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1. Introduction
Graph labeling has experienced rapid development during last three decades. Nearly two
hundred graph labeling techniques have been studied in over two thousand research papers.
For more information on graph labeling, refer dynamic survey on graph labeling by Gallian [9].

All the graphs considered here are simple, finite, connected and undirected. For all standard
terminologies and notations, we follow the book by Clark and Holton [7].

Motivated by the notion of magic square, Sedláček [14] published a paper about magic
labeling. A magic labeling is a function from the set of edges of a graph G into the non-negative
real numbers, so that the sum of the edges labels around any vertex in G are all the same.

A variant of a magic labeling where all the vertex labels are distinct is called antimagic
labeling and it is defined by Hartsfield and Ringel [10].
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Definition 1.1. A graph with q edges is called antimagic if its edges can be labeled with
1,2,3, . . . , q without repetition such that the sums of the labels of the edges incident to each
vertex are distinct.

They have also proved that paths, cycles, wheels and complete graphs admits antimagic
labeling. For more interesting results on antimagic labeling and effect of graph operation on
antimagic labeling (see Alon et al. [2], Bača et al. [3], Barasara and Prajapati [4,5], Cheng [6],
Joseph and Kureethara [12], Sridharan and Umarani [16], Vaidya and Vyas [17,18], Wang and
Hsiao [19], Wang et al. [20], and Zhang and Sun[21]). An excellent survey on antimagic labeling
was prepared by Jin and Tu [11].

The main goal of this paper is to study the effect of graph operation on antimagicness of
graph. We hope that the results reported here may have some interesting applications.

Before moving to main results, we required the following results obtained by Hartsfield and
Ringel [10], Sridharan and Umarani [16], and Vaidya and Vyas [18].

Proposition 1.1 ([10]). The cycle Cn is antimagic.

Proposition 1.2 ([16]). Lantern graph G = K2 +Kn (n⩾ 2) is antimagic.

Proposition 1.3 ([16]). Friendship graph C(t)
3 is antimagic, for all t⩾ 2.

Proposition 1.4 ([18]). Splitting graph of path Pn is antimagic.

Proposition 1.5 ([18]). Splitting graph of cycle Cn is antimagic.

2. Main Results

Definition 2.1. One point union of cycle C(t)
n is a graph consists of t copies of cycle Cn sharing a

common vertex.

Theorem 2.1. The graph C(t)
n is an antimagic graph.

Proof. Let v,v j
1,v j

2, . . . ,v j
n−1 be the vertices of jth copies of cycle Cn and v be the common vertex

of C(t)
n . Then |V (C(t)

n )| = t(n−1)+1 and |E(C(t)
n )| = nt.

We define f : E(C(t)
n )→ {1,2, . . . ,nt}, as per following three cases:

Case 1: For n⩾ 3 and t = 1.
The graph C(1)

n is cycle Cn. By Proposition 1.1, C(1)
n is an antimagic graph.

Case 2: For n = 3 and t⩾ 2.
The graph C(t)

3 is also known as friendship graph. By Proposition 1.3, C(t)
3 is an antimagic graph.

Case 3: For n⩾ 4 and t⩾ 2.

f (vv j
1)= n j− (n−1); for 1⩽ j ⩽ t,

f (vv j
n−1)= n j; for 1⩽ j ⩽ t,
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f (v j
i v j

i+1)= (n−1)( j−1)+ i+ j; for

{
1⩽ i ⩽ n−2,
1⩽ j ⩽ t.

Due to this edge labeling, all generated vertex labels are different. Hence, the theorem is
proved.

Illustration 2.1. The graph C(5)
6 and its antimagic labeling is shown in Figure 1.
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Figure 1. C(5)
6 and its antimagic labeling

Definition 2.2. An m page book with n-polygonal pages is the graph made from m copies of Cn

that share an edge. It is denoted by Θ(Cn)m.

Theorem 2.2. The graph Θ(Cn)m is an antimagic graph.

Proof. Let u,v,v j
1,v j

2, . . . ,v j
n−2 be the vertices of jth copies of cycle Cn and u and v be the

end vertices of shared edge of book graph Θ(Cn)m. Then |V (Θ(Cn)m)| = (n − 2)m + 2 and
|E(Θ(Cn)m)| = (n−1)m+1.

We define f : E(Θ(Cn)m)→ {1,2, . . . , (n−1)m+1}, as per following four cases:

Case 1: For n⩾ 3 and m = 1.
The graph Θ(Cn)1 is cycle Cn. By Proposition 1.1, Θ(Cn)1 is an antimagic graph.

Case 2: For n = 3 and m⩾ 2.
The graph Θ(C3)m is also known as lantern graph K2 +Kn. By Proposition 1.2, Θ(C3)m is an
antimagic graph.

Case 3: For odd n⩾ 5 and m = 2.

f (uv)= mn− (m−1),
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f (vv j
1)= (n−1) j−1; for 1⩽ j ⩽ m,

f (uv j
n−2)= (n−1) j; for 1⩽ j ⩽ m,

f (v j
i v j

i+1)= (n−1) j−2i−1; for

1⩽ i ⩽
n−3

2
,

1⩽ j ⩽ m,

f
(
v j

n−3
2 +i

v j
n−1

2 +i

)
= (n−1)( j−1)+2i; for

1⩽ i ⩽
n−3

2
,

1⩽ j ⩽ m.

Case 4: For all remaining n and m.

f (uv)= mn− (m−1),

f (vv j
1)= (n−1)( j−1)+1; for 1⩽ j ⩽ m,

f (uv j
n−2)= (n−1) j; for 1⩽ j ⩽ m,

f (v j
i v j

i+1)= (n−1)( j−1)+ i+1; for

{
1⩽ i ⩽ n−3,
1⩽ j ⩽ m.

Due to this edge labeling, all generated vertex labels are different.
Hence, the theorem is proved.

Illustration 2.2. The graph Θ(C7)3 and its antimagic labeling is shown in Figure 2.
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Figure 2. Θ(C7)3 and its antimagic labeling

Definition 2.3. Let G1,G2,G3, . . . ,Gm (m ⩾ 2) be m-copies of graph G. The path union of
G is the graph obtained by adding an edge between corresponding vertices of G j and G j+1,
1⩽ j ⩽ n−1. It is denoted by P(mCn).

Theorem 2.3. The graph P(mCn) is an antimagic graph.

Proof. Let v j
1,v j

2, . . . ,v j
n be the vertices of jth copies of cycle Cn. To construct path union of

m copies of cycle Cn, add an edge between vertices v j
1 and v j+1

1 for 1 ⩽ j ⩽ m − 1. Then
|V (P(mCn))| = mn and |E(P(mCn))| = mn+ (m−1).
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We define f : E(P(mCn))→ {1,2, . . . ,mn+ (m−1)}, as per following two cases.

Case 1: For m ≡ 1,2,3(mod 4).

f (v j
i v j

i+1)= (n+1)( j−1)+ i; for

{
1⩽ i ⩽ n−1,
1⩽ j ⩽ m,

f (v j
nv j

1)= n+ (n+1)( j−1); for 1⩽ j ⩽ m,

f (v j
1v j+1

1 )= j(n+1); for 1⩽ j ⩽ m−1.

Case 2: For m ≡ 0 (mod 4).
Label the edges v1

1v1
2,v1

2v1
3, . . . ,v1

nv1
1 by 2,4,6, . . . ,2n, edges v2

1v2
2,v2

2v2
3, . . . ,v2

nv2
1 by 2n+2,2n+

4,2n+6, . . . ,4n, continue in this way till we reach up to label mn+(m−2). If the label mn+(m−2)
is given to edge v j

i v j
i+1 then label the edges v j

i+1v j
i+2,v j

i+2v j
i+3, . . . ,v j

nv j
1,v j+1

1 v j+1
2 ,v j+1

2 v j+1
3 , . . . ,

v j+1
n v j+1

1 ,v j+2
1 v j+2

2 ,v j+2
2 v j+2

3 , . . . ,v j+2
n v j+2

1 , . . . ,vm
1 vm

2 ,vm
2 vm

3 , . . . ,vm
n vm

1 by 1,3,5, . . . ,mn−m+1. Now
label the edges v1

1v2
1,v2

1v3
1, . . . ,vm−1

1 vm
1 by mn−m+3,mn−m+5,mn−m+7, . . . ,mn+ (m−1).

Due to this edge labeling, all generated vertex labels are different.
Hence, the theorem is proved.

Illustration 2.3. The graph P(4C5) and its antimagic labeling is shown in Figure 3.
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Figure 3. P(4C5) and its antimagic labeling

Definition 2.4. The splitting graph S′(G) of a graph G is obtained by adding to each vertex v a
new vertex v′ such that v′ is adjacent to each vertex that is adjacent to v in G.

Definition 2.5. The m-splitting graph Splm(G) of a graph G is obtained by adding to each
vertex v of G new m vertices, say v1,v2,v3, . . . ,vm such that vi , 1⩽ i ⩽ m is adjacent to every
vertex that is adjacent to v in G.

Theorem 2.4. The graph Splm(Pn) is an antimagic graph.

Proof. Let v1,v2,v3, . . . ,vn be the vertices of path Pn. To construct Splm(Pn), add the vertices
v1

i ,v2
i ,v3

i , . . . ,vm
i corresponding to vertex vi of path Pn and join the vertex v j

i to all the
neighbours of vi for i = 1,2, . . . ,n and j = 1,2, . . . ,m. Then |V (Splm(Pn))| = n(m + 1) and
|E(Splm(Pn))| = 3(n−1)+2(n−1)(m−1).

We define f : E(Splm(Pn))→ {1,2, . . . ,3(n−1)+2(n−1)(m−1)}, as per following three cases:
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Case 1: For n⩾ 2 and m = 1.
The graph Spl1(Pn) is S′(Pn). By Proposition 1.4, Spl1(Pn) is an antimagic graph.

Case 2: For (n ≡ 2 (mod 4) and m⩾ 2) or (n ≡ 0 (mod 4) and m > 2).

f (viv
j
i+1)= 2i+2n( j−1)−2( j−1); for

{
1⩽ i ⩽ n−1,
1⩽ j ⩽ m,

f (v j
i vi+1)= 2i+2n( j−1)− (2 j−1); for

{
1⩽ i ⩽ n−1,
1⩽ j ⩽ m,

f (vivi+1)= 3(n−1)+2(n−1)(m−1)+1− i; for 1⩽ i ⩽ n−1.

Case 3: For (n ≡ 1,3 (mod 4) and m⩾ 2) or (n ≡ 0 (mod 4) and m = 2).

f (viv
j
i+1)= 2i+2n( j−1)− (2 j−1); for

{
1⩽ i ⩽ n−1,
1⩽ j ⩽ m,

f (v j
i vi+1)= 2i+2n( j−1)−2( j−1); for

{
1⩽ i ⩽ n−1,
1⩽ j ⩽ m,

f (vivi+1)= 3(n−1)+2(n−1)(m−1)+1− i; for 1⩽ i ⩽ n−1.

Due to this edge labeling, all generated vertex labels are different. Hence, the theorem is
proved.

Illustration 2.4. The graph Spl2(P7) and its antimagic labeling is shown in Figure 4.
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Figure 4. Spl2(P7) and its antimagic labeling

Theorem 2.5. The graph Splm(Cn) is an antimagic graph.

Proof. Let v1,v2,v3, . . . ,vn be the vertices of cycle Cn. To construct Splm(Cn), add the vertices
v1

i ,v2
i ,v3

i , . . . ,vm
i corresponding to vertex vi of cycle Cn and join the vertex v j

i to all the
neighbours of vi , for i = 1,2, . . . ,n and j = 1,2, . . . ,m. Then |V (Splm(Cn))| = n(m + 1) and
|E(Splm(Cn))| = 3n+2n(m−1).

We define f : E(Splm(Cn))→ {1,2, . . . ,3n+2n(m−1)}, as per following two cases:

Case 1: For n⩾ 3 and m = 1.
The graph Spl1(Cn) is S′(Cn). Thus, by Proposition 1.5, Spl1(Cn) is an antimagic graph.
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Case 2: For n⩾ 3 and m⩾ 2.

f (viv
j
i+1)= 2i+2n( j−1); for

{
1⩽ i ⩽ n−1,
1⩽ j ⩽ m,

f (v j
i vi+1)= 2i−1+2n( j−1); for

{
1⩽ i ⩽ n−1,
1⩽ j ⩽ m,

f (vivi+1)= 3n+2n(m−1)+1− i; for 1⩽ i ⩽ n−1,

f (vnv1)= 2nm+1,

f (v j
nv1)= 2n j; for 1⩽ j ⩽ m,

f (v j
1vn)= 2n j−1; for 1⩽ j ⩽ m.

Due to this edge labeling, all generated vertex labels are different.
Hence, the theorem is proved.

Illustration 2.5. The graph Spl2(C6) and its antimagic labeling is shown in Figure 5.
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Figure 5. Spl2(C6) and its antimagic labeling
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3. Applications of Antimagic Labeling
Afzal et al. [1] have shown that antimagic labeling is useful for saving data from hackers
attacks, channel assignment problem as well as routing problem. Encryption and decryption
algorithm using antimagic labeling were developed by Krishnaa [13], Femina and Xavier [8],
and Selvakumar and Gupta [15].

4. Concluding Remark
Hartsfield and Ringel [10] conjectured that every graph other than K2 is antimagic.
The conjecture is still open even in the case of trees. In this paper, we have verified the conjecture
for one point union of cycle, book graph, path union of m copies of cycles, m splitting of path
and m splitting of cycle.
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