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1. Introduction
The nonlinear equation f (x) = 0 is one of the biggest issues facing scientific computers,
engineering, and applied mathematics in general. The method that is most frequently used to
solve nonlinear equations is Newton’s iteration method. Newton’s approach has been refined by
other academics to achieve higher order convergence and more accurate findings, see e.g.,
Cordero et al. [10], Curry et al. [11], Huang et al. [12], Madhu [16], Nadeem et al. [17],
Soleymani et al. [23], Vrscay [25], Vrscay and Gilbert [26]. In addition, the Efficiency Index (EI)
is a widely used technique to evaluate the effectiveness of various iterative approaches. The
definition of this index is p1/m, where m is the number of functional evaluations required at each
iteration and p is the convergence order. If and only if the iterative method with m functional
evaluations has an order of convergence equal to 2m−1, according to the conjecture of Kung
and Traub [14]. The most effective iterative methods for varied convergence orders have been
developed by numerous scholars. Typically, the composition methodology is used to construct an
optimal method, along with a few approximations and interpolations to minimise the amount of
functional evaluations needed at each iteration. Various optimal fourth order and eighth order
iterative techniques were developed, see e.g., Abdullah et al. [1,2], Wang and Li [27,28]. Further,
we studied the behaviour of iterative scheme in the complex plane. Furthermore, a number of
researchers have applied these concepts to many iterative schemes (Amat et al. [3,4], Cordero
et al. [10], Curry et al. [11], Soleymani et al. [23], Tao and Madhu [24], Vrscay [25], Vrscay and
Gilbert [26]), which discussed the basin of attraction of a few well-known iterative schemes.

The rest of the paper is set up as follows. The proposed strategies have been developed and
their convergence analysis is covered in Section 2. The performance of the proposed approaches
and other comparison methods is shown in Section 3 and is supported by numerical examples.
Solve a real-world applications in Section 4 to demonstrate the efficacy of the suggested
techniques. Section 5 uses basins of attraction to study the suggested methods in the complex
plane. Section 6 provides concluding observations.

2. Construction of Proposed Methods
We will define an Iterative Function (IF) by xn+1 =ψ(x). Using the additional information at
x,φ1(x), . . . ,φi(x), i ≥ 1, let xn+1 be calculated. Nothing from the past is utilised. Consequently,

xn+1 =ψ(x,φ1(x), . . . ,φi(x)). (2.1)

A multipoint IF without memory is then defined as ψ.
The Newton-Raphson (also known as Newton-IF) (NR2) is provided by

ψNR2(x)= x−u(x), u(x)= f (x)
f ′(x)

. (2.2)

With two function evaluations, the (NR2) IF is a one-point IF that meets the Kung-Traub
conjecture for d = 2. Also, EINR2 = 1.414.
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2.1 Proposed Optimal Fourth Order IF
In this way, we attempt to derive a new optimal fourth order IF,

ψSSDM4(x)=ψNR2(x)−H(τ)
f (ψNR2(x))

f ′(x)
,

H(τ)= H(1)+ (τ−1)H′(1)+ 1
2

(τ−1)2H′′(1)+ . . . and τ= 1− f (ψNR2(x))
f (x)

.

 (2.3)

The next theorem addresses the selection of the parameter |H′′(1)| for which the suggested
(2.3) approach has the best fourth order convergence.

Theorem 2.1. Assume that the function f : D ⊂R→R has continuous derivatives and is suitably
smooth. If x0 is selected in a suitably small neighborhood of x∗ and f (x) has a simple root x∗ in
the open interval D, then the approach (2.3) has fourth order convergence, when

H(1)= 1, H′(1)=−2, |H′′(1)| <∞ . (2.4)

The error equation is satisfied,

en+1 =
((

5− H′′(1)
2

)
c3

2 − c2c3

)
e4 +O(e5), (2.5)

c j = f ( j)(x∗)
j! f ′(x∗)

, j = 2,3,4, . . . and e = x− x∗.

Proof. Let ẽ = ψNR2(x)− x∗, ê = ψSSDM4(x)− x∗. Extending f (x) and f ′(x) around x∗ using
Taylor’s technique, we have

f (x)= f ′(x∗)(e+ c2e2 + c3e3 + c4e4 + c5e5 + c6e6 + c7e7 + c8e8 +O(e9)) (2.6)

and

f ′(x)= f ′(x∗)(1+2c2e+3c3e2 +4c4e3 +5c5e4 +6c6e5 +7c7e6 +8c8e7 +9c9e8 +O(e9)).
(2.7)

Thus,

ẽ = c2e2 + (2c3 −2c2
2)e3 + (−7c2c3 +4c3

2 +3c4)e4 + (−8c4
2 +20c2

2c3 −6c2
3 −10c2c4 +4c5)e5

+ (16c5
2 −52c3

2c3 +28c2
2c4 −17c3c4 + c2(33c2

3 −13c5)+5c6)e6

−2(16c6
2 −64c4

2c3 −9c3
3 +36c3

2c4 +6c2
4 +9c2

2(7c2
3 −2c5)+11c3c5 + c2(−46c3c4 +8c6)−3c7)e7

+ (64c7
2 −304c5

2c3 +176c4
2c4 +75c2

3c4 + c3
2(408c2

3 −92c5)−31c4c5 −27c3c6

+ c2
2(−348c3c4 +44c6)+ c2(−135c3

3 +64c2
4 +118c3c5 −19c7)+7c8)e8 + . . . . (2.8)

Using Taylor’s approach, we may expand f (ψNR2(x)) about x∗ and obtain

f (ψNR2(x))= f ′(x∗)(ẽ+ c2 ẽ2 + c3 ẽ3 + c4 ẽ4 +O(ẽ5)). (2.9)

We obtain by simplifying and substituting these equations (2.6)-(2.8) and (2.4) in the (2.3),

ψSSDM4(x)− x∗ =
((

5− H′′(0)
2

)
c3

2 − c2c3)
)

e4 +O(e5).

This shows that fourth-order convergence is achieved by the suggested classes of approaches.

We are able to generate a new optimal fourth order method in (2.4) by selecting any random
value for H′′(1). Selecting H′′(1)= 2 yields new suggested approaches as follows:
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ψSSDM4(x)=ψNR2(x)−H(τ)
f (ψNR2(x))

f ′(x)
,

H(τ)= 1−2(τ−1)+ (τ−1)2andτ= 1− f (ψNR2(x))
f (x)

.

 (2.10)

This method (2.10) has the following error equation ψSSDM4(x)− x∗ = (4c3
2 − c2c3))e4 +O(e5).

EISSDM4 = 1.587 is the efficiency of the method (2.15).

2.2 An Eighth-Order Optimum Technique
Next, we try the following method to obtain a new optimal eighth order IF,

ψSSDM8(x)=ψSSDM4(x)− f (ψSSDM4(x))
f ′(ψSSDM4(x))

.

With five function evaluations, the aforementioned one exhibits eighth order convergence.
However, this is not the best approach. In order to estimate f ′(ψSSDM4(x)), we must minimise
a function while maintaining the same convergence order. This polynomial is used to estimate
the optimal,

q(t)= b3(t− x)3 +b2(t− x)2 +b1(t− x)+b0, (2.11)

which fulfills

q′(x)= f ′(x), q(x)= f (x), q(ψNR2(x))= f (ψNR2(x)), q(ψSSDM4(x))= f (ψSSDM4(x)).

When the aforementioned requirements are applied to (2.11), there are generated four linear
equations: b0, b1, b2, and b3. b0 = f (x) and b1 = f ′(x) follow from q(x) = f (x), q′(x) = f ′(x).
b2 and b3 are found by solving these equations:

f (ψNR2(x))= b3(ψNR2(x)− x)3 +b2(ψNR2(x)− x)2 + f ′(x)(ψNR2(x)− x)+ f (x),

f (ψSSDM4(x))= b3(ψSSDM4(x)− x)3 +b2(ψSSDM4(x)− x)2 + f ′(x)(ψSSDM4(x)− x)+ f (x).

Therefore, by using divided differences, the aforementioned equations become simpler to

f [ψNR2(x), x, x]= b2 +b3(ψNR2(x)− x), (2.12)

f [ψSSDM4(x), x, x]= b2 +b3(ψSSDM4(x)− x). (2.13)

Equations (2.12) and (2.13) can be solved to yield

b2 =
f [ψNR2(x), x, x](ψSSDM4(x)− x)− f [ψSSDM4(x), x, x](ψNR2(x)− x)

ψSSDM4(x)−ψNR2(x)
,

b3 =
f [ψSSDM4(x), x, x]− f [ψNR2(x), x, x]

ψSSDM4(x)−ψNR2(x)
.

 (2.14)

Furthermore, we have the estimation using eq. (2.14),

f ′(ψSSDM4(x))≈ q′(ψSSDM4(x))= b1 +2b2(ψSSDM4(x)− x)+3b3(ψSSDM4(x)− x)2.

Lastly, we provide a fresh, eighth-order optimum technique as

ψSSDM8(x)=ψSSDM4(x)− f (ψSSDM4(x))
f ′(x)+2b2(ψSSDM4(x)− x)+3b3(ψSSDM4(x)− x)2 . (2.15)

EISSDM8 = 1.682 is the efficiency of the approach (2.15).
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We use MATHEMATICA software to demonstrate the convergence analysis of the suggested
IFs (2.15).

Theorem 2.2. Assume that the function f : D ⊂R→R is sufficiently smooth and has derivatives
that are continuous. When x0 is selected within a suitably small neighbourhood of x∗ and f (x)
has a simple root x∗ in the open interval D, the (2.15) is of eighth order convergence and fulfils
the error equation:

ψSSDM8(x)− x∗ = c2
2(4c2

2 − c3)(4c3
2 − c2c3 + c4)e8 +O(e9) . (2.16)

3. Numerical Examples
We will test a number of cases to demonstrate the effectiveness of the new optimal schemes,
SSDM4 and SSDM8. We compare the new schemes with the optimal fourth-order methods SB4

presented by Sharma and Bahl [21], CM4 proposed by Chun et al. [6], SJ4 presented by Singh
and Jaiswal [22], and optimal eighth order methods KT8 proposed by Kung and Traub [14],
LW8 presented by Liu and Wang [15], PNPD8 developed by Petkovic et al. [18], SA8 proposed
by Sharma and Arora [20], CFGT8 presented by Cordero et al. [7], CTV8 developed by Cordero
et al. [9].

500 significant digits have been used in numerical calculations performed in the MATLAB

program. The halting criteria for the iterative process meeting error = |xN − xN−1| < ϵ, where
the number of iterations required for convergence is N and ϵ= 10−50, has been applied. The order
of convergence in computing is provided by (Cordero and Torregrosa [8]),

ρ = ln |(xN − xN−1)/(xN−1 − xN−2)|
ln |(xN−1 − xN−2)/(xN−2 − xN−3)| .

Below are the test functions for our investigation along with their simple zeros:

f1(x)= sin(2cos x)−1− x2 + esin(x3), x∗ =−0.7848259876612125352 . . . ,

f2(x)= xex2 −sin2x+3cos x+5, x∗ =−1.2076473271309189270 . . . ,

f3(x)= x3 +4x2 −10, x∗ = 1.3652100134140968457 . . . ,

f4(x)= sin(x)+cos(x)+ x, x∗ =−0.4566447045676308244 . . . ,

f5(x)= x
2
−sin x, x∗ = 1.8953942670339809471 . . . ,

f6(x)= x2 +sin
( x
5

)
− 1

4
, x∗ = 0.4099220179891371316 . . . .

The equivalent results for f1− f6 are displayed in Table 1. When compared to other methods,
we find that the suggested method SSDM4 converges with the least amount of error and in
fewer or equivalent iterations. Take note that in the f5 function, the SB4 and SJ4 techniques
are diverging. As a result, the suggested approach SSDM4 can be regarded as sufficiently
competent in comparison to other comparable present methods.

Additionally, the related results for f1 − f6 are displayed in Tables 2-4. The theoretical order
and the computational order of convergence coincide for all examined functions. It is seen
that the 8thPNPD technique is diverging in the function f5, whereas the suggested method
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is convergent with fewer iterations and minimal error. The suggested approach is generally
convergent with fewer iterations and a lower total number of functional evaluations (TNFE)
with the least amount of error. As a result, the suggested approach SSDM8 can be regarded as
sufficiently competent in comparison to other similar current methods.

Table 1. Comparison of numerical outcomes

N TNFE |xN − xN−1| ρ N TNFE |xN − xN−1| ρ

Methods f1(x), x0 =−0.9 f2(x), x0 =−1.6

NR2 7 14 7.7336e-74 1.99 9 18 9.2727e-74 1.99

SB4 4 12 9.7235e-64 3.99 5 15 1.4267e-65 3.99

CM4 4 12 1.4696e-64 3.99 5 15 1.1070e-72 3.99

SJ4 4 12 3.0633e-62 3.99 5 15 9.9781e-56 3.99

SSDM4 4 12 6.0046e-71 3.99 5 15 7.29140e-129 4.00

Methods f3(x), x0 = 0.9 f4(x), x0 =−1.9

NR2 8 16 1.3534e-72 2.00 8 16 1.6062e-72 1.99

SB4 5 15 4.5742e-106 3.99 5 15 6.0481e-92 3.99

CM4 5 15 4.7335e-108 3.99 5 15 2.7342e-93 3.99

SJ4 5 15 3.0354e-135 3.99 5 15 9.5023e-95 3.99

SSDM4 5 15 2.6336e-166 3.99 5 15 1.4403e-112 3.99

Methods f5(x), x0 = 1.2 f6(x), x0 = 0.8

NR2 9 18 1.3564e-83 1.99 8 16 3.2034e-72 1.99

SB4 Diverge 5 15 2.8269e-122 3.99

CM4 14 42 6.8660e-134 3.99 5 15 7.8638e-127 3.99

SJ4 Diverge 5 15 1.4355e-114 3.99

SSDM4 6 18 2.3555e-152 3.99 5 15 1.1419e-159 3.99

Table 2. Comparison of numerical outcomes

N TNFE |xN − xN−1| ρ N TNFE |xN − xN−1| ρ

Methods f1(x), x0 =−0.9 f2(x), x0 =−1.6

KT8 3 12 1.6238e-61 7.91 4 16 7.2890e-137 7.99

LW8 3 12 4.5242e-59 7.91 4 16 1.1195e-170 8.00

PNPD8 3 12 8.8549e-56 7.87 4 16 2.3461e-85 7.99

SA8 3 12 3.4432e-60 7.88 4 16 8.4343e-121 8.00

CFGT8 3 12 1.1715e-82 7.77 5 16 2.0650e-183 7.99

CTV8 3 12 4.4923e-61 7.94 4 16 2.3865e-252 7.99

SSDM8 3 12 1.1416e-96 7.96 4 16 8.9301e-269 8.00
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Table 3. Comparison of numerical outcomes

N TNFE |xN − xN−1| ρ N TNFE |xN − xN−1| ρ

Methods f3(x), x0 = 0.9 f4(x), x0 =−1.9

KT8 4 16 5.0765e-216 7.99 4 16 5.5095e-204 8.00

LW8 4 16 2.7346e-213 7.99 4 16 3.7210e-146 8.00

PNPD8 4 16 9.9119e-71 8.02 4 16 2.0603e-116 7.98

SA8 4 16 1.5396e-122 8.00 4 16 2.2735e-136 7.99

CFGT8 4 16 2.4091e-260 7.99 4 16 4.7007e-224 7.99

CTV8 4 16 3.8782e-288 8.00 4 16 3.7790e-117 7.99

SSDM8 4 16 3.5460e-319 7.99 4 16 2.9317e-235 7.99

Table 4. Comparison of numerical outcomes

N TNFE |xN − xN−1| ρ N TNFE |xN − xN−1| ρ

Methods f5(x), x0 = 1.2 f6(x), x0 = 0.8

KT8 5 20 2.6836e-182 7.99 4 16 6.0701e-234 7.99

LW8 6 24 4.6640e-161 7.99 4 16 6.1410e-228 7.99

PNPD8 Diverge 4 16 3.6051e-190 7.99

SA8 7 32 2.1076e-215 9.00 4 16 5.9608e-245 8.00

CFGT8 5 20 0 7.99 4 16 1.0314e-232 7.99

CTV8 5 20 1.6474e-219 9.00 4 16 1.0314e-274 8.00

SSDM8 4 16 1.3183e-98 7.98 4 16 1.2160e-296 7.99

4. Applications to Projectile Motion Problem
The classical projectile problem is examined by Babajee and Madhu [5], and Kantrowitz and
Neumann [13], where a projectile is launched onto a hill at an angle θ relative to the horizontal
and from a tower of height h > 0. The impact function, defined by the function ω, is dependent on
the horizontal distance, x. The ideal launch angle θm that maximises the horizontal distance is
what we are looking for. We do not account for air resistances in our calculations. The projectile’s
motion is described by the path function y= P(x), which is provided by

P(x)= h+ xtanθ− gx2

2v2 sec2θ (4.1)

Following the projectile’s impact with the hill, P(x) = ω(x) for a given value x. Finding θ at
a value that maximises x is our goal,

ω(x)= P(x)= h+ xtanθ− gx2

2v2 sec2θ (4.2)
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By implicitly differentiating equation (4.2) with respect to θ, we obtain

ω′(x)
dx
dθ

= xsec2θ+ dx
dθ

tanθ− g
v2

(
x2 sec2θ tanθ+ x

dx
dθ

sec2θ

)
(4.3)

Setting dx
dθ = 0 in eq. (4.3), we have

xm = v2

g
cotθm (4.4)

or

θm = arctan
(

v2

g xm

)
(4.5)

A path that encompasses and intersects every feasible path is known as an encompassing
parabola. By maximising the projectile’s height for a given horizontal distance x, Henelsmith1

constructed an enveloping parabola, which will yield the path that encloses all potential
trajectories. Let w = tanθ, then eq. (4.1) becomes

y= P(x)= h+ xw− gx2

2v2 (1+w2) . (4.6)

Using y′ = 0 and differentiating eq. (4.6) with respect to w, Henelsmith obtained

y′ = x− xg2

v2 (w)= 0,

w = v2

gx
,

 (4.7)

so that the enveloping parabola defined by

ym = ρ(x)= h+ v2

2g
− gx2

2v2 . (4.8)

Identifying xm that fulfills the equation ρ(x) = ω(x) and calculating θm using eq. (4.5) are
the first steps in solving the projectile problem because we need to determine the point on
the enveloping parabola ρ where it intersects the impact function ω. Next, we need to determine
the value of θ that, on the surrounding parabola, corresponds to this point. With h = 10 and
v = 20, we select an impact function that is linear ω(x) = 0.4x. Let g = 9.8. The non-linear
equation is then solved by using our IFs beginning at x0 = 30,

f (x)= ρ(x)−ω(x)= h+ v2

2g
− gx2

2v2 −0.4x ,

whose root is given by xm = 36.102990117 . . . and

θm = arctan
(

v2

g xm

)
= 48.5◦.

The proposed approach SSDM8 is converging more effectively than the other compared
methods, as Table 5 demonstrates. Furthermore, we note that the theoretical order of
convergence and the computational order of convergence coincide.

1N. Henelsmith, Projectile Motion: Finding the Optimal Launch Angle, Whitman College, Washington, USA, 38
pages (2016), URL: https://www.whitman.edu/Documents/Academics/Mathematics/2016/Henelsmith.pdf.
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Table 5. Projectile problem outcomes

IF N error cpu time(s) ρ

NR2 7 4.3980e-76 1.074036 1.99

SSDM4 4 4.3980e-76 0.902015 3.99

KT8 3 1.5610e-66 0.658235 8.03

LW8 3 7.8416e-66 0.672524 8.03

PNPD8 3 4.2702e-57 0.672042 8.05

SA8 3 1.2092e-61 0.654623 8.06

CTV8 3 3.5871e-73 0.689627 8.02

SSDM8 3 4.3980e-80 0.513142 8.02

5. Basins of Attraction
Analysing the rational function’s dynamic behaviour in relation to an iterative process provides
valuable insights into the method’s stability and convergence. Amat et al. [4] and Scott et al. [19]
provide fundamental definitions and dynamic notions of rational functions.

Applying our iterative methods, we pick a square with 256×256 points that is R×R =
[−2,2]× [−2,2]. We start in every z(0) in the square. If, for a maximum of 100 iterations, the
sequence generated by the iterative technique attempts a zero z∗j of the polynomial with a
tolerance | f (z(k))| < 1e−4, we conclude that z(0) is in the basin of attraction of this zero. We
label this point z(0) with colours if |z(N) − z∗j | < 1e−4. This is done if the iterative technique, it
begins in z(0) and, in N iterations (N ≤ 100), reaches a zero. We determine that the starting
point has diverged if N > 50, and we apply a dark blue colour. The following describes the basins
of attraction for the Newton’s method and a few higher order Newton-type methods for finding
the complex roots of the polynomials p1(z)= z3 −1 and p2(z)= z5 −1.

Figure 1 displays the polynomiographs for the approaches to the polynomials p1(z) and p2(z)
for the NR2. The polynomiographs for the fourth order iterative approaches for the polynomial
p1(z) are displayed in Figure 2. The polynomiographs for the ninth order iterative approaches
for the polynomial p1(z) are displayed in Figure 3. The polynomiographs for the fourth order
iterative approaches for the polynomial p2(z) are displayed in Figure 4. The polynomiographs
for the ninth order iterative approaches for the polynomial p2(z) are displayed in Figure 5.

It is noted that the performance of the approaches NR2, SSDM4, and SSDM8 is remarkable
in the p1(z). In close proximity of the boundary points, the methods SB4, KT8, and LW8, exhibit
some chaotic behaviour. In this scenario, the approaches CM4, SJ4, PNPD8, SA8, and CFGT8

are sensitive to the initial guess selection.
Also note that the approaches SSDM4 and SSDM8 exhibit some chaotic behaviour in the

vicinity of the boundary points for p2(z). NR2, SB4, CM4, and SJ4 are the techniques KT8, In
this instance, the values of LW8, PNPD8, SA8, and CFGT8 are all sensitive to the initial guess
made.

Communications in Mathematics and Applications, Vol. 16, No. 1, pp. 173–186, 2025



182 Optimal Fourth- and Eighth-Order Iterative Solver and Their Basins of Attraction: S. Murthy et al.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

NR2 for p1(z)= z3 −1 NR2 for p2(z)= z5 −1

Figure 1. Newton’s technique (NR2) basins of attraction
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Figure 3. p1(z)= z3 −1 basins of attraction

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

SB4 CM4 SJ4

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

SSDM4

Figure 4. p1(z)= z5 −1 basins of attraction
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Figure 5. p1(z)= z5 −1 basins of attraction

6. Conclusion
In this work, we established a family of iterative algorithms for solving nonlinear equations that
is optimal at the fourth and eighth orders, respectively. Three and four function evaluations are
needed for the approach to obtain an order of convergence of four and eight, respectively. The
Kung-Traub conjecture is met in the sense of convergence analysis and numerical examples. To
demonstrate the superiority of the proposed methods SSDM4 and SSDM8, we have tested few
examples with existing recognised methods. According to the results of the numerical results,
the new methods could be a useful alternative for solving nonlinear equations. Additionally,
we address a real-world application to demonstrate the efficacy of the proposed methods. By
displaying their corresponding fractals, more research has been done on the complex plane to
uncover the basins of attraction of such approaches for solving nonlinear equations.
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