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1. Introduction
Rough convergence was first introduced for sequences on finite dimensions normed linear spaces
by Phu [25]. Later, Phu [24] expanded this idea to infinite dimensional normed linear spaces. In
these studies, the major goals were to present rough Cauchy sequences and to establish rough
bounds, roughness degree, and rough continuity of linear operators. Dündar and Çakan [6], and
Pal et al. [23] concurrently introduced rough convergence for ideals, while Malik and Maity [21]
defined rough convergence for the double sequences in normed linear spaces. Furthermore,
Banerjee and Mondal [4] expanded the rough convergence to metric spaces that are cone-shaped.
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A recent definition of rough convergence using ideals in cone metric spaces was provided by
Banerjee and Paul [3].

Menger [22] developed a crucial extension of metric space, which he named statistical
metric space. When the distribution function is used to replace distance and the precise
distance between any two places cannot be determined, this kind of measure is crucial to
use. These days, probabilistic metric space is the name given to it. Serstnev [30] developed the
probabilistic normed space, which is regarded as a generalised family of probabilistic metric
spaces. Additionally, Alsina et al. [1], and Schweizer and Sklar [27,28] conducted a thorough
analysis and revised the concept. Because these spaces are useful extensions of deterministic
results in linear normed spaces, many researchers, including Asadollah and Kourosh [2],
Constantin and Istratescu [5], Guillén et al. [13, 14], Sempi [29] have explored these spaces
in many directions. Probabilistic n-normed spaces are a generalization of classical n-normed
spaces, as described by Rahmat et al. [26]. A wide class of probabilistic n-normed spaces was
studied by Golet [12].

Initially, Kizmaz [19] introduced the concept of difference sequence spaces as Z(∆)= {y= (yp) :
(∆yp) ∈ Z} for Z = l∞, C, C0, i.e., spaces of all bounded sequences, convergent sequences and null
sequences, respectively. The generalized difference sequence spaces was defined as (see [10]):
Z(∆m yp)= {y= (yp) : (∆m yp) ∈ Z}, for Z = l∞, C, C0, where ∆m y= (∆m yp)= (∆m−1 yp −∆m−1 yp+1)
so that ∆m yp+r =∑m

r=0(−1)r(m
r
)
ym+r .

Various characteristics and properties of difference sequences can be found in [8–10]. Demir
and Gümüş [7] have examined the idea of rough convergence via difference sequences on finite
dimensional normed space. In 2023, Karabacak and Or [16] introduced the concept of rough
convergence and rough statistical convergence for generalized difference sequences in normed
linear spaces. In 2022, Kamber [15] introduced the intuitionistic fuzzy I-convergent difference
sequence defined by a compact operator and explored its topological properties. Recently, Kaur
et al. [17,18] examined rough convergence via ideals and statistical convergence for difference
sequences in generalized spaces.

This paper aims to establish the rough convergence for generalized difference sequences
using compact operator in probabilistic n-normed spaces. In Section 2, some basic definitions
and notions related to current research work are given and Section 3 includes the main results
of the paper.

2. Preliminaries
This section begins with a discussion of the idea of probabilistic n-normed space and related
ideas. It then goes on to discuss rough convergence and its characteristics in more detail with a
few real-world examples.

Definition 2.1 ([27]). A binary operation ⋄ on [0,1] is called t-norm if it is continuous, non-
decreasing, associative, commutative and with identity 1.

Example 2.1 ([27]). The binary operations ⋄ on [0,1] as a⋄b =min{a,b} and a⋄b =max{a+b−
1,0} are typical t-norms.
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Definition 2.2 ([11]). Let X be a real linear space, ⋄ be a t-norm and F be the collection of
distribution functions. Consider a map ℑ :Xn → F and if the following properties are satisfied for
all q1, q2, q3, . . . , qn−1 ∈X and r, s ∈R+

0 = [0,∞), then ℑ and (X,ℑ,⋄) are known as probabilistic
norm and probabilistic n-normed space (Pr-n-space) respectively,

(i) ℑ((q1, q2, q3 . . . qn), s)= 1 iff q1, q2, q3 . . . qn are linearly dependent,

(ii) ℑ((q1, q2, q3 . . . qn), s) is invariant under any permutation of q1, q2, q3 . . . qn,

(iii) ℑ((q1, q2, q3 . . .αqn), s)=ℑ
(
(q1, q2, q3 . . . qn), s

|α|
)

where α ̸= 0 is a real number,

(iv) ℑ((q1, q2, q3 . . . qn + q′
n), r+ s)≥ℑ((q1, q2, q3 . . . qn), r)⋄ℑ((q1, q2, q3 . . . q′

n), s).

Definition 2.3 ([2]). Let (X,ℑ,⋄) be a Pr-n-space with probabilistic n-norm ℑn. Then, sequence
x = (xk) in X is called convergent to κ ∈X with respect to ℑ if for every ε> 0 and ϑ ∈ (0,1) there
exists k0 ∈N such that ℑ((q1, q2, q3, . . . , qn−1, xk −κ),ε) > 1−ϑ, for all k ≥ k0. It is denoted by
xk

ℑn
−−→ κ or ℑn- lim

k→∞
xk = κ.

Definition 2.4 ([25]). Let (X,∥ · ∥) be a normed linear space. Then, sequence x = (xk) in X is
called rough convergent to κ ∈X for some non-negative real number r if there exists k0 ∈N for
every ε> 0 such that ∥xk −κ∥ < r+ε, for all k ≥ k0.
It is denoted by xk

r−→ κ or r- lim
k→∞

xk = κ, where r is known as roughness degree of rough

convergence of the sequence x = (xk).

For any sequence x = (xk) in the normed linear space X the r-limit set is given as
LIMr

xk
= {κ ∈X : xk

r−→ κ}. Also, LIMr
xk

= [limsup x− r, liminf x+ r] is defined for any sequence
x = (xk) of real numbers [25].

Definition 2.5 ([20]). An operator T defined by

T : G → H

is termed as Compact Linear Operator (completely continuous linear operator) with G and
H be two normed linear spaces if T is linear and T maps every bounded sequence (gk) in G
onto a sequence T(gk) in H which has a convergent subsequence. The set of all bounded linear
operators B(G,H) is normed linear space normed by

∥T∥ = sup
g∈G,∥k∥=1

∥Tk∥ .

The set of all compact linear operator C(G,H) is a closed subspace of B(G,H) and C(G,H) is a
Banach space if H is a Banach.

3. Main Results
We now turn our attestation towards the notion of rough convergence for difference sequences
in a Pr-n-space using a compact operator and establish some of its important properties.
Throughout the paper T(∆mx) = T(∆mxk)k∈N will denote the difference sequence by using a
compact linear operator T.
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Definition 3.1. Let (X,ℑ,⋄) be a Pr-n-space with probabilistic norm ℑn. Then, sequence
T(∆mx) = T(∆mxk) in X is called rough convergent to κ ∈X with respect to ℑn for some non-
negative real number r if there exists k0 ∈N for every ε> 0 and ϑ ∈ (0,1) such that

ℑ((q1, q2, q3, . . . , qn−1,T(∆mxk)−κ), r+ε)> 1−ϑ, for all k ≥ k0.

It is denoted by T(∆mxk)
rℑn−−→ κ or rℑn - lim

k→∞
T(∆mxk)= κ.

Let LIMrℑn

T(∆mxk) be the set of all rℑn -limit points of the sequence T(∆mx) = T(∆mxk) in a
Pr-n-space (X,ℑ,⋄), for some r > 0, i.e.,

LIMrℑn

T(∆mxk) = {κ∗ ∈X :T(∆mxk)
rℑn−−→ κ∗}.

Remark 3.1. For the case r = 0, the rough convergence agrees with the usual convergence for
the sequences in n-probabilistic normed space by a compact operator.

Remark 3.2. Let (X,∥ ·∥) be a real normed space with the probabilistic norm ℑn for x ∈X and
t ≥ 0 as ℑ(T(∆mx), t)= t

t+∥T(∆mx)∥ . Then, sequence T(∆mx)=T(∆mxk) is rough convergent to κ ∈X
with respect to the norm ∥ ·∥ if and only if sequence T(∆mx)=T(∆mxk) is rough convergent to
κ ∈X with respect to the norm ℑn.

The next example shows the sequence may not have a unique rℑ-limit point.

Example 3.1. Let (X,∥ · ∥) be any real normed space. We define the probabilistic norm ℑn as
ℑ(T(∆mx), t)= t

t+∥T(∆mx)∥ , for every x ∈X, t ∈R.

Then, (X,ℑ,⋄) is a Pr-n-space under the t-norm ⋄ which is given by a⋄b=min{a,b}, for a,b∈[0,1].
Now define a sequence

T(∆mxk)=
{

0, k is odd,
1, k is even.

From Remark 3.2, it is clear that the above defined sequence T(∆mx)=T(∆mxk) is also rough
convergent with respect to ℑn for some r > 0, we have

LIMrℑn

T(∆mxk) =
{
φ, r < 0.5,
[1− r, r], r ≥ 0.5.

Definition 3.2. Let (X,ℑ,⋄) be a Pr-n-space with probabilistic norm ℑ. Then, sequence x = (xk)
in X is called bounded with respect to ℑn if for every ϑ ∈ (0,1) there exists some real number
H > 0 such that ℑ((q1, q2, q3 . . . qn−1, xk),H)> 1−ϑ, for all k ∈N.

Theorem 3.1. Let (X,ℑ,⋄) be a Pr-n-space with probabilistic norm ℑn. If sequence T(∆mx) =
T(∆mxk) in X is r-convergent to κ ∈ X then it is also sℑn -convergent to κ ∈ X for r < s, i.e.,
LIMrℑn

T(∆mxk) ⊂LIMsℑn

T(∆mxk).

Proof. Let T(∆mxk)
rℑn−−→ κ for some non-negative real number r. Then, for every ε > 0 and

ϑ ∈ (0,1) there exists k0 ∈N such that

ℑ((q1, q2, q3, . . . , qn−1,T(∆mxk)−κ), r+ε)> 1−ϑ, for all k ≥ k0. (3.1)
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For r < s, we have

ℑ((q1, q2, q3, . . . , qn−1,T(∆mxk)−κ), s+ε)>ℑ((q1, q2, q3, . . . , qn−1,T(∆mxk)−κ), r+ε)
for all k ∈N. (3.2)

From (3.1) and (3.2), we get

ℑ((q1, q2, q3, . . . , qn−1,T(∆mxk)−κ), s+ε)> 1−ϑ, for all k ≥ k0.

Therefore, T(∆mx)=T(∆mxk) is sℑn -convergent to κ ∈X.

Theorem 3.2. The rℑn -convergent sequence in Pr-n-space (X,ℑ,⋄) is always bounded.

Proof. Let sequence T(∆mx)= T(∆mxk) be rℑn -convergent to κ ∈X for some r ≥ 0. For t ∈ (0,1)
take ϑ ∈ (0,1) so that (1−ϑ)⋄ (1−ϑ)> 1− t. Then, for ϑ ∈ (0,1) choose m0 > 0 so large that

ℑ
(
κ,

m0

2

)
> 1−ϑ

and there exists k0 ∈N such that

ℑ
(
(q1, q2, q3, . . . , qn−1,T(∆mxk)−κ), r+ m0

2

)
> 1−ϑ, for all k ≥ k0.

Also, for k ≥ k0 we have

ℑ((q1, q2, q3, . . . , qn−1,T(∆mxk)−κ), r+m0)

≥ℑ
(
(q1, q2, q3, . . . , qn−1,T(∆mxk)−κ), r+ m0

2

)
⋄ℑ

(
κ,

m0

2

)
> (1−ϑ)⋄ (1−ϑ)

> 1− t.

For k = 1,2, . . . ,k0 −1. Choose mk > 0 so large that ℑ(q1, q2, q3, . . . , qn−1,T(∆mxk), r+mk)> 1− t.
Then with M =max{m0,m1, . . . ,mk0−1}, we have ℑ(q1, q2, q3, . . . , qn−1,T(∆mxk), r+M)> 1− t, for
all k < k0.
For k ≥ k0, we have

ℑ((q1, q2, q3, . . . , qn−1,T(∆mxk)−κ), r+M)
≥ℑ((q1, q2, q3, . . . , qn−1,T(∆mxk)−κ), r+m0)⋄ℑ(0, M−m0)
> (1− t)⋄1
= 1− t.

Thus, ℑ((q1, q2, q3, . . . , qn−1,T(∆mxk)), r+M)> 1− t, for all k ∈N. Therefore, T(∆mx)=T(∆mxk)
is bounded in a Pr-n-space (X,ℑ,⋄).

In Pr-n-space (X,ℑ,⋄) a bounded sequence has a non-empty rℑ-limit set, for some r > 0.
The following theorem justify this statement.

Theorem 3.3. The bounded sequence T(∆mx) = T(∆mxk) in a Pr-n-space (X,ℑ,⋄) has
LIMrℑn

T(∆mxk) ̸=φ, for some r > 0.

Proof. Let T(∆mx)=T(∆mxk) be a bounded sequence in a Pr-n-space (X,ℑ,⋄). Then, there exists
a real number p > 0 for every ϑ ∈ (0,1) such that

ℑ((q1, q2, q3, . . . , qn−1,T(∆mxk)), p)> 1−ϑ, for all k ∈N.
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Let ε> 0, then

ℑ((q1, q2, q3, . . . , qn−1,T(∆mxk)), r+ε)
≥ℑ((q1, q2, q3, . . . , qn−1,0), r)⋄ℑ((q1, q2, q3, . . . , qn−1,T(∆mxk)),ε)
> 1⋄ (1−ϑ)
= 1−ϑ.

Thus, T(∆mx) = T(∆mxk) is rℑn -convergent to 0 ∈ X on a Pr-n-space (X,ℑ,⋄), for some real
number p > 0. Hence, LIMrℑn

T(∆mxk) ̸=φ.

In Theorem 3.3 for any positive real number r with r > p using Theorem 3.1, we obtain
LIM

rn
ℑ
T(∆mxk) ̸=φ.

Theorem 3.4. Let T(∆mx) = T(∆mxk) be any generalized difference sequence with compact
operator T on a Pr-n-space (X,ℑ,⋄) then LIMrℑn

T(∆mxk) is a convex set, for some r > 0.

Proof. Let κ1,κ2 ∈LIMrℑn

T(∆mxk). For convexity, we have to show that (1−ρ)κ1 +ρκ2 ∈LIMrℑn

T(∆mxk)
for any real number ρ ∈ [0,1].

For t ∈ (0,1) take ϑ ∈ (0,1) so that (1−ϑ)⋄ (1−ϑ)> 1− t.

Since κ1,κ2 ∈LIMrℑn

T(∆mxk), then there exists k1,k2 ∈N for every ε> 0 and ϑ ∈ (0,1) such that

ℑ
(
(q1, q2, q3, . . . , qn−1,T(∆mxk)−κ1),

r+ε
2(1−ρ)

)
> 1−ϑ, for all k ≥ k1

and

ℑ
(
(q1, q2, q3, . . . , qn−1,T(∆mxk)−κ2),

r+ε
2ρ

)
> 1−ϑ, for all k ≥ k2.

For k ≥ k0 where k0 =max{k1,k2}, we have

ℑ((q1, q2, q3, . . . , qn−1,T(∆mxk)− [(1−ρ)κ1 +ρκ2]), r+ε)

≥ℑ
(
(q1, q2, q3, . . . , qn−1,T(∆mxk)−κ1),

r+ε
2(1−ρ)

)
⋄ℑ

(
(q1, q2, q3, . . . , qn−1,T(∆mxk)−κ2),

r+ε
2ρ

)
> (1−ϑ)⋄ (1−ϑ)
> 1− t.

Therefore, (1−ρ)κ1 +ρκ2 ∈LIMrℑn

T(∆mxk). Hence LIMrℑn

T(∆mxk) is a convex set.

Theorem 3.5. Let T(∆mx)=T(∆mxk) and T(∆m y)=T(∆m yk) be any two generalized difference
sequences with compact operator T on a Pr-n-space (X,ℑ,⋄). If for every ϑ ∈ (0,1) also
there exists some r > 0 such that ℑ((q1, q2, q3, . . . , qn−1,T(∆mxk)−T(∆m yk)), r) > 1−ϑ, for all
k ∈N and sequence T(∆m y) = T(∆m yk) converges to κ ∈ X with respect to ℑn. Then sequence
T(∆mx)=T(∆mxk) is rough convergent to κ ∈X with respect to ℑn.

Proof. For given ϑ ∈ (0,1) take t ∈ (0,1) so that (1− t)⋄ (1− t)> 1−ϑ.
As T(∆m yk) ℑn

−−→ κ then there exists k0 ∈N for every ε> 0 and t ∈ (0,1) such that

ℑ((q1, q2, q3, . . . , qn−1,T(∆m yk)−κ),ε)> 1− t, for all k ≥ k0.
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It is given that for every ϑ ∈ (0,1), we have ℑ ((q1, q2, q3, . . . , qn−1,T(∆mxk)−T(∆m yk)), r)> 1−ϑ
for all k ∈N.
I.e.,

℘((q1, q2, q3, . . . , qn−1,T(∆mxk)−T(∆m yk)), r)> 1− t, for all k ∈N.

For k ≥ k0, we have

ℑ((q1, q2, q3, . . . , qn−1,T(∆mxk)−κ), r+ε)≥ℑ((q1, q2, q3, . . . , qn−1,T(∆mxk)−T(∆m yk)), r)

⋄ℑ((q1, q2, q3, . . . , qn−1,T(∆m yk)−κ),ε)

> (1− t)⋄ (1− t)

> 1−ϑ.

Hence, T(∆mxk)
rn
ℑ−→ κ.

Theorem 3.6. Let T(∆mx)=T(∆mxk) be a generalized difference sequence with compact operator
T on a Pr-n-space (X,ℑ,⋄). Then LIMrℑn

T(∆mxk) is a closed set.

Proof. If r = 0 then we have nothing to prove as LIMrℑn

T(∆mxk) is either empty set or singleton set.
Let LIMrℑn

∆mxk
̸=φ, for some r > 0. Let T(∆m y)=T(∆m yk) be a convergent sequence with respect

to ℑn to y0 ∈X. For t ∈ (0,1) take ϑ ∈ (0,1) so that (1−ϑ)⋄ (1−ϑ)> 1− t. Then, there exists k1 ∈N
for every ε> 0 and ϑ ∈ (0,1) such that

ℑ
(
(q1, q2, q3, . . . , qn−1,T(∆m yk)− y0),

ε

2

)
> 1−ϑ, for all k ≥ k1.

Let us take T(∆m ym) ∈LIMrℑ
T(∆mxk) with m > k1, then, there exists k2 ∈N such that

ℑ
(
(q1, q2, q3, . . . , qn−1,T(∆mxk)−T(∆m ym)), r+ ε

2

)
> 1−ϑ, for all k ≥ k2.

For k ≥ k0 where k0 =max{k1,k2}, we have

ℑ((q1, q2, q3, . . . , qn−1,T(∆mxk)− y0), r+ε)
≥ℑ

(
(q1, q2, q3, . . . , qn−1,T(∆mxk)−T(∆m ym)), r+ ε

2

)
⋄ℑ

(
(q1, q2, q3, . . . , qn−1,T(∆m ym)− y0),

ε

2

)
> (1−ϑ)⋄ (1−ϑ)

> 1− t.

Therefore, y0 ∈LIMrℑn

T(∆mxk).

Theorem 3.7. Let T(∆mx) = T(∆mxk) and T(∆m y) = T(∆m yk) be two generalized difference
sequences with compact operator T on a Pr-n-space (X,ℑ,⋄). If for every ε > 0 and ϑ ∈ (0,1)
there exists k0 ∈N such that

ℑ((q1, q2, q3, . . . , qn−1,T(∆mxk)−T(∆m yk)),ε)> 1−ϑ, for all k ≥ k0.

Then, sequence T(∆mx) = T(∆mxk) is rℑn -convergent to κ ∈X if and only if sequence T(∆m y) =
T(∆m yk) is rℑn -convergent to κ ∈X, for some non-negative real number r.
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Proof. For ϑ ∈ (0,1) take t ∈ (0,1) so that (1− t)⋄ (1− t)> 1−ϑ. Let T(∆mxk)
rℑn−−→ κ. Then, there

exists k0 ∈N for every ε> 0 and t ∈ (0,1) such that

ℑ
(
(q1, q2, q3, . . . , qn−1,T(∆mxk)−κ), r+ ε

2

)
> 1− t, for all k ≥ k0

and

ℑ
(
(q1, q2, q3, . . . , qn−1,T(∆mxk)−T(∆m yk)),

ε

2

)
> 1− t, for all k ≥ k0 .

Now for k ≥ k0, we have

ℑ((q1, q2, q3, . . . , qn−1,T(∆m yk)−κ), r+ε)≥ℑ
(
(q1, q2, q3, . . . , qn−1,T(∆mxk)−κ), r+ ε

2

)
⋄ℑ

(
(q1, q2, q3, . . . , qn−1,T(∆mxk)−T(∆m yk)),

ε

2

)
> (1− t)⋄ (1− t)

> 1−ϑ.

This implies that sequence T(∆m y)=T(∆m yk) is rn
ℑ-convergent to κ.

Converse part can be obtained by interchanging T(∆mx)=T(∆mxk) and T(∆m y)=T(∆m yk).

Like in classical approach subsequence of any convergent sequence is also converges to the
same limit point, we have similar result in rough convergence in Pr-n-space.

Theorem 3.8. Let T(∆mx′) = T(∆mxki ) be a subsequence of T(∆mx) = T(∆mxk) in a Pr-n-space
(X,ℑ,⋄), then, LIMrℑn

T(∆mxk) ⊂LIMrℑn

T(∆mxki ).

Proof. Let κ ∈LIM
rn
ℑ
T(∆mxk). Then, there exists p ∈N for every ε> 0 and ϑ ∈ (0,1) such that

ℑ((q1, q2, q3, . . . , qn−1,T(∆mxk)−κ), r+ε)> 1−ϑ, for all k ≥ p.

Consider km > p, for some m ∈N. Then ki > p, for all i ≥ m and

ℑ((q1, q2, q3, . . . , qn−1,T(∆mxki )−κ), r+ε)> 1−ϑ, for all ki > p.

This implies that κ ∈LIMrℑn

T(∆mxki ).

The diameter of the r-limit set of any sequence in the normed linear space cannot be
greater than 2r. We obtain a similar result for any sequence in a Pr-n-space connected to rough
convergence in the next result.

Theorem 3.9. Let T(∆mx) = T(∆mxk) be a sequence in a Pr-n-space (X,ℑ,⋄) and r > 0. Then
for ϑ ∈ (0,1) there does not exist elements y, z ∈ LIMrℑn

T(∆mxk) such that ℑ((q1, q2, q3, . . . , qn−1, y−
z),mr)≤ 1−ϑ, for m > 2.

Proof. Let, if possible there exists some elements y, z ∈LIMrℑn

T(∆mxk) such that

ℑ((q1, q2, q3, . . . , qn−1, y− z),mr)≤ 1−ϑ, for m > 2. (3.3)

For ϑ ∈ (0,1), take t ∈ (0,1) so that (1− t)⋄ (1− t)> 1−ϑ.
As y, z ∈LIMrℑn

T(∆mxk), then, there exists k ∈N for every ε> 0 and t ∈ (0,1) such that

ℑ
(
(q1, q2, q3, . . . , qn−1,T(∆mxk)− y), r+ ε

2

)
> 1− t,
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and

ℑ
(
(q1, q2, q3, . . . , qn−1,T(∆mxk)− z), r+ ε

2

)
> 1− t.

Also,

ℑ((q1, q2, q3, . . . , qn−1, y− z),2r+ε)≥ℑ
(
(q1, q2, q3, . . . , qn−1,T(∆mxk)− z), r+ ε

2

)
⋄ℑ

(
(q1, q2, q3, . . . , qn−1,T(∆mxk)− y), r+ ε

2

)
> (1− t)⋄ (1− t)
> 1−ϑ.

Hence,

ℑ((q1, q2, q3, . . . , qn−1, y− z),2r+ε)> 1−ϑ. (3.4)

Then, from (3.4), we have

ℑ((q1, q2, q3, . . . , qn−1, y− z),mr)> 1−ϑ, for m > 2,

which is a contradiction to (3.3). Therefore, there does not exists elements y, z ∈LIMrℑn

T(∆mxk) such
that ℑ((q1, q2, q3, . . . , qn−1, y− z),mr)≤ 1−ϑ, for m > 2.

4. Conclusions
The present article is devoted to study the concept of rough convergent generalized difference
sequences by using a compact operator on the probabilistic n-normed spaces. The various
topological and algebraic properties for the set of rough limit points for these sequences has
been discussed.
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