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1. Introduction

Fuzzy sets was introduced by Zadeh [7] in order to manage uncertainties in numerous situations
in different aspects. Then several attempts were made to generalize the notation of classical
sets and fuzzy sets. Neutrosophic set was introduced and developed by Smarandache [5].

These concepts are applied to several algebraic structure such as BCK-algebra and BCI-
algebra. BRK-algebra is a generalization of BCK-algebra and BCI-algebra introduced by
Bandaru [1]]. Then many papers have discussed some concepts in BRK-algebras (see, E1-Gendy
[2,3]], and Hayat et al. [4]).

MBJ-neutrosophic structure was introduced by Takallo et al. [6] and applied in BCK-algebra
and BClI-algebra. We aim to generalize and applied MBdJ-neutrosophic structure on BRK-
algebra.
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This paper introduces the concept of MBJ-neutrosophic ideals and subalgrbras in BRK-
algebras. We study various properties regarding these concepts. Also, a relationship between
MBJ-neutrosophic ideals and MBdJ-neutrosophic subalgrbras is presented. Moreover, various
characterisations for MBJ-neutrosophic ideals are proved.

Throught this paper, we write MBJ-NT to denote MBJ-neutrosophic.

2. Preliminaries

Recall that a BRK-algebra, P, is a non-empty set with a binary operation % and a constant 0
that satisfies the following criteria [[1]:

(i) so1%0=s01, for all so; €P.
(1) (so1 % 802) %801 = 0% 5802, for all sg1,s02 € P.
A partial ordered relation < on P is defined as follows [1]:
S01 <802 © S01 *S02 =0.
Any BRK-algebra satisfies the following properties [1]:
(1) sp1*s91 =0, for all sg1 € P.

(i1) 0x(sp1 % sp2) = (0% sg1) % (0% s02), for every so1,s02 € P.

3. MBJ-Neutrosophic Ideals
Definition 3.1 ([5]]). Let A be a non-empty set. An MBJ-NT set in A can be defined by:
Y := {(a; My(a),By(a),Jy(a)) :a € A},

in which My is a truth membership function, Jy is a false membership function and By is an
indeterminate interval-valued membership function.

Now, we are able to apply this concept to BRK-algebras.

Definition 3.2 ([5]]). Let P be a BRK-algebra. An MBJ-NT set, ¥ = (My,By,Jy), in Pis called
an MBJ-NT ideal if:

(1) For all sg; € P,
My (0) = My(so1),
By(0) = By(so1), (3.1)
Jy(0) < Jy(so1).

(i) For all S01,502,S03 € P,
My (03 s01) =2 min{My(0 % (so1 % s02)), My(0 % so2)},
By (03 s01) = rmin{By(0 % (so1 % 502)), By (0 % s02)}, (3.2)
Jy (0% s01) < max{Jy(0 % (so1 % S02)), Jy(0 % sp2)}.

Theorem 3.1. The intersection of MBJ-NT ideals of a BRK-algebra is also an MBJ-NT ideal.

Proof. Let Y1,Yo,...,Y, be MBJ-NT ideals. Then

(i)  Mpny,(0) =min{My,(0)}
= min{My,(so1)}
=Mqy,(so1),
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Boy,(0) = rmin{By,(0)}
> rmin{gyi(sw)}
=Bny,(s01),
Jrr,;(0) = max{Jy,(0)}
< max{Jy,(so1)}
=dJnr,(s01),
(i)  Mny, (0% s01) = min{My,(0 % so1)}
= min{min{My,(0 % (so1 % 502)), My,(0 % so2)}}
= min{min{My, (0 % (so1 % so2))}, min{My, (0 % so2)}}
=min{Mny,; (0% (so1 % 502)), My, (0 % s02)},
By, (0% sg1) = rmin{By,(0 % s01)}
> rmin{r min{By, (0% (so1 % 502)), By,(0 % s02)}}
= rmin{r min{ﬁyi(O % (801 % s02))}, rmin{gyi (0% so)}}
= rmin{Bny, (0 3 (so1 % 502)), By, (0% s02)},
Jry,; (0% 501) = max{Jy,(0 % so1)}
< max{max{Jy, (0% (so1 % s02)), Jv,(0 % sg2)}}
= max{max{e/y, (0 % (so1 % s02))}, max{Jy,(0 % so2)}}
=max{Jny,; (0% (so1 % 502)), Jnr, (0% sp2)}.
Thus NY; is an MBJ-NT ideal as required. O

A complement of an MBJ-NT set, Y, is an MBJ-NT set defined by:
Y =(MS,BS,J5),
where
MS=1-My, BS=1-By, Ji=1-Jy.

We now prove the following theorem:

Theorem 3.2. A subset of a BRK-algebra is an MBJ-NT ideal if and only if its complement is an
anti MBJ-NT ideal.

Proof. Let Y be an MBJ-NT ideal, this implies

(i) My (0) = My (so1),
1-My(0)<1—My(sp1),
M3 (0) < M3 (so1).
Also, since

By(0) = [B5(0), B3(0)]
= [By(s01),By(s01)]
=By(so1),
then
B5(0)=1-By(0)
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=[1-By(0),1-By(0)]
<[1-By(so1),1-By(so1)]
= BS(s01).
In addition,
Jy(0) < Jy(so1),
1-Jy(0) = 1-Jy(so),
J3(0) = Jy(s01),
(i1) My (0% s01) = min{M~ (0 % (so1 % 502)), My (0 % sp2)}
1-My(0%s01) < 1-min{My(0x (sg1 % S02)), My (0 % s02)}
My (0% s01) < max{l — My (0% (so1 % s02)), 1 — My(0 % sg2)}
=max{My(0x (so1 % s02)), My (0 5 sp2)}.
Also, since
By (0% s01) = rmin{By(0 % (s01 % 502)), By (0 % s02)}
= [min{By (0 (so1 % 502)), By (0 % s02)},
min{B7(0 % (so1 % $02)), By (0 % s02)}],
we obtain
B§(0%s01) = 1-By(0%s01)
<[1-min{By(0 % (s01 % s02)), By (0 % s02)},
1-min{B, (0% (so1 % s02)),By (0 % s502)}]
= [max{1 — By(0 % (so1 % s02)), 1 — By (0% sg2)},
max{1l— By (0% (so1 % S02)), 1 — By (0% sp2)}]
= [max{B; (0 % (so1 % s02)), By (0 % sp2)},
max{By ‘(0 % (so1 % s02)), By (0 5 502)}]
= rmax{§§(0 % (sp1 % 802)),§§(O % 502)}.
In addition,
Jy (0% s01) < max{Jy(0 % (so1 % 502)), Jy (0 % s02)}
1-Jy(0%s01) =1 —max{Jy(0 % (sp1 % s02)), Jy(0 % s02)}
Jy(0 3% s01) = min{l — Jy(0 % (sp1 % S02)), 1 — Jy(0 % s02)}
= min{J(0 % (so1 % 502)), Jy(0 % s02)}.
Thus Y€ is an anti MBJ-NT ideal. Conversely, suppose that Y°¢ is an anti MBJ-NT ideal. Then

@) M$(0) < My (so1),
1-My(0)<1-My(sg1),
My(0) = My(so1).
Note that
B$(0) < B (so1).
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Thus
1-By(0) < 1-By(sg),
By(0) = By(so1).
Also,
Jy(0) < Jy(s01),
1-Jy(0)<1-Jy(so1),
Jy(0) = Jy(so1).

(i1) M3 (0 s01) < max{M7(0 x (so1 % S02)), My(0 % sg2)}
=max{l — My(0 % (so1 % s02)), 1 — My (0 % s02)},
1-My(0%s01) <1-min{My(0 % (so1 % s02)), My (0% sg2)},
My (0% 5s91) = min{My(0 % (so1 % s02)), My (0 % s92)}.
We also have
BS(0 ¢ 501) < rmax{B5(0 % (s01 % 502)), BS(0 % 502)}
= [max{By (0 % (so1 % s02)), B, (0 % so2)},
max{B7 (0% (so1 % s02)), By (0 % sg2)}]
= [max{1 - B3(0 % (so1 % $02)), 1 — By(0 % s02)},
max{1l— By (0% (so1 % S02)), 1 — By (0% sp2)}]
= [1 - min{By(0 % (so1 % s02)), By(0 % s02)},
1 -min{B, (0% (so1 % s02)),B,(0 % so2)}].
Then
1-By(0 % s01) < [1 - min{BF(0 % (so1 % 502)), B3 (0 % 502)},
1-min{B, (0% (so1 % s02)),By (0 % s02)}]
By (0 so1) = [min{By(0  (so1 % 502)), By (0 % s02)},
min{By(0 3 (501 % 502)), By (0 % s02)}]
= rmin{By(0 % (so1 % s02)), By (0  s02)}.
Moreover,
Jy(0% s01) = min{Jy(0 % (so1 % S02)), Jy(0 % s02)}
=min{l — Jy(0 % (so1 % S02)), 1 — Jy(0 % s02)},
1-Jy(0x%5s01) = 1 —max{Jy(0 % (so1 % 502)), Jy(0 % s2)},

Jy (0% s01) < max{Jy(0 % (so1 % S02)), Jy (0% s02)}.

Theorem 3.3. Every MBJ-NT ideal in a BRK-algebra P satisfies the property:

If s91 < sq9, then
My (0% 5s01) = My (0% s02),
By(0 ¢ 501) = By (05 s02),

Jy(0%501) < Jy(0 % s02).
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Proof. Suppose that sg1,s02 € P. Let Y be an MBJ-NT ideal. Since sg1 < sg2, then sg1 % sg2 = 0.
Thus

My (0% 5s91) = min{My(0 % (so1 % S02)), My (0 % s02)}
=min{My (0% 0), My (0 % sg2)}
= min{My(0), My(0 % so2)}
= My(0 % s02),

By (05 s01) = rmin{By(0 % (so1 % s02)), By (0 % 502)}
= rmin{By (0 % 0), By (0 x s¢2)}
= rmin{By(0),By(0 * sg2)}
= By(0 % s02),

Jy (0% s01) < max{Jy (0% (so1 % s02)), Jy(0 % so2)}
= max{Jy (0% 0),Jy(0 3% sg2)}
=max{Jy(0), Jy(0 % sg2)}
=Jy(0 % s02)

as required. O

Proposition 1. Let P be a BRK-algebra. If Y is an MBJ-NT ideal and
$01 %802 = S03,
for some so1,802,503 €Y, then
My (03 so1) = min{My (0 % sg2), My (0 % s03)},
By (0 s01) = min{By (0 % s02), By (0 % s03)}, (3.3)

Jy (0% s01) < max{Jy (0% sg2),Jy(0 % s03)}.

Proof. Suppose that sg1 % sg2 < so3. Then (sg1 % sg2) * sg3 =0 and so
0 (so1 % 502) = 0% 503,
that ¥ is an MBJ-NT ideal implies
My (0 501) = min{My (0% (so1 % 502)), My (0 % s02)},
By (0% s01) = rmin{By(0 % (so1 % 502)), By (0 % so2)},
Jy (0% s01) < max{Jy(0 % (sp1 % s02)), Jy(0 % sg2)}.
But note that
My (0% (so1 % s02)) = min{My(0 3 ((so1 % S02) % S03), My (0 % s03)}
=min{My(0), My(0 % so3)}
= My (0% s03),
By (0 (so1 % s02)) = rmin{By (0 3 ((s01 % s02) * 503), By (0 % 503)}
= rmin{By(0), By (0 % s¢3)}
=By (0 s03),

Jy (0% (s01 % s02)) < max{Jy (0% ((sp1 % S02) % S03), J¥(0 % s03)}
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=max{Jy(0), Jy(0 % so3)}
= Jy(0 % s03).
Hence
My (0% s01) = min{My (0% so2), My(0 % s03)},
By (0% s01) = min{By (0 % s2), By (0 % s03)},
Jy(0 % s91) < max{Jy(0 % sg2), Jy(0 % s03)}. O

Theorem 3.4. Every MBJ-NT set in a BRK-algebra satisfying condition (3.1) and condition (3.3)
is an MBJ-NT ideal.

Proof. Let Y be an MBJ-NT set satisfying (3.1) and (3.3). Since sg1 3% sp2 < s¢1 % So2, replacing
$03 = So1 ¥ So2 in condition (3.3), we obtain

My (0% 5s91) = min{My(0 % (so1 % s02)), My (0 % s02)},
By(03¢ s01) = rmin{By(0 3% (so1 % s02)), By (0 % s02)},
Jy (0% s01) < max{Jy (0% (so1 % s02)), Sy (0 % sg2)}.
Hence Y is an MBJ-NT ideal. O

Definition 3.3. Let P be a BRK-algebra. The set
B(P) = {801 eP :0%801 =0}
is called a p-radical of P.

Proposition 2. A p-radical of a BRK-algebra is an MBJ-NT ideal.

Proof. 1t follows from the definition of a p-radical that the coditions of an MBJ-NT ideal are
fulfilled. M

4. Subalgebra
Let P be a BRK-algebra. An MBJ-NT set Y = (M y,gy, Jy) in P is called an MBJ-NT subalgebra
if:
My (so1 % s02) = min{My(so1), My (so2)},
By (so1 % so2) = rmin{By(so1), By(so2)},
Jy(s01 % s02) < max{Jy(so1),Jy(s02)},

for every s¢1,802 € P.

Theorem 4.1. Let P be a BRK-algebra and Y an MBJ-NT subalgebra. If Y satisfies condition
(3.2, then Y is an MBJ-NT ideal.

Proof. Let sg1 €Y. Then
My(0) = My(so1 % s01)
= min{My(sg1), My(s01)}
= My (so1),
By(0) = By(so1 % s01)
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> rmin{By(so1),By(so1)}
= rmin{[By(so1),By(s01)],[By(s01), By(so1)]}
=[B(s01), By(s01)]
= Ey(sol),
Jy(0) = Jy(so1 % s01)
< max{Jy(so1),Jy(so1)}
= Jy(so1). -

Definition 4.1. Let P be a BRK-algebra. The set
G(P)={sp1 € P:0%s01 =501}
is called the G-part of P.

Theorem 4.2. Let P be a BRK-algebra and Y an MBJ-NT ideal. Then Y NG(P) is an MBJ-NT
subalgebra.

Proof. Suppose that sg1,s02,503 €Y NG(P). Then
My (so1 % s02) = My (0% (s01 % s02))
= min{My (0 ((so1 % s02) % 503)), My (0 3 s¢3)}
= min{My((so1 % s02) * S03), My(s03)}
= min{My((so1 % So2) % so1), My(so1)}
= min{My(0 > so2), My(so1)}
= min{My(0 3 so2), My(so1)}
=min{My(so1), My(so2)},
By(s01 % s02) = By(0 % (501 % 502))
> rmin{By(0 % ((so1 % S02) % 503)), By (0 3 503)}
= rmin{By((so1 % s02) % 503), By (s3)}
= rmin{By((so1 3% So2) % s01), By (s01)}
= rmin{By(0 % sg2), By(so1)}
= rmin{By(0 % sgz), By(so1)}
= rmin{By(so1), By (so2)},
Jy(s01 % s02) = Jy(0 % (s01 % S02))
< max{Jy(0 % ((so1 % s02) % 503)), Jy(0 % 503)}
= max{Jy((so1 % s02) * $03), Jy(s03)}
= max{Jy((sg1 % 502) % S01), Jr(s01)}
=max{Jy (0% sg2), Jy(s91)}
= max{Jy (0% s¢2), Jy(so1)}
= max{Jy(so1), Jy(so2)}.
Therefore, Y NG(P) is an MBJ-NT subalgebra. O
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5. Conclusion

This paper introduces the notions of MBdJ-neutrosophic ideals and subalgebras within
the framework of BRK-algebras. Various properties of these structures are investigated.
In addition, the relationship between MBdJ-neutrosophic ideals and MBJ-neutrosophic
subalgebras is explored. Several characterizations of MBdJ-neutrosophic ideals are also
established.
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