤ 0.00009 for the members of

R1(cos z)= { f ∈A : f ′(z)+ z f ′′(z)≺ cosz}.

(3) Koride et al. [12] computed |H4,1( f )| ≤ 1.540436, |T4(1)( f )| ≤ 2.363923 and |T4(2)( f )| ≤
0.140203 for the members of

R1(1+sin z)= { f ∈A : f ′(z)+ z f ′′(z)≺ 1+sin z}.

(4) Yakaiah et al. [34] computed |H4,1( f )| ≤ 1.24199978975, |T4(1)( f )| ≤ 2.4375 and |T4(2)( f )| ≤
0.674461806 for the members of

R1(1+ tanh z)= { f ∈A : f ′(z)+ z f ′′(z)≺ 1+ tanh z}.

1.3 Identification of Research Problem
The Ma-Minda type function ϕ3L(z)= 1+ (4/5)z+ (1/5)z4 maps D onto three leaf shaped domain
and the class

S∗3L =
{

f ∈ S :
z f ′(z)
f (z)

≺ϕ3L(z)
}

,

have been studied by Gandhi et al. [6], Shi et al. [28, 30]. Arif et al. [4] studied the bounds
for third order Hankel determinant for two subfamilies of starlike and bounded turning
functions associated with a three-leaf shaped domain. Raza et al. [26] estimated the second and
third Hankel determinants for starlike and convex functions associated to three leaf function.
Murugusundaramoorthy et al. [18] developed a new class of bi-starlike functions subordinate
to a three leaf function induced by multiplicative calculus. Murugusundaramoorthy et al. [19]
computed upper bound of |H3(1)|, for the members of R3L. Shi et al. [29] studied the bounds
of second Hankel determinanats and with a logarithmic coefficient as entry for the class of
bounded turning functionsconnected with a three-leaf shaped domain.
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Motivated by the earlier mentioned research works, in this paper, we compute the upper
bounds of fourth Hankel and Toeplitz determinants for the members of

R1(ϕ3L)=
{

f ∈ S : f ′(z)+ z f ′′(z)≺ϕ3L(z)= 1+ 4
5

z+ 1
5

z4 , for all z ∈D
}

,

were computed in this paper.

2. A Set of Essential Lemmas
The class of analytic functions p(z) defined on the unit disk D with p(0)= 1 and ℜ{p(z)}> 0 is
called the class of functions with positive real part, denoted by P. For p ∈P, the Taylor series
expansion of p ∈P is

p(z)= 1+
∞∑

n=1
cnzn, for z ∈D. (2.1)

Unless otherwise stated throughout this paper, we assume the series representation of p ∈P is
of the form (2.1).

Lemma 2.1 ([22]). Let p ∈P. Then |cn| ≤ 2 for any positive integer n. The inequality is sharp for
p(z)= 1+z

1−z .

Lemma 2.2 ([15]). Let p ∈ P and η ∈ C. Then |c2 −ηc2
1| ≤ 2max{1, |2η−1|}. The inequality is

sharp for p(z)= 1+z
1−z and p(z)= 1+z2

1−z2 .

Lemma 2.3 ([3]). Let p ∈P. Then for any real numbers A,B and C,

|Ac3
1 −Bc1c2 +Cc3| ≤ 2|A|+2|B−2A|+2|A−B+C|.

Lemma 2.4 ([25]). Let p ∈P. Then for all n,m ∈N,

|ηcncm − cn+m| =
{

2, if 0≤ η≤ 1,
2|2η−1|, otherwise.

This inequality is sharp.

Lemma 2.5 ([25]). Let p ∈P and l,m,n and r be real numbers and if the inequalities 0< m < 1,
0< r < 1,

8r(1− r)((mn−2l)2 + (m(r+m)−n)2)+m(1−m)(n−2rm)2 ≤ 4m2(1−m)2r(1− r) (2.2)

hold, then∣∣∣∣lc4
1 + rc2

2 +2mc1c3 − 3n
2

c2
1c2 − c4

∣∣∣∣≤ 2. (2.3)

Lemma 2.6 ([14]). If the function p ∈P, then

2c2 = c2
1 + x(4− c2

1), (2.4)

4c3 = c3
1 +2(4− c2

1)c1x− c1(4− c2
1)x2 +2(4− c2

1)(1−|x|2)z, (2.5)

for some x, z with |x| ≤ 1 and |z| ≤ 1.
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3. Main Results
Let f ∈R1(ϕ3L) be of the form (1.1). Then there exists w ∈B such that

f ′(z)+ z f ′′(z)=ϕ3L(w(z))= 1+ 4
5

w(z)+ 1
5

w(z)4, for all z ∈D. (3.1)

If we take p(z)= 1+w(z)
1−w(z) , for all z ∈D then p ∈P and w(z)= p(z)−1

p(z)+1 so that

f ′(z)+ z f ′′(z)= 1+ 4
5

(
p(z)−1
p(z)+1

)
+ 1

5

(
p(z)−1
p(z)+1

)4
, for all z ∈D. (3.2)

Substituting (1.1) and (2.1) in (3.2) followed by comparing like coefficients on both sides of (3.2),
we obtain

a2 = c1

10
, (3.3)

a3 = 2
45

(
c2 −

c2
1

2

)
, (3.4)

a4 = 1
40

(
1
4

c3
1 − c1c2 + c3

)
, (3.5)

a5 = 2
125

(
c4 − c1c3 − 1

2
c2

2 +
3
4

c2
1c2 − 3

32
c4

1

)
, (3.6)

a6 = 2
180

(
c5 − c1c4 − c2c3 + 3

4
c2

1c3 + 3
4

c1c2
2 −

3
8

c3
1c2

)
, (3.7)

a7 = 2
245

(
c6 − c1c5 − c2c4 − 1

2
c2

3 +
3
4

c2
1c4 + 3

2
c1c2c3 + 1

4
c3

2 −
3
8

c3
1c3 − 9

16
c2

1c2
2 +

3
64

c6
1

)
. (3.8)

Example 3.1. By taking the Schwarz functions w(z)= z, w(z)= z2, w(z)= z3 and w(z)= z4 in
(3.1) followed by integrating on both sides and utilizing the fact f (0)= 0, f ′(0)= 1, we get

(1) f1(z)= z+ 1
5 z2 + 1

125 z5,

(2) f2(z)= z+ 4
45 z3 + 1

405 z9,

(3) f3(z)= z+ 1
20 z4 + 1

845 z13,

(4) f4(z)= z+ 4
125 z5 + 1

1445 z17.
We can observe that all the above functions are in R1(ϕ3L).

We now estimate initial coefficient bounds for the functions in R1(ϕ3L).

Theorem 3.1. If f ∈ R1(ϕ3L) is given by (1.1). Then |a2| ≤ 1
5 , |a3| ≤ 4

45 , |a4| ≤ 1
20 , |a5| ≤ 4

125 ,
|a6| ≤ 1

10 and |a7| ≤ 38
245 . The functions f1, f2, f3, f4 as in Example 3.1 are extremal functions for

first four inequalities, respectively.

Proof. Let f ∈R1(ϕ3L) be given by (1.1). By applying Lemmas 2.1, 2.2 and 2.3 to (3.3), (3.4) and
(3.5) respectively, we obtain

|a2| = |c1|
10

≤ 1
5

,

|a3| =
∣∣∣∣∣ 2
45

(
c2 −

c2
1

2

)∣∣∣∣∣≤ 4
45

,
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|a4| = 1
160

|c3
1 −4c1c2 +4c3| ≤ 2(1+2+1)

160
= 1

20
.

Now,

|a5| = 2
125

∣∣∣∣c4 − c1c3 − 1
2

c2
2 +

3
4

c2
1c2 − 3

32
c4

1

∣∣∣∣
= 2

125

∣∣∣∣lc4
1 + rc2

2 +2mc1c3 − 3n
2

c2
1c2 − c4

∣∣∣∣ ,

where l = 3
32 , r = 1

2 , m = 1
2 and n = 1

2 .
These values of l,m,n and r satisfy the hypothesis of Lemma 2.5 and hence |a5| ≤ 4

125 .
By Lemmas 2.1, 2.4 and 2.5, we have |c1| ≤ 2, |c2| ≤ 2, |c5 − c2c3| ≤ 2 and∣∣3

8 c2
2 + 3

4 c1c3 − 3
8 c2

1c2 − c4
∣∣≤ 2. Consequently, we obtain the following after a simple computation

|a6| = 1
90

∣∣∣∣c5 − c1c4 − c2c3 + 3
4

c2
1c3 + 3

4
c1c2

2 −
3
8

c3
1c2

∣∣∣∣
≤ 1

90

(
|c5 − c2c3|+ |c1|

∣∣∣∣3
8

c2
2 +

3
4

c1c3 − 3
8

c2
1c2 − c4

∣∣∣∣+ 3
8
|c1| |c2

2|
)

≤ 1
10

.

Further, in view of Lemma 2.3, we have
∣∣−3

8 c3
1 + c1c2 − 1

2 c3
∣∣≤ 3

2 and in view of Lemma 2.4, we
have |c6− c1c5| ≤ 2, |c4− 1

2 c1c3| ≤ 2, |c2− 9
4 c2

1| ≤ 7 and using the fact |cn| ≤ 2 for n ≥ 1, we obtain

|a7| = 2
245

∣∣∣∣c6 − c1c5 − c2c4 − 1
2

c2
3 +

3
4

c2
1c4 + 3

2
c1c2c3 + 1

4
c3

2 −
3
8

c3
1c3 − 9

16
c2

1c2
2 +

3
64

c6
1

∣∣∣∣
≤ 2

245

(
|c6 − c1c5|+ |c2|2

4

∣∣∣∣c2 − 9
4

c2
1

∣∣∣∣+|c2|
∣∣∣∣c4 − 1

2
c1c3

∣∣∣∣+|c3|
∣∣∣∣−3

8
c3

1 + c1c2 − 1
2

c3

∣∣∣∣+ 3
64

|c1|6
)

≤ 38
245

.

We now obtain upper bound for Fekete-Szego functional of the class R1(ϕ3L).

Theorem 3.2. If f ∈R1(ϕ3L) is given by (1.1) and Hη

2,1( f )= a3 −ηa2
2 for η ∈C, then

|Hη

2,1( f )| ≤ 4
45

max
{

1,
9

20
|η|

}
(3.9)

and this inequality is sharp.

Proof. Let f ∈R1(ϕ3L). Then in view of Lemma 2.2, we obtain

|Hη

2,1( f )| = |a3 −ηa2
2|

= 2
45

∣∣∣∣c2 −
(
20+9η

40

)
c2

1

∣∣∣∣
≤ 4

45
max

{
1,

∣∣∣∣2(
20+9η

40

)
−1

∣∣∣∣}
= 4

45
max

{
1,

9
20

|η|
}

.

Sharpness is evident from the fact that if |η| ≤ 20
9 , then |Hη

2,1( f2)| = 4
45 and if |η| > 20

9 , then

|Hη

2,1( f1)| = |η|
25 , where f1 and f2 are as in Example 3.1.
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We now estimate an upper bound for second Hankel determinants for the class R1(ϕ3L).

Theorem 3.3. If f ∈R1(ϕ3L) is given by (1.1), then |H2,2( f )| = |a2a4 −a2
3| ≤ 16

2025 . Sharpness is
obtained for the function f2 as in Example 3.1.

Proof. Let f ∈R1(ϕ3L) be given by (1.1). By utilizing (3.3), (3.4) and (3.5), we have

|H2,2( f )| = 1
25

∣∣∣∣ c1

5184
(17c3

1 −68c1c2 +324c3)− 4
81

c2
2

∣∣∣∣
= 1

129600
|324c1c3 −68c2

1c2 +17c4
1 −256c2

2|.
Applying Lemma 2.6, we obtain

|H2,2( f )| = 1
129600

|(81−34+17−64)c4
1 + (162−34−128)c2

1x(4− c2
1)

−81c2
1x2(4− c2

1)−64x2(4− c2
1)2 +162(4− c2

1)c1(1−|x|2)z|

= 1
129600

|−81c2
1x2(4− c2

1)−64x2(4− c2
1)2 +162(4− c2

1)c1(1−|x|2)z|

≤ 1
129600

(81c2t2(4− c2)+64t2(4− c2)2 +162(4− c2)c(1− t2)z)

:= F(c, t),

where c = |c1| ∈ [0,2], t = |x| ∈ [0,1] and 0≤ z ≤ 1. Thus,
∂F
∂t

= 1
64800

(4− c2)(17c2 −162c+256)t

= 1
64800

(4− c2)(2− c)(128−17c)t

≥ 0.

Therefore, F(c, t) is an increasing function in variable t and hence

|H2,2( f )| ≤ F(c,1)

= 1
129600

(81c2(4− c2)+64(4− c2)2)

:=ψ(c).

It is clear that ψ′(c) = 0 implies c = 0 and c =
√

−376
68 . Since 0 ≤ c ≤ 2, we take c = 0. Further,

ψ′′(0)=−376< 0. Therefore, ψ attains its maximum at c = 0. Hence,

|H2,2( f )| ≤ψ(0)

= 1024
129600

= 16
2025

.

Theorem 3.4. If f ∈R1(ϕ3L), then |H2,3( f )| ≤ 3373
360000 .

Proof. Let f ∈R1(ϕ3L) be given by (1.1). By using (3.4), (3.5) and (3.6), we obtain

|H2,3( f )| = 1
5760000

|4096c2c4 −2048c3
2 +3014c1c2c3 +496c2

1c2
2 −120c4

1c2 −2048c2
1c4
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+248c3
1c3 −33c6

1 +248c3
1c3 −33c6

1 −3600c2
3|

≤ 1
5760000

(
4096|c2|

∣∣∣∣ 15
512

c4
1 +

1
2

c2
2 +

293
1024

c1c3 − 31
256

c2
1c2 − c4

∣∣∣∣+3600|c3| |c3 − c1c2|

+2048|c1|2
∣∣∣∣c4 − 31

256
c1c3

∣∣∣∣+586|c1| |c2| |c3|+33|c1|6
)
.

An application of Lemma 2.5 shows that∣∣∣∣ 15
512

c4
1 +

1
2

c2
2 +

293
1024

c1c3 − 31
256

c2
1c2 − c4

∣∣∣∣≤ 2.

Further, it is clear to see that an application of Lemma 2.4 yields |c3−c1c2| ≤ 2, |c4− 31
256 c1c3| ≤ 2.

In view of these inequalities along with |cn| ≤ 2 for all n ≥ 1, we finally obtain

|H2,3( f )| ≤ 3373
360000

≊ 0.009369444.

3.1 Bounds of Zalcman Functionals, |H3,1( f )|, |H3,2( f )| for the class R1(ϕ3L)
Theorem 3.5. If f ∈R1(ϕ3L), then |a4 −a2a3| ≤ 1

20 . The sharpness is obtained for

f3(z)= z+ 1
20

z4 + z13

845
∈R1(ϕ3L).

Proof. Let f ∈R1(ϕ3L) be given by (1.1). Utilizing (3.3), (3.4) and (3.5) and applying Lemma 2.3,
we obtain

|a4 −a2a3| = 1
7200

|77c3
1 −212c1c2 +180c3|

≤ 2
7200

(77+|212−154|+ |77−212+180|)

= 1
20

.

Theorem 3.6. Let f ∈ R1(ϕ3L) be given by (1.1). Then |a3 − a2
2| ≤ 4

45 , |a5 − a2
3| ≤ 4

125 and
|a7−a2

4| ≤ 3089
19600 . Further, f2(z)= z+ 4

45 z3+ 1
405 z9, f4(z)= z+ 4

125 z5+ 1
1445 z17 as given in Example 3.1

are extremal functions for first two inequalities, respectively.

Proof. Taking µ= 1 in eq. (3.9) yields |a3 −a2
2| ≤ 4

45 . Using (3.6) and (3.4), we obtain

|a5 −a2
3| =

∣∣∣∣ 2
125

(
c4 − c1c3 − 1

2
c2

2 +
3
4

c2
1c2 − 3

32
c4

1

)
− 4

2025

(
c2 − 1

2
c2

1

)2∣∣∣∣
= 2

125

∣∣∣∣ 37
288

c4
1 +

101
162

c2
2 + c1c3 − 283

324
c2

1c2 − c4

∣∣∣∣
= 2

125

∣∣∣∣lc4
1 + rc2

2 +2mc1c3 − 3n
2

c2
1c2 − c4

∣∣∣∣ ,

where l = 37
288 , r = 101

162 , m = 1
2 , n = 283

486 . These values of l, r,m,n satisfy the hypothesis of
Lemma 2.4 as it is evident from the facts that 0< r < 1, 0< m < 1, 4m2(1−m)2r(1−r)= 0.0586896
and

8r(1− r)((mn−2l)2 + (m(r+m)−n)2)+m(1−m)(n−2rm)2 = 0.00341618.
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Therefore, by Lemma 2.4,∣∣∣∣ 37
288

c4
1 +

101
162

c2
2 + c1c3 − 283

324
c2

1c2 − c4

∣∣∣∣≤ 2.

Hence |a5 − a2
3| ≤ 4

125 . On similar lines, utilizing the inequalities |a7| ≤ 38
245 and |a4| ≤ 1

20 as
proved in Theorem 3.1, we obtain |a7 −a2

4| ≤ |a7|+ |a4|2 ≤ 3084
19600 .

We now estimate an upper bound of |H3,1( f )| for f ∈R1(ϕ3L).

Theorem 3.7. If f ∈R1(ϕ3L), then |H3,1( f )≤ 481
90000 .

Proof. Let f ∈R1(ϕ3L) be given by (1.1). Then in view of Theorem 3.5 and Theorem 3.6, we have
|a4 −a2a3| ≤ 1

20 , |a3 −a2
2| ≤ 4

45 and |a5 −a2
3| ≤ 4

125 .
It is found in [24] that

|H3,1( f )| ≤ |a5 −a2
3||a3 −a2

2|+ |a4 −a2a3|2.

Hence, |H3,1( f )| ≤ ( 4
125

)( 4
45

)+ ( 1
20

)2 = 481
90000 ≊ 0.00534444.

Theorem 3.8. If f ∈R1(ϕ3L) is given by (1.1), then |H3,2( f )| ≤ 2978957
1620000000 .

Proof. Let f ∈R1(ϕ3L) be given by (1.1). By using (3.3)-(3.6), we obtain

|a2a5 −a3a4| = 1
11250

∣∣∣∣18c1

(
c4 − 11

36
c1c3

)
−2c3

1

(
c2 − 23

32
c2

1

)
− 1

4
c2(13c3

1 −64c1c2 +100c3)
∣∣∣∣

≤ 1
11250

(
18|c1|

∣∣∣∣c4 − 11
36

c1c3

∣∣∣∣+2|c1|3
∣∣∣∣c2 − 23

32
c2

1

∣∣∣∣ 1
4
|c2| |13c3

1 −64c1c2 +100c3|
)

≤ 1
11250

(72+32+100)

= 34
1875

.

By using the fact that |a2a5 − a3a4| ≤ 34
1875 and utilizing the bounds proven in Theorem 3.1,

Theorem 3.3 and Theorem 3.4, we obtain

|H3,2( f )| ≤ |a6| |a2a4 −a2
3|+ |a5| |a2a5 −a3a4|+ |a4| |a3a5 −a2

4|

≤ 8
10125

+ 136
234375

+ 3373
7200000

= 2978957
1620000000

≊ 0.00183886.

3.2 Upper Bounds of |H4,1( f )|, |T4(1)|, |T4(2)| for f ∈R1(ϕ3L)
Theorem 3.9. If f ∈R1(ϕ3L) is given by (1.1), then |a5 −a2a4| ≤ 4

125 . This inequality is sharp.

Proof. Let f ∈R1(ϕ3L) be given by (1.1). By using (3.6), (3.3) and (3.5),

|a5 −a2a4| = 2
125

∣∣∣∣ 17
128

c4
1 +

1
2

c2
2 +

37
32

c1c3 − 29
32

c2
1c2 − c4

∣∣∣∣
= 2

125

∣∣∣∣lc4
1 + rc2

2 +2mc1c3 − 3n
2

c2
1c2 − c4

∣∣∣∣ ,
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where l = 17
128 , r = 1

2 , m = 37
64 and n = 29

48 .
The values of l, r,m,n satisfy the hypothesis of Lemma 2.5 and hence

|a5 −a2a4| = 2
125

∣∣∣∣lc4
1 + rc2

2 +2mc1c3 − 3n
2

c2
1c2 − c4

∣∣∣∣≤ 4
125

.

The equality hold in |a5 −a2a3| ≤ 4
125 , for f4(z)= z+ 4

125 z5 + 1
1445 z17 ∈R1(ϕ3L).

Theorem 3.10. If f ∈R1(ϕ3L) is given by (1.1), then |a6 −a3a4| ≤ 77
900 .

Proof. Let f ∈R1(ϕ3L) be given by (1.1). By using (3.7), (3.5) and (3.4) leads to

|a6 −a3a4| = 1
900

∣∣∣∣10c5 −11c2c3 + 17
4

c1c2
2 +10c1

(
1

80
c4

1 +
17
40

c2
2 +

4
5

c1c3 − 9
20

c2
1c2 − c4

)∣∣∣∣
≤ 1

900

(
10

∣∣∣∣c5 − 27
40

c2c3

∣∣∣∣+ 17
4
|c2| |c3 − c1c2|+10|c1|

∣∣∣∣lc4
1 + rc2

2 +2mc1c3 − 3n
2

c2
1c2 − c4

∣∣∣∣),

where l = 1
80 , 17

40 , m = 2
5 and n = 3

10 .
These values of l, r,m,n satisfy the hypothesis of Lemma 2.5 and hence∣∣∣∣ 1

80
c4

1 +
17
40

c2
2 +

4
5

c1c3 − 9
20

c2
1c2 − c4

∣∣∣∣≤ 2.

In view of Lemma 2.4, we have
∣∣c5 − 27

40 c2c3
∣∣≤ 2, |c3 − c1c2| ≤ 2. Further from Lemma 2.1, we

have |c1| ≤ 2, |c2| ≤ 2. Utilising these inequalities, we obtain that |a6 −a3a4| ≤ 77
900 .

Remark 3.1. It is clear from Theorem 3.6 that the Zalcman conjecture is true for n = 2,3,4 for
f ∈R1(ϕ3L). Further, generalized Zalcman conjecture for certain initial values of n, m in view
of Theorems 3.5, 3.9, 3.10.

Theorem 3.11. If f ∈R1(ϕ3L), then |H4,1( f )| ≤ 0.00179948585.

Proof. Let f ∈R1(ϕ3L) be given by (1.1). It is found in [24] that if f ∈ S of the form (1.1), then

|H4,1( f )| ≤ |a7 −a2
4||H3,1( f )|+ |a6 −a3a4|2|a3 −a2

2|
+ |a5 −a2a4|2|a5 −a2

3|+2|a6 −a3a4||a5 −a2a4||a4 −a2a3|. (3.10)

Thus, the required upper bound follows by utilizing the bounds obtained in Theorem 3.2,
Theorem 3.5, Theorem 3.6, Theorem 3.7, Theorem 3.9 and Theorem 3.10 in (3.10).

Theorem 3.12. If f ∈R1(ϕ3L), then |T4(1)| ≤ 1.149169.

Proof. Let f ∈ R1(ϕ3L) be given by (1.1). Then by using the bounds of initial coefficients of
f ∈R1(ϕ3L) proved in Theorem 3.1, we obtain

|a3 −a2a4| ≤ |a3|+ |a2||a4| ≤ 4
45

+ 1
5

(
1
20

)
= 89

900
,

|a2 −a2a3| ≤ |a2|(1+|a3|)≤ 1
5

(
1+ 4

45

)
= 49

225
,

|1−a2
2| ≤ 1+|a2|2 ≤ 1+ 1

25
= 26

25
.
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Also, |a3−a2
2| ≤ 4

45 , |a2a3−a4| ≤ 1
20 and |H2,2( f )| ≤ 16

2025 are as proved in Theorems 3.6, 3.5 and
3.3, respectively. In view of [37], we have

|T4(1)| = |(1−a2
2)2 − (a2a3 −a4)2 + (a2

3 −a2a4)2 − (a2 −a2a3)2 +2(a2
2 −a3)(a3 −a2a4)|

≤ |1−a2
2|2 +|a2a3 −a4|2 +|a2

3 −a2a4|2 +|a2 −a2a3|2 +2|a2
2 −a3| |a3 −a2a4|

≤
(
26
25

)2
+ 1

400
+

(
16

2025

)2
+

(
49
225

)2
+2

(
4

45

)(
89

900

)
≊ 1.149169.

Theorem 3.13. If f ∈R1(ϕ3L), then |T4(2)| ≤ 0.00340790418.

Proof. Since f ∈ R1(ϕ3L), in view of Theorems 3.4, 3.3 and 3.8, we have |H2,3( f )| ≤ 3373
360000 ,

|H2,2( f )| ≤ 16
2025 and |a3a4 −a2a5| ≤ 34

1875 . Further

|T2(2)| = |a2
2 −a2

3| ≤ |a2
2|+ |a2

3| ≤
97

2025
,

|a2a3 −a3a4| ≤ |a3|(|a2|+ |a4|)≤ 1
45

,

|a2a4 −a3a5| ≤ |a2||a4|+ |a3||a5| ≤ 1
100

+ 16
5625

= 289
22500

.

Following the inequality found in [37], we obtain

|T4(2)| ≤ |T2(2)|2 +|a3a4 −a2a5|2 +|H2,3( f )|2 +|a2a3 −a3a4|2 +2|H2,2( f )| |a2a4 −a3a5|

≤ 9409
4100625

+ 1156
3515625

+ 11377129
129600000000

+ 1
2025

+2
(

16
2025

)(
289

22500

)
= 0.00340790418.

4. Concluding Remarks

The upper bounds of Hankel and Toeplitz determinants of order four have been established,
shown that the Zalcman conjecture is true for cases n = 2,3,4. Additionally, the generalized
Zalcman conjecture has been validated for initial values of n and m within the class R1(ϕ3L) in
this paper. One can investigate the upper bounds of |H5,1( f )|, |T5(1)| for R1(ϕ3L) as continuation
of the work.
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