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1. Introduction

All graphs considered in this paper are all connected, finite, simple and undirected. A graph
G =(V,E) is an ordered pair, where V is a finite non-empty set and E is a set of unordered pair
of distinct elements of V. The vertex-set of G whose elements are called vertices is denoted
by V =V(G) and E = E(G) is called the edge-set of G whose elements are called edges. For
definitions of the special graphs considered in this study, please refer to Aslam et al. [3],
Asmiati [4], Chartrand and Zhang [5], and Haryanti et al. [7].

A vertex v in a graph G is said to dominate itself and each of its neighbors, that is, v
dominates the vertices in its closed neighborhood N[v]. A set S of vertices of G is a dominating
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set of G if every vertex of G is dominated by at least one vertex of S. Equivalently, a set S
of vertices of G is a dominating set if every vertex in V(G)—- S is adjacent to at least one
vertex in S. The minimum cardinality among the dominating sets of G is called the domination
number of G and is denoted by y(G). A dominating set of cardinality y(G) is the referred to as a
minimum dominating set (Chartrand and Zhang [5]). The importance of domination in various
applications, led to the appearance of different types of domination according to the purpose
used (Gayathri et al. [6], Haynes et al. [8], and Venkateswari [9]). One of these is pitchfork and
inverse pitchfork domination which were introduced by Abdlhusein and Al-Harere [1,2].

A dominating set D of V is called a pitchfork dominating set if every vertex in it dominates
at least j vertices and at most & vertices of V — D, for any non-negative integers j and k.
The pitchfork domination number of G, denoted by y,(G) is a minimum cardinality over all
pitchfork dominating sets in G (Al-Harere and Abdlhusein [2]). In this paper, the pitchfork
domination when j =1 and k£ =2 are applied on the graphs.

2. Results and Discussions

The Pitchfork Domination Number of K; +K,, 5, Bo, Fo, and K; +Fg,,
The following are the result from the paper of Abdlhusien and Al-Harere [1,2] which will be
used in the proof of the graphs used in this paper.

Theorem 2.1 ([2])). Let G be a wheel graph W,,, then:

2[21—1 if n=1 (mod 4)
W — 4 b b
Vo (Wn) {2[%], otherwise.

Theorem 2.2 ([1]]). If G is a graph of order n, then:
(D) ypf(GoK2)=7,(GoKg) =ypr(GoK2)=y,(GoKg)=n,
(2) Ypr(G+K2)=7,(G+K2)=7,(G+K2)=y,r(G+K3)=n,
3) Ypr(GoK1)=y,r(GoKy)=n.
Lemma below will be used in determining the y, (G cK ) in Theorem
Lemma 2.3. Let Py be a path graph of order 2 and K, be the empty graph of order n = 3. Then,
the following are the only pitchfork dominating sets of Py +K,,,
A= {U]_,UQ,. . 'avn}a
B=(V(E,\{v;))u{u}, where i€ {1,2,...,n},
C=(WVE,)\{v;)ulv}, where i €{1,2,...,n},
D =V(K,)u{u}, and
E=V(K,) ufv}.
Proof. Let V(Ps) = {u,v} and V(K ,)={v1,vs,...,v,} as shown in Figure Note by Theorem

Ypr(P2 +K,)=n.Let S bea pitchfork dominating set in Po +K,,. Note that either SNV (Py) = @
or SNV (Py) # @. Consider the following cases:
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Case 1: Suppose that SNV (Ps) = @. Then S € V(K,). Based on Figure |1| and the definition
of pitchfork dominating set, we must have S = V(K,) = D = {v1,v9,...,0,}. In this case,
S ={v1,v9,...,v,} is the only pitchfork dominating set of Py +K,,. Otherwise if there exists
v;, where i € {1,2,...,n} such that v; ¢ S, then no vertex will dominate v;. This contradicts
the assumption that S is a pitchfork dominating set of Po +K,,. Thus, in this case, |S|=n.

Figure 1. The join Py + K,

Case 2: Suppose that SNV (Pg) # @. Then |[SNV(Pg)|=1or [SNV(Pg)| =2.
Subcase 2.1: Suppose that |SNV(Py)| = 1.
Without loss of generality, suppose that u € S. Then v ¢ S. By the definition of a pitchfork
dominating set, we must include either all n vertices of K, in S or the n — 1 vertices of K, in S.
Note that if we include fewer than n —1 vertices in S, then S is not a pitchfork dominating set
since u € S would dominate 3 or more vertices in Py + K ,,, which is a contradiction since S is a
pitchfork dominating set. Thus, in this case, |[S|=n+1or |S|=n—-1+1=n.
Subcase 2.2: Suppose that [SNV(Pg)| = 2.
Then u € S and v € S. Note that this case is not possible for n = 3. That is, S can not be a
pitchfork dominating set for n = 3 because if |S NV(K )| = @, then either u or v will dominate 3 or
more vertices in V(Py+K,) = V(K,), which is a contradiction since S is a pitchfork dominating
set. If SNV (K,)| # @. Then, there is v; € V(K ,) such that v; € S for some i =1,2,...,n. By the
definition of K,, and since u,v € S, we have N(v;)n(V(Ps+K,)\ S = @, which again contradicts
the pitchfork dominating set condition.

Therefore, based on the definition of Py + K, and from Case 1 and Case 2, the only possible
pitchfork dominating set are the following:

A ={vq,v9,...,0,},

B=V&E,)\{v;)hulu}, where i €{1,2,...,n},

C=(V(E)\{v;)ulv}, whereie{1,2,...,n},

D =V(K,)u{u}, and

E=V(K,)u v} O

Lemma 2.4. Let K, ;, be a complete bipartite graph of order p + g, where p,q =2 and K1 be
the empty graph of order 1. Then y, /(K1 +K, 4) =(p+q)—2.

Proof. Let V(K, ) ={v1,v2,...,Up,U1,U2,...,ug} Where the partite sets are W ={vq,v9,...,vp}
and U ={u1,us,...,uqy} and V(K1) = {x} as shown in Figure
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Figure 2. The join K1+ K, 4

Let D ={v1,v9,...,vp-1}U{u1,ug,...,uq-1}. Then D is a pitchfork dominating set in K1+K, ,.
Thus, the pitchfork dominating set exists in K1 + K, 4. Consequently, y,(K1+ K, ;) exists.

Next, let us find the y, (K1 + K} 4). To do this, let S be a pitchfork dominating set in
K1 +K, ,. Note that either SNV (K1)=¢ or SNV (K1) # @.

Case 1: Suppose that SNV (K1) = @.
This implies that x ¢ S and therefore S < V(K ;). From Figure 2| and the definition of pitchfork
dominating set, the only possible pitchfork dominating sets of K1+ K, , are:
S=W\{v;HDuU \{u;}), where i €{1,2,...,p} and j€{1,2,...,q}
or
S=W\{vp})uU, where k€{1,2,...,p}
or

S=U\{u}))uW, where t€{1,2,...,q}.

Case 2: Suppose that SNV (K1) # @.
Then |S NV (K71)| = 1 which implies that x € S. By definition of a pitchfork dominating set, the
only possible pitchfork dominating set of K1+ K, 4 in this case is S = (W \ {v;})) U(U \{uj}) where
i€{1,2,...,p}and j€{1,2,...,q}.

Therefore, by Case 1 and Case 2,

Ypr(K1+Kp o) =min{p+q—-2,p+q-1}=p+q-2. O
Theorem 2.5. Let By ;, be a banana tree graph where k£ >5, then y,¢(Bg ) =2k - 3.

Proof. Let By} be a banana tree graph with [V(Bg )| =2k +1 and |[E(Bg )| = 2k. Assume that
A={u1,us,...,ur}, B={v1,vg,...,v;}. Then V(Bg ) = AUBU{w}. Based on the definition of By,
and structure shown in Figure (3| the only possible pitchfork dominating sets are the following:

Case 1: Let D1 ={ug,us,...,up_1}, Do ={vg,vs,...,vp_1} and D3 ={w} so that D =D;uDyuUDs3
and D1nDonD3 = @. Observe that for every u, € D1 €D, where k €{2,3,...,k—1}, u; dominates
u1 and for every vy € Dy € D, where k € {2,3,...,k — 1}, v, dominates v; and w € D3 < D
dominates u; and vp. Hence, D is a pitchfork dominating set with |[D|=k-2+k—-2+1 =
20k -2)+1=2k-3.
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Case 2: Let C1 ={usg,us,...,up}t, Co ={ve,vs,...,vp} sothat C=C1UCy and C1NnCy = @. Then
every up € C1 < C where £ =2,3,...,k—1 dominates u; while u;, dominates u1 and w. Similarly,
every vy € C9g < C such that k£ €1{2,3,...,k — 1} dominates ©; while v; dominates v ad w. So, C
is a pitchfork dominating set with |C| =2(k —1) =2k - 2.

Case 3: Let E1 = {usg,us,...,up}, Eo = {vg,vs,...,vp_1}, E3 = w} then E = E{UEsUE3 and
EinEsnE3=¢@. Observe that every vertex in E1 € E dominates u1 € V(By)— E. Similarly,
every vertex in K9 € E dominates v1 € V(Bg)—E and w € E3 € E dominates v;. Thus, E is a
pitchfork dominating set with |[E|=k—-1+k—-2+1=2k - 2.

Figure 3. By,

Case 4: Let F1 = {usg,us,...,up_1}, Fo = {vg,vs,...,v3}, F3 = {w} then F = F; UF9 U F3 and
FinFynFs=@. Observe that every vertex in F1; € F dominates u; € V(Bg})— F. Similarly,
every vertex in Fgo € F dominates vi € V(Bgy)—F and w € F3 S F dominates uy. Thus, F is a
pitchfork dominating set with |[E|=k—-2+k—-1+1=2k - 2.

Observe that among the cases listed above, the minimum pitchfork dominating set is D with
|D| = 2k — 3. Therefore, y,r(Ba ) = 2k - 3. O

Theorem 2.6. Let F3 , be a firecracker graph where k£ >4, then y,(Fg ) = 2k - 3.

Proof. Let Fgy, be a firecracker graph with |V(Fy )l =2k and |E(Fgz)| = 2k — 1. Assume that
A={u1,us,...,ur} and B ={v1,vs,...,vz}. Then V(Fg ;) = AUB. Note that from the definition of
Fs 1, and as shown in Figure (4 the only possible pitchfork dominating sets are the following:

Case 1: Let C1 ={usg,us,...,u}t, Co ={vg,vs,...,vp} sothat C =C1uUCg and C1NCs = @. Observe
that for every u; € C1 < C, where i € {2,3,...,k}, u; dominates ui. For every v; € Co € C,
where i € {2,3,...,k}, v; dominates vi. Hence, C is a pitchfork dominating set in Fg; with
ICl=k—-1+k—-1=2k-2.

Case 2: Let D1 ={ug,us,...,up_1}, Do = {vg,vs,...,vp} so that D = D{uUDy and D1nNnDy = @.
Observe that for every u; € D1 < D, where i € {2,3,...,k — 1}, u; dominates u; while for every

v; €Dy D, where i €{2,3,...,k—1}, v; dominates v{. Meanwhile, v, dominates two vertices
which are vy and uy. Thus, D is a pitchfork dominating set in Fg;, with |[D|=k—-2+k—1=2k-3.

Case 3: Let Eq1 = {usg,us,...,ur}, E9 ={vg,vs,...,vp_1} so that E = E{UE9 and E1NnEy = @.
Observe that for every u; € E1 < E, where i €{2,3,...,k — 1}, u; dominates u; while for every
v, € E9gc E, where i €{2,3,...,k—1}, v; dominates vi. Meanwhile, u; dominates two vertices
which are u1 and vg. Thus, E is a pitchfork dominating set in Fg , with |[E|=k—-1+k—-2=2F-3.
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Figure 4. Fy,,

Observe that among the cases listed above, the minimum pitchfork dominating sets of Fg .
are D and E. Therefore, y,r(Fg ) = 2k - 3. O

Lemma 2.7. Let K1 be an empty graph of order 1 and Fg ;, where £ = 4 be a firecracker graph
of order 2k. Then y, (K1 +Fop) =2k —2=2(k - 1).

Proof. Let V(K1) = {w} and V(Fgp) = {u1,us,...,up,v1,v2,...,v;} as shown in Figure
The following are the only pitchfork dominating sets of K1 +Fgy.

Figure 5. K1+ Fy,

Case 1: Let D = {w,uq9,us,...,uy,v2,0s,...,vp}. Observe that every u;, where i € {2,3,...,k}
dominates u; € V(K1 + Fg)— D while every v;, where i € {2,3,...,k} dominates v € V(K1 +
F51)—D and w dominates u1 and v1 € V(K1+Fg)—D. It follows that D is a pitchfork dominating
set of Ky +Fy, with |D|=1+2k—-2=2k—1.

Case 2: Let E = V(Fay;) \{u1,v1}. Observe that every u; where i € {2,3,...,k} dominates
u1 and w € V(K1 +Fg ) — E. In addition, every v;, where j € {2,3,...,k} dominates v; and
weV(K1+Fy;)—-E. Hence, E is a pitchfork dominating set of K; + Fg with |E| =2k —2.

Let F =V (Fg)\{u1}, then every u; where i € {2,3,...,k} dominates u1 and w € V(K1+Fg})—
E while every v; where j€{1,2,...,k} dominates w € V(K1 +Fo;)—E. Thus, F is a pitchfork
dominating set of K; + Fyj, with |F| =2k —1.

Commaunications in Mathematics and Applications, Vol. 15, No. 5, pp. (14311442, 2024



On Pitchfork Domination Number of Corona of Some Graphs: K. D. Barnido and S. O. Espinola 1437

Let H = V(F34)\{v1}, then every v; where j € {2,3,...,k} dominates v; and w € V(K1 +Foy)—
E while every u; where i € {1,2,...,k} dominates w € V(K1 +Fg})—E. Thus, H is a pitchfork
dominating set of K1 + Fgj with |H| =2k —1.

Assume that I = V(Fgy), then every u; where i € {1,2,3,...,k} and every v; where
J€11,2,3,...,k} dominates w € V(K1 + Fg}) —I. Therefore, I is a pitchfork dominating set
of K1 +F2’k with |I| = 2k.

Observe that among all pitchfork dominating sets listed above, the minimum pitchfork
dominating set is E. Therefore, y, (K1 +Fg;) =2k -2 =2(k-1). O

The Pitchfork Domination Number of Corona of Graphs

From the paper of Al-Harere and Abdlhusein [2], they obtained results on (1,2)-pitchfork
domination of wheel graph and in their study, the minimum pitchfork dominating set is a subset
of C,,, where W,, = K1+ C,,. Thus, we obtained the result on G o C,,, below:

Theorem 2.8. Let G be a connected graph of order n =2 and a cycle graph C,, of order m =6,
then

n(2[2]-1), ifm=1 (mod 4),
GoCp)= 4
Vorl ) {n(Z [21), otherwise.

Proof. For every u € V(G), denote by C},, the copy of C,, whose vertices are attached one by one
to the vertex u. Denote by u + C}%, the subgraph of the corona G o Cy,, corresponding to the join
({u}) + C%,. Note that for every u € V(G), the copy u + C¥, is isomorphic to the wheel graph W,,.

By Theorem

Z[Q-‘—l if m =1 (mod 4)
W — 4 b b
Vor (W) {2 [Z], otherwise.

Let S be a pitchfork dominating setin GoC,, and let S, =S NV (C%). Then S, S. Let us
show first that every vertex in V(G) should not be an element of S. Suppose that there is a
vertex u € V(G) such that u € S. Now since u € S, it follows that by the definition of pitchfork
dominating set and the corona G o C,,, we must have

IS,l=m—-2 or ISyl=m-1,

otherwise if |S, | <m — 3, u will dominate at least three vertices. A contradiction since S is a
pitchfork dominating set of H. Since m = 6, it follows that in either case, there exists ve S, S
that is not adjacent to any vertex in V(G oC,,)\ S. This is a contradiction since S is a pitchfork
dominating set of GoC,,. Since u € V(G) is arbitrary, it follows that if S is a pitchfork dominating
set of GoC,,, then u ¢ S for every u € V(G).

Thus, to have a minimum pitchfork dominating set in G o C,,, we should not include any
vertex of G in the set. Hence, we will not consider any Ng(u) where u € V(G). By Theorem
the minimum pitchfork dominating set is a subset of C,,, where W,, = K; + C,,,. Therefore,
if S is a minimum pitchfork dominating set of GoC,,, S < %}JG V(C%) where S, =SnV(C}%),

€
S, NS, =@ for u #v where u,v € V(G) and v
2([%] -1), ifm=1(mod 4),

S |= (u + Cu ) =
ISul=vpr m {2 [%] , otherwise.
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Then S= U S, is a minimum pitchfork dominating set in GoC,, and
ueV(QG)

n(2[ ] —1), if m =1 (mod 4),

% ]
n(2[%]), otherwise.

1S = yp (G oCp) = {

Theorem 2.9. Let G be a connected graph with order m = 3 and a complete bipartite graph
K1, of order n+1 where n > 3. Then y,(GoK;,)=nm.

Proof. Let V(K1,)=1{v,v1,02,...,v,} with partite sets U = {v} and W ={v1,vg,...,v,}. For every
u € V(G), denote by K7 the copy of K; , whose vertices are attached one by one to the vertex
u. Denote by u + K7, the subgraph of the corona G oK} ,,, corresponding to the join ({u}) + K7, .

Note that for every u € V(G), the copy u + K7, is isomorphic to Py +K, and by Lemma
Ypr(Pe+Kp)=n.

Let S be a pitchfork dominating set in GoKy , and let S;, =S nV(KY ). Let u € V(G) and
consider the following cases:
Case1l: ueS.

Subcase 1.1. Ng(u)n(V(G)\S) = @.
Then by Lemma [2.3|(Subcase 2.1), |S,| =n -1, where S,, consists of n — 1 vertices from W.
Subcase 1.2. Ng(u)Nn(V(G)\S) # @.
Note that by definition of pitchfork dominating set,
INag(w)n(V(G)\S)|=1 or [Ng(w)n(V(G)\S)| =2.

Suppose that |[Ng(u) n(V(G)\ S)| = 1. Then |S,| =n, where S, is consists of n vertices from
W only. If INg(u)n(V(G)\ S)| =2, then it is not possible since n = 3 and by the definition of
u+K i‘n and the pitchfork dominating set, we must include all vertices of K ?n to S and S is not
a pitchfork dominating set since for every x € V(K i"n), x will not dominate at least 1 vertex or
at most 2 vertices in V(G oK1 ,)\ S. This is a contradiction since S is a pitchfork dominating
set of G oK ,. Thus, the case where |[Ng(u)N(V(G)\ S)| =2 is not possible.

Case2:u¢S.

Subcase 2.1. Ng(u)n(VG)\S) = @.
Then by Lemma [2.3|(Case 1 and Subcase 2.1), either S, =W or S, = (W \ {v;}) U {v} where
i€{1,2,....n).

Subcase 2.2. Ng(u)n(VG)\S) # @.
Since u ¢ S, by the definition of G oK1, and pitchfork dominating set and by Lemma [2.3|(Case 1
and Subcase 2.1), either S, =W or S, = (W \ {v;}) U{v} where i € {1,2,...,n}.

Note that in determining S, in Case 1 and Case 2, we consider the vertices as minimum as
possible. Suppose that [V(G)NS|=t, where t <m. Then by Case 1 and Case 2, we have

Ypf(GoKyp)=min{t(n —1)+(m —1)(n) +t,t(n) +(m —t)(n) + t}
=min{tn—t+mn—tn+t,tn+mn—tn+t}
=min{mn,mn +t}

=mn. OJ
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Theorem 2.10. Let G be a connected graph with order m =1 and a complete bipartite graph
K, ; of order p +q where p =2, =2. Then y,r(GoK, ;) =ml[(p +q)—-2].

Proof. Let V(K, 4) ={v1,02,...,Up,U1,U2,...,uqs} Where the partite sets are W = {vy,vg,...,vp}
and U ={u1,ug,...,uq}. For every x € V(G), denote by K;, , the copy of K, ; where the vertices
are attached one by one to the vertex x. Denote by x + K3 , the subgraph of corona Go K, 4
corresponding to the join ({x}) + K7, .. Note that for every x € V(G), the copy x+K, , is isomorphic
to K1 +K, , and by Lemma2.4, v, (K1 +Kp o) = (p+q)—2.

Let S be a pitchfork dominating set in GoK, , and let S, =S nKz’q,
Consider the following cases:

Case 1: x€ S

Subcase 1.1. Ng(x)Nn(V(G)\S) = @.
Then by Lemma 2.4](Case 2), S, = (W \{v;) U(U \{u,}) where i €{1,2,...,p} and j€{1,2,...,q}.
Thus, [Syl=p+q—2.

Subcase 1.2. Ng(x)N(V(G)\S) # @.
Then by the definition of a pitchfork dominating set,

INg(x)N(V(G)\S)|=1 or |[Ngx)n(V(G)\S)|=2.

Note that the case where [Ng(x)N(V(G)\S)| = 2 is not possible since x € S and so |S,| = |V(K§,q)|
implying that S is not a pitchfork dominating set since there exists w € V(K7 )\ S such that w
is not adjacent to any vertex not in S.

Now suppose that [Ng(x) n(V(G)\ S)| = 1, where x € S. Then by definition of pitchfork
dominating set, |S| = |V(K3 /)| — 1. Without loss of generality, suppose that we include p
vertices in W and g — 1 vertices in U in the set S,. Then by definition of K, , and corona, there
exists vertex u € U N S,, where u is not adjacent to any vertex not in S. This is a contradiction

where x € V(G).

since S is a pitchfork dominating set.
Thus, from Subcase 1.1 and Subcase 1.2, if x € S, it follows that Ng(x)n(V(G)\ S) = @.

Case 2: x¢ S

Subcase 2.1. Ng(x)Nn(V(G)\S)=@.
Then by Lemma [2.4](Case 1),

Sy=(W\{v;huWU \{u,}), wherei€{1,2,...,p} and j€{1,2,...,q} or
Sy=W\{v;HhuU, whereie{1,2,...,p} or
Sy =U\{u,;)uW, where j€({1,2,...,q}.

Thus, |Syl=p+qg—-2o0r|Sy/=p+qg—-1.

Subcase 2.2. Na(x)N(V(G)\S) # @.

Then as in Subcase 2.1, |Sy|=p+qg—2o0r |Sy|=p+q - 1.
Therefore, by Case 1 and Case 2 we have

Ypr(GoKp o) =min{m(p+q—-2),m(p+q-2),m(p+qg—-D}=m(p+q-2). O

Theorem 2.11. Let G be corona of a connected graph of order n = 2 and a banana tree graph
By where k =5. Then y,7(GoBj}) =n(2k —2) = 2n(k - 1).
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Proof. For every u € V(G), denote by 32 ,» the copy of By, whose vertices are attached one by
one to the vertex u. Denote by u + B 2 the subgraph of the corona G OB” , corresponding to the
join ({u}) +Bj ,. Let S be a pitchfork dominating set G OB , and let S, = S NV(Bgy). Consider
the followmg cases

Casel: ueS

Suppose that there is a vertex u € V(G) such that u € S. Then, by the definition of pitchfork
domination and the corona GG OBg b then |S,| =2k or |S,| =2k + 1. But observe that there is at
least one vertex in By, that does not dominate a vertex in V(B k) S. Hence, when u € S, we

cannot form a pitchfork dominating set.

Case2:u¢S

Assume that V(u +BY k) ={ui,ug,...,up,v1,vs,...,vg,w,u}. Without loss of generality, let v;, and
uj, connect w and let uevVQq), Where all of the vertices of B 9y are adjacent. Note that the
following are the only pitchfork dominating sets in u +32 b

Let A; = {ug,us,...,ux}, As = {vg,vs,...,vp_1}, A3 = {w} and A = A; UA3 U A3 with
A1nNAznAsz=@. Observe that every vertices in A; €A dominates u; and u € V(u +Bj p)—A.
Moreover, every vertices in Ag € A dominates vy and u € V(u + B% k) A, while w € A3 cA
dominates vy and u € V(u +Blz‘,k) A. Thus, A is a pitchfork domlnatlng set of u + B ok p With
Al=k-1+k-2+1=2k-2=2(k-1).

Let D1 = {us,usg,...,up_1}, Do = {ve,vs,..., v}, D3 = {w} and D = DyuU Dy uU D3 with
DinDynD3=¢. Observe that every vertices in D1 € D dominates u1 and u € V(u + BY k) D.
Moreover, every vertices in D2 € D dominates v; and u € V(u +B ) D, while w € D3 cD
dominates uy and u € V(u +B; ) —D. Thus, D is a pitchfork domlnatmg set of u + B% ok with
Al=k—-1+k—-2+1=2k—-2= 2(k 1.

Let By ={ui,us,us,...,up}, Bo ={v1,ve,vs,...,vs} and B = B{UBy with BinBg = @. Observe
that every vertex in B1 \ {u;} c B dominates u while u; € B; dominates w,u € V(u +Bg,k) -B.
Further observe that every vertex in Bg \ {v;} € B dominates u while v, € By dominates
w,u€V(u+BY k) B. Hence, B is a pitchfork dominating set of u +B With IBl=Fk+Fk=2kF.

Note that 1f u ¢S, the sets A,D and B are the only pitchfork domlnating setsof u+Bg,
Moreover, sets A and D are the only pitchfork dominating sets of u + B% ok of cardmahty
2k — 2. Thus, among all the pitchfork dominating sets of u +Bg, , above, the minimum pitchfork
dominating sets of u +Bu are A and D.

Henceforth, by Case 1 and Case 2, to have a minimum pitchfork dominating set in GoBgy,
we should not include any vertex in G in the set. Therefore, if S is a minimum pitchfork

dominating set of GoBy;, Sc U V(B ,)- For each u e V(G), let S, Z2A. ThenS= U S,
ueV(QG) ueV(@a)
is a minimum pitchfork dominating set in G oBy and |[S|=y,r(GoBgy)=2n(k-1). O

Theorem 2.12. Let G be a connected graph with order n = 1 and a firecracker graph Fyj, of
order 2k. Then y, (G oFy ;) =2n(k —1).

Proof. Let V(Fg ) ={u1,ug,...,ur,v1,02,...,vt}. For every w € V(G), denote by Fy’, the copy of
F5  where the vertices are attached one by one to the vertex w. Denote by w+F’, the subgraph
of corona G o Fg, corresponding to the join ({w}) + Fy, . Note that for every w € V(G), the copy
w +F§‘jk is isomorphic to K1+ Fg and by Lemma Ypr(K1+Fop)=2(k—1).
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Let S be a pitchfork dominating set in GoFg; and let S, = S ﬁFé"k, where w € V(G).
Consider the following cases:

Casel:weS

Subcase 1.1. Ng(w)n(V(G)\S) = @.
Then by Lemma [2.7|(Case 1), D =S, = {w,ug,us,...,us,v2,0s,...,v}. Thus, |S,| =2k - 1.
Subcase 1.2. Ng(w)nN(V(G)\S) # @.
Then by the definition of a pitchfork dominating set,
INGw)N(V(G)\S)|=1 or |[Ngw)n(V(G)\S)| =2.

Note that the case where [Ng(w)N(V(G)\S)| =2 is not possible since w €S and so |S,| =
|V (F é" )| implying that S is not a pitchfork dominating set since there exists x € V(K )\ S
such that x is not adjacent to any vertex not in S.

Now suppose that |[Ng(w)n(V(G)\ S)| =1, where w € S. Then by definition of pitchfork
dominating set, |S,| = IV(ng )| — 1. Without loss of generality, suppose that we include 2k -1
vertices of Fg; in the set S,,. Then by definition of F3 ;, and corona, there exists vertex u; € S,
where i €{1,2,...,k} and u; is not adjacent to any vertex not in S. This is a contradiction since
S is a pitchfork dominating set.

Thus, from Subcase 1.1 and Subcase 1.2, if w € S, it follows that Ng(w)n(V(G)\S) = @.

Case2: wé¢S

Subcase 2.1. Ng(w)n(V(G)\S) = @.
Then by Lemma [2.7(Case 2), S, is one of the following sets:

Sy=E=V(For)\{ui,v1} with |S,,| =2k -2 or
Sw=F=V(Fo;)\{ui} with [S,,| =2k -1 or
Sw=H=V(Fgp;)\{v1} with |[Sy,|=2k-1or
Sy =1=V(Fyz) with |S,| = 2k.
Thus, |S,| =2k -2 or |S,| =2k -1 or |S,,| =2k.
Subcase 2.2. Nag(w)N(VG)\S) £ @.

Then as in Subcase 2.1, |S,| =2k -2 or |S,| =2k -1 or |S,| = 2k.
Therefore, by Case 1 and Case 2 we have

Ypr(GoFop)=min{n(2k — 1),n(2k — 2),n(2k)} = n(2k — 2) = 2n(k - 1). O

3. Conclusion

In this study, the researchers determined the pitchfork domination numbers for various types
of graphs, including banana trees, firecracker graphs, join graphs such as Ps+ K,, K1 +K D.q>
K1 +Fy); and corona graphs GoCp,, GoK1y,, GoK, 4, GoBy} and GoFyy;. These results
demonstrate how pitchfork domination applies across different graph families and provide a
foundation for future exploration.
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