Communications in Mathematics and Applications

Vol. 16, No. 1, pp. 103-111, 2025

ISSN 0975-8607 (online); 0976-5905 (print)

Published by RGN Publications

DOI: 10.26713/cma.v16i1.2915

Research Article

Application of MBJ-Neutrosophic in BRK-Algebra

Halimah Alshehri¹ and Areej Almuhaimeed*²

Received: October 20, 2024 Revised: January 17, 2025 Accepted: February 2, 2025

Abstract. This paper introduces the concept of MBJ-neutrosophic ideals and subalgrbras in BRK-algebras. We study various properties regarding these concepts. Also, a relationship between MBJ-neutrosophic ideals and MBJ-neutrosophic subalgrbras is presented. Moreover, various characterisations for MBJ-neutrosophic ideals are proved.

Keywords. MBJ-neutrosophic, BRK-algebra, Ideal, Subalgebra

Mathematics Subject Classification (2020). 03E72, 06F35

Copyright © 2025 Halimah Alshehri and Areej Almuhaimeed. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Fuzzy sets was introduced by Zadeh [7] in order to manage uncertainties in numerous situations in different aspects. Then several attempts were made to generalize the notation of classical sets and fuzzy sets. Neutrosophic set was introduced and developed by Smarandache [5].

These concepts are applied to several algebraic structure such as BCK-algebra and BCI-algebra. BRK-algebra is a generalization of BCK-algebra and BCI-algebra introduced by Bandaru [1]. Then many papers have discussed some concepts in BRK-algebras (see, El-Gendy [2, 3], and Hayat *et al.* [4]).

MBJ-neutrosophic structure was introduced by Takallo *et al*. [6] and applied in BCK-algebra and BCI-algebra. We aim to generalize and applied MBJ-neutrosophic structure on BRK-algebra.

¹ Department of Computer Science and Engineering, Faculty Applied Studies and Community Service, King Saud University, Riyadh, Saudi Arabia

² Department of Mathematics, College of Science, Taibah University, Madinah, Saudi Arabia

^{*}Corresponding author: aamuhaimeed@taibahu.edu.sa

This paper introduces the concept of MBJ-neutrosophic ideals and subalgrbras in BRK-algebras. We study various properties regarding these concepts. Also, a relationship between MBJ-neutrosophic ideals and MBJ-neutrosophic subalgrbras is presented. Moreover, various characterisations for MBJ-neutrosophic ideals are proved.

Throught this paper, we write MBJ-NT to denote MBJ-neutrosophic.

2. Preliminaries

Recall that a BRK-algebra, P, is a non-empty set with a binary operation * and a constant 0 that satisfies the following criteria [1]:

- (i) $s_{01} * 0 = s_{01}$, for all $s_{01} \in P$.
- (ii) $(s_{01} * s_{02}) * s_{01} = 0 * s_{02}$, for all $s_{01}, s_{02} \in P$.

A partial ordered relation \leq on P is defined as follows [1]:

$$s_{01} \le s_{02} \Leftrightarrow s_{01} * s_{02} = 0$$
.

Any BRK-algebra satisfies the following properties [1]:

- (i) $s_{01} * s_{01} = 0$, for all $s_{01} \in P$.
- (ii) $0 * (s_{01} * s_{02}) = (0 * s_{01}) * (0 * s_{02})$, for every $s_{01}, s_{02} \in P$.

3. MBJ-Neutrosophic Ideals

Definition 3.1 ([5]). Let A be a non-empty set. An MBJ-NT set in A can be defined by:

$$\Upsilon := \{ \langle \alpha; M_{\Upsilon}(\alpha), \widetilde{B}_{\Upsilon}(\alpha), J_{\Upsilon}(\alpha) \rangle : \alpha \in A \},$$

in which M_{Υ} is a truth membership function, J_{Υ} is a false membership function and \widetilde{B}_{Υ} is an indeterminate interval-valued membership function.

Now, we are able to apply this concept to BRK-algebras.

Definition 3.2 ([5]). Let P be a BRK-algebra. An MBJ-NT set, $Y = (M_Y, \widetilde{B}_Y, J_Y)$, in P is called an MBJ-NT ideal if:

(i) For all $s_{01} \in P$,

$$M_{\gamma}(0) \ge M_{\gamma}(s_{01}), \tilde{B}_{\gamma}(0) \ge \tilde{B}_{\gamma}(s_{01}), J_{\gamma}(0) \le J_{\gamma}(s_{01}).$$
(3.1)

(ii) For all $s_{01}, s_{02}, s_{03} \in P$,

$$M_{\gamma}(0 * s_{01}) \ge \min\{M_{\gamma}(0 * (s_{01} * s_{02})), M_{\gamma}(0 * s_{02})\}, \\ \widetilde{B}_{\gamma}(0 * s_{01}) \ge r \min\{\widetilde{B}_{\gamma}(0 * (s_{01} * s_{02})), \widetilde{B}_{\gamma}(0 * s_{02})\}, \\ J_{\gamma}(0 * s_{01}) \le \max\{J_{\gamma}(0 * (s_{01} * s_{02})), J_{\gamma}(0 * s_{02})\}.$$

$$(3.2)$$

Theorem 3.1. The intersection of MBJ-NT ideals of a BRK-algebra is also an MBJ-NT ideal.

Proof. Let $\Upsilon_1, \Upsilon_2, ..., \Upsilon_n$ be MBJ-NT ideals. Then

(i)
$$M_{\cap Y_i}(0) = \min\{M_{Y_i}(0)\}\$$

 $\geq \min\{M_{Y_i}(s_{01})\}\$
 $= M_{\cap Y_i}(s_{01}),$

$$\begin{split} \widetilde{B}_{\cap Y_i}(0) &= r \min\{\widetilde{B}_{Y_i}(0)\} \\ &\geq r \min\{\widetilde{B}_{Y_i}(s_{01})\} \\ &= \widetilde{B}_{\cap Y_i}(s_{01}), \\ J_{\cap Y_i}(0) &= \max\{J_{Y_i}(0)\} \\ &\leq \max\{J_{Y_i}(s_{01})\} \\ &= J_{\cap Y_i}(s_{01}), \\ (ii) \qquad M_{\cap Y_i}(0 *s_{01}) &= \min\{M_{Y_i}(0 *s_{01} *s_{02})), M_{Y_i}(0 *s_{02})\}\} \\ &= \min\{\min\{M_{Y_i}(0 *(s_{01} *s_{02})), \min\{M_{Y_i}(0 *s_{02})\}\} \\ &= \min\{\min\{M_{\cap Y_i}(0 *(s_{01} *s_{02})), \min\{M_{Y_i}(0 *s_{02})\}\} \\ &= \min\{M_{\cap Y_i}(0 *(s_{01} *s_{02})), M_{\cap Y_i}(0 *s_{02})\}, \\ \widetilde{B}_{\cap Y_i}(0 *s_{01}) &= r \min\{\widetilde{B}_{Y_i}(0 *(s_{01} *s_{02})), \widetilde{B}_{Y_i}(0 *s_{02})\}\} \\ &= r \min\{r \min\{\widetilde{B}_{Y_i}(0 *(s_{01} *s_{02})), r \min\{\widetilde{B}_{Y_i}(0 *s_{02})\}\} \\ &= r \min\{\widetilde{B}_{\cap Y_i}(0 *(s_{01} *s_{02})), \widetilde{B}_{\cap Y_i}(0 *s_{02})\}, \\ J_{\cap Y_i}(0 *s_{01}) &= \max\{J_{Y_i}(0 *(s_{01} *s_{02})), J_{Y_i}(0 *s_{02})\}\} \\ &= \max\{\max\{J_{Y_i}(0 *(s_{01} *s_{02})), J_{\cap Y_i}(0 *s_{02})\}\} \\ &= \max\{\max\{J_{Y_i}(0 *(s_{01} *s_{02})), J_{\cap Y_i}(0 *s_{02})\}\} \\ &= \max\{J_{\cap Y_i}(0 *(s_{01} *s_{02})), J_{\cap Y_i}(0 *s_{02})\}. \end{split}$$

Thus $\cap Y_i$ is an MBJ-NT ideal as required.

A complement of an MBJ-NT set, γ , is an MBJ-NT set defined by:

$$\Upsilon^c = (M_{\Upsilon}^c, \widetilde{B}_{\Upsilon}^c, J_{\Upsilon}^c),$$

where

$$M_{\gamma}^c = 1 - M_{\gamma}, \ \widetilde{B}_{\gamma}^c = 1 - \widetilde{B}_{\gamma}, \ J_{\gamma}^c = 1 - J_{\gamma}.$$

We now prove the following theorem:

Theorem 3.2. A subset of a BRK-algebra is an MBJ-NT ideal if and only if its complement is an anti MBJ-NT ideal.

Proof. Let Y be an MBJ-NT ideal, this implies

(i)
$$M_{\gamma}(0) \ge M_{\gamma}(s_{01}),$$

 $1 - M_{\gamma}(0) \le 1 - M_{\gamma}(s_{01}),$
 $M_{\gamma}^{c}(0) \le M_{\gamma}^{c}(s_{01}).$

Also, since

$$\widetilde{B}_{\gamma}(0) = [B_{\gamma}^{-}(0), B_{\gamma}^{+}(0)]$$

$$\geq [B_{\gamma}^{-}(s_{01}), B_{\gamma}^{+}(s_{01})]$$

$$= \widetilde{B}_{\gamma}(s_{01}),$$

then

$$\widetilde{B}_{\gamma}^{c}(0) = 1 - \widetilde{B}_{\gamma}(0)$$

$$\begin{split} &= [1 - B_{\gamma}^{+}(0), 1 - B_{\gamma}^{-}(0)] \\ &\leq [1 - B_{\gamma}^{+}(s_{01}), 1 - B_{\gamma}^{-}(s_{01})] \\ &= \widetilde{B}_{\gamma}^{c}(s_{01}). \end{split}$$

In addition,

$$J_{\gamma}(0) \le J_{\gamma}(s_{01}),$$

 $1 - J_{\gamma}(0) \ge 1 - J_{\gamma}(s_{01}),$
 $J_{\gamma}^{c}(0) \ge J_{\gamma}^{c}(s_{01}),$

(ii)
$$M_{\gamma}(0 * s_{01}) \ge \min\{M_{\gamma}(0 * (s_{01} * s_{02})), M_{\gamma}(0 * s_{02})\}\$$

 $1 - M_{\gamma}(0 * s_{01}) \le 1 - \min\{M_{\gamma}(0 * (s_{01} * s_{02})), M_{\gamma}(0 * s_{02})\}\$
 $M_{\gamma}^{c}(0 * s_{01}) \le \max\{1 - M_{\gamma}(0 * (s_{01} * s_{02})), 1 - M_{\gamma}(0 * s_{02})\}\$
 $= \max\{M_{\gamma}^{c}(0 * (s_{01} * s_{02})), M_{\gamma}^{c}(0 * s_{02})\}.$

Also, since

$$\begin{split} \widetilde{B}_{\gamma}(0 * s_{01}) \succeq r \min\{\widetilde{B}_{\gamma}(0 * (s_{01} * s_{02})), \widetilde{B}_{\gamma}(0 * s_{02})\} \\ &= [\min\{B_{\gamma}^{-}(0 * (s_{01} * s_{02})), B_{\gamma}^{-}(0 * s_{02})\}, \\ &\min\{B_{\gamma}^{+}(0 * (s_{01} * s_{02})), B_{\gamma}^{+}(0 * s_{02})\}], \end{split}$$

we obtain

$$\begin{split} \widetilde{B}_{\gamma}^{c}(0 \otimes s_{01}) &= 1 - \widetilde{B}_{\gamma}(0 \otimes s_{01}) \\ &\leq [1 - \min\{B_{\gamma}^{+}(0 \otimes (s_{01} \otimes s_{02})), B_{\gamma}^{+}(0 \otimes s_{02})\}, \\ &1 - \min\{B_{\gamma}^{-}(0 \otimes (s_{01} \otimes s_{02})), B_{\gamma}^{-}(0 \otimes s_{02})\}] \\ &= [\max\{1 - B_{\gamma}^{+}(0 \otimes (s_{01} \otimes s_{02})), 1 - B_{\gamma}^{+}(0 \otimes s_{02})\}, \\ &\max\{1 - B_{\gamma}^{-}(0 \otimes (s_{01} \otimes s_{02})), 1 - B_{\gamma}^{-}(0 \otimes s_{02})\}] \\ &= [\max\{B_{\gamma}^{-c}(0 \otimes (s_{01} \otimes s_{02})), B_{\gamma}^{-c}(0 \otimes s_{02})\}, \\ &\max\{B_{\gamma}^{+c}(0 \otimes (s_{01} \otimes s_{02})), B_{\gamma}^{+c}(0 \otimes s_{02})\}] \\ &= r \max\{\widetilde{B}_{\gamma}^{c}(0 \otimes (s_{01} \otimes s_{02})), \widetilde{B}_{\gamma}^{c}(0 \otimes s_{02})\}. \end{split}$$

In addition,

$$\begin{split} J_{\gamma}(0 * s_{01}) &\leq \max\{J_{\gamma}(0 * (s_{01} * s_{02})), J_{\gamma}(0 * s_{02})\} \\ 1 - J_{\gamma}(0 * s_{01}) &\geq 1 - \max\{J_{\gamma}(0 * (s_{01} * s_{02})), J_{\gamma}(0 * s_{02})\} \\ J_{\gamma}^{c}(0 * s_{01}) &\geq \min\{1 - J_{\gamma}(0 * (s_{01} * s_{02})), 1 - J_{\gamma}(0 * s_{02})\} \\ &= \min\{J_{\gamma}^{c}(0 * (s_{01} * s_{02})), J_{\gamma}^{c}(0 * s_{02})\}. \end{split}$$

Thus Υ^c is an anti MBJ-NT ideal. Conversely, suppose that Υ^c is an anti MBJ-NT ideal. Then

(i)
$$M_{\gamma}^{c}(0) \leq M_{\gamma}^{c}(s_{01}),$$

 $1 - M_{\gamma}(0) \leq 1 - M_{\gamma}(s_{01}),$
 $M_{\gamma}(0) \geq M_{\gamma}(s_{01}).$

Note that

$$\widetilde{B}_{\gamma}^{c}(0) \leq \widetilde{B}_{\gamma}^{c}(s_{01}).$$

Thus

$$1 - \widetilde{B}_{\gamma}(0) \le 1 - \widetilde{B}_{\gamma}(s_{01}),$$

$$\widetilde{B}_{\gamma}(0) \ge \widetilde{B}_{\gamma}(s_{01}).$$

Also,

$$J_{\gamma}^{c}(0) \le J_{\gamma}^{c}(s_{01}),$$

 $1 - J_{\gamma}(0) \le 1 - J_{\gamma}(s_{01}),$
 $J_{\gamma}(0) \ge J_{\gamma}(s_{01}).$

$$\begin{aligned} \text{(ii)} \qquad & M_{\gamma}^{c}(0 * s_{01}) \leq \max\{M_{\gamma}^{c}(0 * (s_{01} * s_{02})), M_{\gamma}^{c}(0 * s_{02})\} \\ & = \max\{1 - M_{\gamma}(0 * (s_{01} * s_{02})), 1 - M_{\gamma}(0 * s_{02})\}, \\ & 1 - M_{\gamma}(0 * s_{01}) \leq 1 - \min\{M_{\gamma}(0 * (s_{01} * s_{02})), M_{\gamma}(0 * s_{02})\}, \\ & M_{\gamma}(0 * s_{01}) \geq \min\{M_{\gamma}(0 * (s_{01} * s_{02})), M_{\gamma}(0 * s_{02})\}. \end{aligned}$$

We also have

$$\begin{split} \widetilde{B}_{\gamma}^{c}(0 \otimes s_{01}) &\leq r \max\{\widetilde{B}_{\gamma}^{c}(0 \otimes (s_{01} \otimes s_{02})), \widetilde{B}_{\gamma}^{c}(0 \otimes s_{02})\} \\ &= [\max\{B_{\gamma}^{-c}(0 \otimes (s_{01} \otimes s_{02})), B_{\gamma}^{-c}(0 \otimes s_{02})\}, \\ &\max\{B_{\gamma}^{+c}(0 \otimes (s_{01} \otimes s_{02})), B_{\gamma}^{+c}(0 \otimes s_{02})\}] \\ &= [\max\{1 - B_{\gamma}^{+}(0 \otimes (s_{01} \otimes s_{02})), 1 - B_{\gamma}^{+}(0 \otimes s_{02})\}, \\ &\max\{1 - B_{\gamma}^{-}(0 \otimes (s_{01} \otimes s_{02})), 1 - B_{\gamma}^{-}(0 \otimes s_{02})\}] \\ &= [1 - \min\{B_{\gamma}^{+}(0 \otimes (s_{01} \otimes s_{02})), B_{\gamma}^{+}(0 \otimes s_{02})\}, \\ &1 - \min\{B_{\gamma}^{-}(0 \otimes (s_{01} \otimes s_{02})), B_{\gamma}^{-}(0 \otimes s_{02})\}]. \end{split}$$

Then

$$\begin{split} 1 - \widetilde{B}_{\gamma}(0 * s_{01}) & \leq [1 - \min\{B_{\gamma}^{+}(0 * (s_{01} * s_{02})), B_{\gamma}^{+}(0 * s_{02})\}, \\ & 1 - \min\{B_{\gamma}^{-}(0 * (s_{01} * s_{02})), B_{\gamma}^{-}(0 * s_{02})\}] \\ \widetilde{B}_{\gamma}(0 * s_{01}) & \geq [\min\{B_{\gamma}^{-}(0 * (s_{01} * s_{02})), B_{\gamma}^{-}(0 * s_{02})\}, \\ & \min\{B_{\gamma}^{+}(0 * (s_{01} * s_{02})), B_{\gamma}^{+}(0 * s_{02})\}] \\ & = r \min\{\widetilde{B}_{\gamma}(0 * (s_{01} * s_{02})), \widetilde{B}_{\gamma}(0 * s_{02})\}. \end{split}$$

Moreover,

$$\begin{split} J_{\gamma}^{c}(0 * s_{01}) &\geq \min\{J_{\gamma}^{c}(0 * (s_{01} * s_{02})), J_{\gamma}^{c}(0 * s_{02})\} \\ &= \min\{1 - J_{\gamma}(0 * (s_{01} * s_{02})), 1 - J_{\gamma}(0 * s_{02})\}, \\ 1 - J_{\gamma}(0 * s_{01}) &\geq 1 - \max\{J_{\gamma}(0 * (s_{01} * s_{02})), J_{\gamma}(0 * s_{02})\}, \\ J_{\gamma}(0 * s_{01}) &\leq \max\{J_{\gamma}(0 * (s_{01} * s_{02})), J_{\gamma}(0 * s_{02})\}. \end{split}$$

Theorem 3.3. Every MBJ-NT ideal in a BRK-algebra P satisfies the property: If $s_{01} \le s_{02}$, then

$$M_{\Upsilon}(0 * s_{01}) \ge M_{\Upsilon}(0 * s_{02}),$$

 $\tilde{B}_{\Upsilon}(0 * s_{01}) \ge \tilde{B}_{\Upsilon}(0 * s_{02}),$
 $J_{\Upsilon}(0 * s_{01}) \le J_{\Upsilon}(0 * s_{02}).$

Proof. Suppose that $s_{01}, s_{02} \in P$. Let Υ be an MBJ-NT ideal. Since $s_{01} \le s_{02}$, then $s_{01} * s_{02} = 0$. Thus

$$\begin{split} M_{\Upsilon}(0 * s_{01}) &\geq \min\{M_{\Upsilon}(0 * (s_{01} * s_{02})), M_{\Upsilon}(0 * s_{02})\} \\ &= \min\{M_{\Upsilon}(0 * 0), M_{\Upsilon}(0 * s_{02})\} \\ &= \min\{M_{\Upsilon}(0), M_{\Upsilon}(0 * s_{02})\} \\ &= M_{\Upsilon}(0 * s_{02}), \\ \widetilde{B}_{\Upsilon}(0 * s_{01}) &\geq r \min\{\widetilde{B}_{\Upsilon}(0 * (s_{01} * s_{02})), \widetilde{B}_{\Upsilon}(0 * s_{02})\} \\ &= r \min\{\widetilde{B}_{\Upsilon}(0 * 0), \widetilde{B}_{\Upsilon}(0 * s_{02})\} \\ &= r \min\{\widetilde{B}_{\Upsilon}(0), \widetilde{B}_{\Upsilon}(0 * s_{02})\} \\ &= \widetilde{B}_{\Upsilon}(0 * s_{02}), \\ J_{\Upsilon}(0 * s_{01}) &\leq \max\{J_{\Upsilon}(0 * (s_{01} * s_{02})), J_{\Upsilon}(0 * s_{02})\} \\ &= \max\{J_{\Upsilon}(0 * 0), J_{\Upsilon}(0 * s_{02})\} \\ &= \max\{J_{\Upsilon}(0), J_{\Upsilon}(0 * s_{02})\} \\ &= J_{\Upsilon}(0 * s_{02}) \end{split}$$

as required.

Proposition 1. Let P be a BRK-algebra. If Y is an MBJ-NT ideal and

$$s_{01} * s_{02} \le s_{03}$$
,

for some $s_{01}, s_{02}, s_{03} \in Y$ *, then*

$$M_{\gamma}(0 * s_{01}) \ge \min\{M_{\gamma}(0 * s_{02}), M_{\gamma}(0 * s_{03})\},\$$

$$\tilde{B}_{\gamma}(0 * s_{01}) \ge \min\{\tilde{B}_{\gamma}(0 * s_{02}), \tilde{B}_{\gamma}(0 * s_{03})\},\$$

$$J_{\gamma}(0 * s_{01}) \le \max\{J_{\gamma}(0 * s_{02}), J_{\gamma}(0 * s_{03})\}.$$

$$(3.3)$$

Proof. Suppose that $s_{01} * s_{02} \le s_{03}$. Then $(s_{01} * s_{02}) * s_{03} = 0$ and so

$$0 * (s_{01} * s_{02}) = 0 * s_{03}$$

that Υ is an MBJ-NT ideal implies

$$\begin{split} &M_{\Upsilon}(0 * s_{01}) \geq \min\{M_{\Upsilon}(0 * (s_{01} * s_{02})), M_{\Upsilon}(0 * s_{02})\}, \\ &\widetilde{B}_{\Upsilon}(0 * s_{01}) \geq r \min\{\widetilde{B}_{\Upsilon}(0 * (s_{01} * s_{02})), \widetilde{B}_{\Upsilon}(0 * s_{02})\}, \\ &J_{\Upsilon}(0 * s_{01}) \leq \max\{J_{\Upsilon}(0 * (s_{01} * s_{02})), J_{\Upsilon}(0 * s_{02})\}. \end{split}$$

But note that

$$\begin{split} M_{\gamma}(0 * (s_{01} * s_{02})) &\geq \min\{M_{\gamma}(0 * ((s_{01} * s_{02}) * s_{03}), M_{\gamma}(0 * s_{03})\} \\ &= \min\{M_{\gamma}(0), M_{\gamma}(0 * s_{03})\} \\ &= M_{\gamma}(0 * s_{03}), \\ \widetilde{B}_{\gamma}(0 * (s_{01} * s_{02})) &\geq r \min\{\widetilde{B}_{\gamma}(0 * ((s_{01} * s_{02}) * s_{03}), \widetilde{B}_{\gamma}(0 * s_{03})\} \\ &= r \min\{\widetilde{B}_{\gamma}(0), \widetilde{B}_{\gamma}(0 * s_{03})\} \\ &= \widetilde{B}_{\gamma}(0 * s_{03}), \\ J_{\gamma}(0 * (s_{01} * s_{02})) &\leq \max\{J_{\gamma}(0 * ((s_{01} * s_{02}) * s_{03}), J_{\gamma}(0 * s_{03})\} \end{split}$$

Communications in Mathematics and Applications, Vol. 16, No. 1, pp. 103-111, 2025

=
$$\max\{J_{\gamma}(0), J_{\gamma}(0 * s_{03})\}$$

= $J_{\gamma}(0 * s_{03}).$

Hence

$$\begin{split} &M_{\Upsilon}(0 \circledast s_{01}) \geq \min\{M_{\Upsilon}(0 \circledast s_{02}), M_{\Upsilon}(0 \circledast s_{03})\}, \\ &\widetilde{B}_{\Upsilon}(0 \circledast s_{01}) \geq \min\{\widetilde{B}_{\Upsilon}(0 \circledast s_{02}), \widetilde{B}_{\Upsilon}(0 \circledast s_{03})\}, \\ &J_{\Upsilon}(0 \circledast s_{01}) \leq \max\{J_{\Upsilon}(0 \circledast s_{02}), J_{\Upsilon}(0 \circledast s_{03})\}. \end{split}$$

Theorem 3.4. Every MBJ-NT set in a BRK-algebra satisfying condition (3.1) and condition (3.3) is an MBJ-NT ideal.

Proof. Let Υ be an MBJ-NT set satisfying (3.1) and (3.3). Since $s_{01} * s_{02} \le s_{01} * s_{02}$, replacing $s_{03} = s_{01} * s_{02}$ in condition (3.3), we obtain

$$\begin{split} &M_{\Upsilon}(0 \circledast s_{01}) \geq \min\{M_{\Upsilon}(0 \circledast (s_{01} \circledast s_{02})), M_{\Upsilon}(0 \circledast s_{02})\}, \\ &\tilde{B}_{\Upsilon}(0 \circledast s_{01}) \geq r \min\{\tilde{B}_{\Upsilon}(0 \circledast (s_{01} \circledast s_{02})), \tilde{B}_{\Upsilon}(0 \circledast s_{02})\}, \\ &J_{\Upsilon}(0 \circledast s_{01}) \leq \max\{J_{\Upsilon}(0 \circledast (s_{01} \circledast s_{02})), J_{\Upsilon}(0 \circledast s_{02})\}. \end{split}$$

Hence γ is an MBJ-NT ideal.

Definition 3.3. Let P be a BRK-algebra. The set

$$B(P) = \{s_{01} \in P : 0 * s_{01} = 0\}$$

is called a *p*-radical of *P*.

Proposition 2. A p-radical of a BRK-algebra is an MBJ-NT ideal.

Proof. It follows from the definition of a p-radical that the coditions of an MBJ-NT ideal are fulfilled.

4. Subalgebra

Let P be a BRK-algebra. An MBJ-NT set $Y = (M_Y, \widetilde{B}_Y, J_Y)$ in P is called an MBJ-NT subalgebra if:

$$\begin{split} &M_{\Upsilon}(s_{01} *s_{02}) \geq \min\{M_{\Upsilon}(s_{01}), M_{\Upsilon}(s_{02})\}, \\ &\widetilde{B}_{\Upsilon}(s_{01} *s_{02}) \geq r \min\{\widetilde{B}_{\Upsilon}(s_{01}), \widetilde{B}_{\Upsilon}(s_{02})\}, \\ &J_{\Upsilon}(s_{01} *s_{02}) \leq \max\{J_{\Upsilon}(s_{01}), J_{\Upsilon}(s_{02})\}, \end{split}$$

for every $s_{01}, s_{02} \in P$.

Theorem 4.1. Let P be a BRK-algebra and Y an MBJ-NT subalgebra. If Y satisfies condition (3.2), then Y is an MBJ-NT ideal.

Proof. Let
$$s_{01} ∈ Y$$
. Then
$$M_{Y}(0) = M_{Y}(s_{01} * s_{01})$$
≥ min{ $M_{Y}(s_{01}), M_{Y}(s_{01})$ }
$$= M_{Y}(s_{01}),$$
 $\widetilde{B}_{Y}(0) = \widetilde{B}_{Y}(s_{01} * s_{01})$

Communications in Mathematics and Applications, Vol. 16, No. 1, pp. 103–111, 2025

$$\geq r \min\{\widetilde{B}_{\gamma}(s_{01}), \widetilde{B}_{\gamma}(s_{01})\}$$

$$= r \min\{[B_{\gamma}^{-}(s_{01}), B_{\gamma}^{+}(s_{01})], [B_{\gamma}^{-}(s_{01}), B_{\gamma}^{+}(s_{01})]\}$$

$$= [B_{\gamma}^{-}(s_{01}), B_{\gamma}^{+}(s_{01})]$$

$$= \widetilde{B}_{\gamma}(s_{01}),$$

$$J_{\gamma}(0) = J_{\gamma}(s_{01} * s_{01})$$

$$\leq \max\{J_{\gamma}(s_{01}), J_{\gamma}(s_{01})\}$$

$$= J_{\gamma}(s_{01}).$$

Definition 4.1. Let P be a BRK-algebra. The set

$$G(P) = \{s_{01} \in P : 0 * s_{01} = s_{01}\}$$

is called the G-part of P.

Theorem 4.2. Let P be a BRK-algebra and Y an MBJ-NT ideal. Then $Y \cap G(P)$ is an MBJ-NT subalgebra.

Proof. Suppose that $s_{01}, s_{02}, s_{03} \in Y \cap G(P)$. Then $M_{\gamma}(s_{01} * s_{02}) = M_{\gamma}(0 * (s_{01} * s_{02}))$ $\geq \min\{M_{\gamma}(0 * ((s_{01} * s_{02}) * s_{03})), M_{\gamma}(0 * s_{03})\}$ $= \min\{M_{\gamma}((s_{01} * s_{02}) * s_{03}), M_{\gamma}(s_{03})\}\$ $= \min\{M_{\gamma}((s_{01} * s_{02}) * s_{01}), M_{\gamma}(s_{01})\}\$ $= \min\{M_{\gamma}(0 * s_{02}), M_{\gamma}(s_{01})\}\$ $= \min\{M_{\gamma}(0 * s_{02}), M_{\gamma}(s_{01})\}\$ $= \min\{M_{\gamma}(s_{01}), M_{\gamma}(s_{02})\},\$ $\widetilde{B}_{\gamma}(s_{01} * s_{02}) = \widetilde{B}_{\gamma}(0 * (s_{01} * s_{02}))$ $\geq r \min\{\widetilde{B}_{\gamma}(0 * ((s_{01} * s_{02}) * s_{03})), \widetilde{B}_{\gamma}(0 * s_{03})\}$ $= r \min{\{\widetilde{B}_{\gamma}((s_{01} * s_{02}) * s_{03}), \widetilde{B}_{\gamma}(s_{03})\}}$ $= r \min\{\widetilde{B}_{\gamma}((s_{01} * s_{02}) * s_{01}), \widetilde{B}_{\gamma}(s_{01})\}$ $= r \min\{\widetilde{B}_{\gamma}(0 * s_{02}), \widetilde{B}_{\gamma}(s_{01})\}$ $= r \min\{\widetilde{B}_{\gamma}(0 * s_{02}), \widetilde{B}_{\gamma}(s_{01})\}$ $= r \min\{\widetilde{B}_{\gamma}(s_{01}), \widetilde{B}_{\gamma}(s_{02})\},$ $J_{\gamma}(s_{01} * s_{02}) = J_{\gamma}(0 * (s_{01} * s_{02}))$ $\leq \max\{J_{\gamma}(0*((s_{01}*s_{02})*s_{03})),J_{\gamma}(0*s_{03})\}$ $= \max\{J_{\gamma}((s_{01} * s_{02}) * s_{03}), J_{\gamma}(s_{03})\}$ $= \max\{J_{\gamma}((s_{01} * s_{02}) * s_{01}), J_{\gamma}(s_{01})\}\$

> = $\max\{J_{\gamma}(0 * s_{02}), J_{\gamma}(s_{01})\}$ = $\max\{J_{\gamma}(0 * s_{02}), J_{\gamma}(s_{01})\}$ = $\max\{J_{\gamma}(s_{01}), J_{\gamma}(s_{02})\}.$

Therefore, $Y \cap G(P)$ is an MBJ-NT subalgebra.

5. Conclusion

This paper introduces the notions of MBJ-neutrosophic ideals and subalgebras within the framework of BRK-algebras. Various properties of these structures are investigated. In addition, the relationship between MBJ-neutrosophic ideals and MBJ-neutrosophic subalgebras is explored. Several characterizations of MBJ-neutrosophic ideals are also established.

Competing Interests

The authors declare that they have no competing interests.

Authors' Contributions

All the authors contributed significantly in writing this article. The authors read and approved the final manuscript.

References

- [1] R. K. Bandaru, On BRK-algebras, *International Journal of Mathematics and Mathematical Sciences* **2012**(1) (2012), 952654, DOI: 10.1155/2012/952654.
- [2] O. R. El-Gendy, Anti fuzzy BRK-ideal of BRK-algebra, *Journal of Advances in Mathematics and Computer Science* **10**(6) (2015), 1 9, DOI: 10.9734/bjmcs/2015/19309.
- [3] O. R. El-Gendy, Intuitionistic Fuzzy BRK-ideal of BRK-algebra with interval-valued membership and non membership functions, *International Journal of Fuzzy Mathematical Archive* **12**(01) (2017), 11 21, DOI: 10.22457/ijfma.v12n1a2.
- [4] K. Hayat, X.-C. Liu and B.-Y. Cao, Bipolar fuzzy BRK-ideals in BRK-algebras, in: *Fuzzy Information and Engineering and Decision*, B. Y. Cao (editor), Advances in Intelligent Systems and Computing series, Vol. 646, Springer, Cham. (2018), DOI: 10.1007/978-3-319-66514-6_1.
- [5] F. Smarandache, Neutrosophic set a generalisation of the intuitionistic fuzzy sets, in: 2006 IEEE International Conference on Granular Computing (Atlanta, GA, USA, 2006), pp. 38 – 42 (2006), DOI: 10.1109/grc.2006.1635754.
- [6] M. M. Takallo, R. A. Borzooei and Y. B. Jun, MBJ-neutrosophic structures and its applications in BCK/BCI-algebras, *Neutrosophic Sets and Systems* **23**(1) (2018), 72 84.
- [7] L. A. Zadeh, Fuzzy sets, *Information and Control* **8**(3) (1965), 338 353, DOI: 10.1016/S0019-9958(65)90241-X.

