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Abstract. In this paper, we aim to study the steady-state behaviour of an M/M/1 queue with
an optionally differentiated working vacations I and II. After finishing a busy period, the server
takes either an optional working vacation I or an optional working vacation II. Customer arrivals are
restricted when the server is either on an optional working vacation I or an optional working vacation II.
The model’s stable solution is derived using the probability generating function. Additionally, specific
expressions are used to discuss several performance measurements for the provided model. For cost
optimization analysis, the Particle Swarm Optimization (PSO) method is also employed to reduce
the total cost. We minimize the total cost of providing the best service by using the PSO optimization
method. A few numerical examples are provided to illustrate the effects of different arrival rates,
service rates, server vacation times, and customer waiting times.
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1. Introduction
The vacation concept was first used in the M/M/1 queueing system by Doshi [5]. This work splits
the queueing system into primary and secondary (vacation) queues and provides numerous
examples. The customer frustration behaviour of an M/M/1 queueing system with unique server
vacations was studied by Sampath and Liu [16]. Unni and Mary [24] handled differentiated
vacations using a variety of client strategies, that is, the chance that a consumer will join during
both types of vacations. Bouchentouf and Medjehri [3] analysed the system’s economic analysis
and the effectiveness of various multiple vacation queues in the M/M/1 queue. The finite buffer
Markovian queue during varied vacations was discussed by Vadivukarasi et al. [26] in terms of
optimization. Retrial queueing model with state-dependent arrival rates and different vacations
was first proposed by Gupta and Kumar [8]. The idea of varied vacation queueing systems
with varying vacations in the M/M/1 queue was addressed by Isijola-Adakeja and Ibe [10]. Ibe
and Isijola [9] made a similar suggestion regarding vacation breaks in the M/M/1 queue. The
concept of C-servers with two distinct vacation options was put up by Unni and Mary [25].
Ke et al. [11] demonstrated a number of current breakthroughs in system communications
and flexible manufacturing that have been made in vacation queuing models. To optimize the
long-term average value generated, Ata and Shneorson [1] discuss a service station where
the arrival and rate of service are dynamically managed by the system management. In the
rate-setting problem we first consider, a service station is represented as an M/M/1 queue with
parameters. Under dynamic service control, Dimitrakopoulos and Burnetas [4] deal with the
methods for client balance in an M/M/1 queue. Depending on the level of system congestion, the
service rate alternates between low and high values. Tian et al. [21] proposed a fixable M/M/1
retrial queueing paradigm with setup delays. The server will be shut down to save money once
the system is completely empty, and only when a new consumer shows up will the system be
turned on. Customers that activate servers are placed in the retry orbit while they wait to
reapply for service.

Bagyam and Chandrika [2] deal with the state-dependent batch arrival and a two-stage
queue for retrials, and acceptance of every customer into the system is based on the server’s
state. All customers who have been admitted are given the first essential service by the server.
The customer can select a second optional service or exit the system when the first essential
service is finished. Servi and Finn [19] ultimately adopted working vacations that provided
services at a more leisurely pace. Tian et al. [23] examined the customers’ stability and socially
ideal joining-balking behaviour in an M/M/1 queue with Bernoulli interruptions and a working
vacation. The sensitivity analysis of limiting arrivals in a single working vacation queue was
looked at by Yang et al. [31]. Since the customer arrives during the server’s vacation, they may
disappoint the system, but at that time, the server gives the service at a more leisurely pace,
indicating that the customer may wait for the system, which concept is highly beneficial to
modern time queueing systems. Tian et al. [22] suggested a matrix-geometric solution for a
working vacation queue. Ye and Liu [32] reviewed the results of a single working vacation’s
performance evaluation of a new GI/M/1 type queue. Xu et al. [30] analysed the setup times for
a working vacation on the M/M/1 queue. The working breakdown approach for the M/M/1/N
queue with catastrophe was addressed by Seenivasan and Abinaya [17]. These are the core
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concepts of one working vacation in the M/M/1 queuing system. The Geo/Geo/1 queue notion of
equilibrium customer strategies with single working vacations, as defined by Wang et al. [29],
says that customers decide whether to utilize or reject the system based on a natural reward-cost
structure, the status information provided about the server, and the wait time that is present
when they arrive. It was specifically the impatient customer’s personal timer that was looked at.

An interesting concept of priority clients with just brief working vacation interruptions was
created by Goswami and Selvaraju [7]. On the M/G/1 queue, Gao and Liu [6] talked about the
single working vacation. Li and Tian [14] examined the GI/M/1 queue’s performance with a
single working vacation using the matrix geometric approach. In their discussion on M/M/R
queue applications using a single working vacation, Lin and Ke [15] covered a few important
concepts. The eager clients in an M/M/1 line were described by Selvaraju and Goswami [18]
as having both single and multiple working vacations. A two-stage vacation queueing scheme
that fails in M/M/1 queues is explored by Sudesh et al. [20]. Customers are getting impatient
because of the M/M/1 queueing model’s divided working vacation notion, claimed by Vijayashree
and Ambika [28]. Lakshmi et al. [13] looked into the finite buffer M/M/1 Markovian queue with
impatience and working vacations. Brief studies of differential vacations were discussed, and
Vijayashree and Janani [27] and Lakshmi et al. [12] evaluated methods for preventing impatient
customers from abandoning the queue while on vacation, respectively. In the aforementioned
instance, both of them managed a unique vacation in the M/M/1 queue.

The new idea of an optional differentiated working vacation with an arrival restriction is
currently presented in this study. According to this theory, the server either transitions to an
optional working vacation I or II after the busy season has passed. The service rate is lower
during optional I working vacation than it is during the busy time, and after optional I working
vacation, the server moves into optional II working vacation, often known as the busy time.
Given that in this scenario, optional working vacation II is expected to have a lower service rate
than optional working vacation I.

2. Model Formulation
Consider a single-server queueing system with an optional differentiated working vacation
policy for the server. The notations and assumptions listed below have been used. Customers
join the queue by a Poisson process with an arrival rate λ. The customers receive service on
a First-Come, First-Received (FCFR) service scheme. The service time is expected to follow an
exponential distribution with a mean of 1

µ
. An optional working vacation I or II is selected by

the server at the busy period completion time, the server will choose either an optional working
vacation I with probability µp or an optional working vacation II with probability µq . While the
server is on both working vacations, the customers are receiving service slowly. The assumption
is that the service times will be exponentially distributed, with a mean 1

µi
if the server is on

working vacation of type i (i = 1,2) and µ>µ1 >µ2. If there are no customers in the system at
the end of the optional working vacation I, the server moves to the optional working vacation II.
If not, the server initiates providing services. If there are any customers remaining in the
system, the server begins providing services after the optional II working vacation ends. In
the event that it is not, the server goes on optional working vacation II. The duration of both
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types of optional working vacations I and II is considered to have an exponential distribution,
with means 1

γ1
and 1

γ2
, respectively. The number of customers who can arrive is restricted while

the server is either on optional working vacation I or II, i.e., λi ≤ λ, for i = 1,2. Interarrival,
vacation, and service times are all independent and identically distributed to each other.

3. The Steady State Analysis
Let N(t) represents the total number of customers at moment t, S(t) represents the service
provider’s status at time t,

S(t)=


0, the service provider at busy,
1, the service provider at optional working vacation I,
2, the service provider at optional working vacation II.

Then {S(t), N(t), t ≥ 0} is a state space of a Markov processes Λ= {(i, j), i = 0,1,2}.
Define pi, j be the probability that the service provider be in the ith state (i = 0,1,2) with

j(≥ 0) number of beneficiaries. Figure 1 depicts the state transition diagram.
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Figure 1. State transition diagram

4. Local Balancing Equation
The considered model’s local balance equations are

(λ+µ)p0,1 = γ1 p1,1 +γ2 p2,1 +µp0,2 , (1)

(λ+µ)p0,n = γ1 p1,n +γ2 p2,n +µp0,n+1 +λp0,n−1, n ≥ 2 , (2)

(λ1 +γ1)p1,0 =µ1 p1,1 +µpp0,1 , (3)

(λ1 +γ1 +µ1)p1,n =µ1 p1,n+1 +λ1 p1,n−1, n ≥ 1 , (4)

λ2 p2,0 = γ1 p1,0 +µqp0,1 +µ2 p2,1 , (5)

(λ2 +γ2 +µ2)p2,n = γ2 p2,n−1 +µ2 p2,n+1, n ≥ 1 . (6)

Equations (1) and (2) are solved by multiplying zn and yielding

P0(z)= γ1zp1,0 +γ2zp2,0 +µzp0,1 −γ1zP1(z)−γ2zP2(z)
λz2 − (λ+µ)z+µ

. (7)
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Equations (3) and (4) are solved by multiplying zn and yielding

P1(z)= µ1 p1,0 −µ1zp1,0 −µpzp0,1

λ1z2 − (λ1 +µ1 +γ1)z+µ1
. (8)

Equations (5) and (6) are solved by multiplying zn and yielding

P2(z)= µ2 p2,0 − zp2,0(µ2 +γ2)−γ1zp1,0 −µqzp0,1

λ2z2 − (λ2 +µ2 +γ2)z+µ2
. (9)

Equations (7), (8) and (9) are solved by some calculation and yielding

P0(1)= (λ2γ1γ2)p2,0 + (γ2µp(λ1 −µ1)+γ1µq(λ2 −µ2))p0,1 + (γ1γ2µ1 +γ1
2(λ2 −µ2))p1,0

γ1γ2(µ−λ)
, (10)

P1(1)= µpp0,1

γ1
, (11)

P2(1)= γ2 p2,0 +γ1 p1,0 +µqp0,1

γ2
. (12)

The law of total probability gives the following:

p0,1 = γ1γ2(µ−λ)(
γ2µp(λ1 −µ1 +µ−λ)+γ1µq(λ2 −µ2 +µ−λ)
+α(γ1

2(λ2 −µ2 +µ−λ)+γ1γ2µ1)+β(γ1γ2(λ2 −µ2 +µ−λ))

) ,

where

α= µpz1

µ1(z1 −1)
, β= −z2(αγ1 +µq)

z2(γ2 +µ2)−µ2
,

z1 is the positive root of λ1z2 − (λ1 +µ1 +γ1)z+µ1,

z2 is the positive root of λ2z2 − (λ2 +µ2 +γ2)z+µ2.

5. System Performance Measure
This section covers the important system performance measures for the given model. The mean
number of customers in busy period is

E(LB)=
∞∑

n=1
n pn,0

= (X +αY +βz)p0,1 ,

where

X =

γ1γ2
3µp[(µ−λ)(γ1µ1 +2µ1

2 −4λ1µ1 +2λ1
2 +γ1λ1)+2λγ1(λ1 −µ1 +γ1)]

+γ2γ1
3µq[(µ−λ)(γ2µ2 +2µ2

2 −4λ2µ2 +2λ2
2 +γ2λ2)+2λγ2(λ2 −µ2 +γ2)]

−2λγ2
3γ1

3µ


2γ23γ13(µ−λ)2 ,

Y =

(
(µ−λ)γ2γ1

3(γ1γ2µ2 +2γ1µ2
2 −4λ2γ1µ2 +2λ2

2γ1 +γ1γ2λ2)
+ (µ−λ)γ2

3γ1
2µ1(2λ1 −2µ1 −γ1)

)
2γ23γ13(µ−λ)2 ,

Z = γ2
2γ1

3λ2[(µ−λ)(2λ2 −2µ2 −γ2)+2λ]
2γ23γ13(µ−λ)2 .
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The mean number of customers in optional-I working vacation is

E(L1)=
∞∑

n=0
npn,1

= [µp(λ1 −µ1)]p0,1 +γ1µ1 p1,0

γ12 .

The mean number of customers in optional-II working vacation is

E(L2)=
∞∑

n=0
npn,2

= γ2λ2 p2,0 +γ1(λ2 −µ2)p1,0 +µq(λ2 −µ2)p0,1

γ22 .

Total mean number of customers in the system is = E(LB)+E(L1)+E(L2).
The formula determines the estimated waiting period is

E(W)= E(L)
λ

.

6. Numerical Illustrations
In this section, we discuss some numerical examples of the mean number of customers in the
system and the expected waiting time of the system for the various parameters of λ,µ,µ1 and
µ2.

Figures 2 to 5 deal with E(L) against various values of λ,µ,µ1 and µ2. As shown in Figure 2,
as λ increases, will also increase the mean number of customers. Specifically, when service
values increase, the mean number of customers decreases, that is, we observed a decrease in
the mean number of customers for increased service values of µ= 5, 4.75 and 4.5. Similarly,
Figure 3 illustrates that when µ increases, decrease the mean number of customers. Specifically,
when arrival rates increase, the mean number of customers also increases. Therefore, we have
observed an increase in the figure for the various values of λ = 0.7, 0.5 and 0.3. Similarly,
Figure 4 and Figure 5 says that µ1 and µ2 increase, the mean number of customers will
decrease. Specifically, when arrival rates increased, correspondingly increased the mean number
of customers; that is, we observed that the graph would be increased for different increased
arrival rates in Figures 4 and 5.

Figures 6 to 9 shows that E(W) against various values of λ,µ,µ1 and µ2. Figure 6 shows
that when the value of λ increases, customers are expected to wait more time. Customers’
expected waiting times should reduce when service values increase. Specifically, we observed
that when service values increased of µ= 5, 4.75 and 4.5, the expected waiting times decreased.
Similarly, Figure 7 indicates that when µ increases, the expected waiting time will decrease.
Specifically, when arrival rates increase, correspondingly increases the expected waiting time;
that is, we observe an increase in the figure for different values of λ= 0.7, 0.5 and 0.3. Similarly,
Figure 8 and Figure 9 shows that the expected waiting time for customers will decrease if
parameters µ1 and µ2 are increased. Specifically, we observed that when arrival rates increased,
correspondingly increased the expected waiting times. The graphs in Figures 8 and 9 will be
modified to reflect for different increases in arrival rates.
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Figure 2. E(L) against λ

Figure 3. E(L) against µ

Figure 4. E(L) against µ1

Communications in Mathematics and Applications, Vol. 16, No. 1, pp. 277–291, 2025



284 A Steady State Behavior of M/M/1 Queue with an Optional Differentiated. . . : S. Muthukumar et al.

Figure 5. E(L) against µ2

Figure 6. E(W) against λ

Figure 7. E(W) against µ
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Figure 8. E(W) against µ1

Figure 9. E(W) against µ2

7. Cost Analysis
In this section, we define the total expense function, which acts as the control variable in an
expense model. Our goal is to lower the overall mean expense per quantity by controlling these
variables. The following definitions apply to the cost elements:

Define the cost function TC as

TC = CLE(L)+CW E(W)+C0P0 +
2∑

i=1
CiPi +Cµµ ,

TC1 = CLE(L)+CW E(W)+C0P0 +
2∑

i=1
CiPi +Cµµ1 ,

TC2 = CLE(L)+CW E(W)+C0P0 +
2∑

i=1
CiPi +Cµµ2 ,
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where

CL ≡ Holding cost for each consumer seen in the system;

CW ≡ Waiting cost for one consumer requires the service;

C0 ≡ Cost for the period the server handling service process;

Ci ≡ Cost when the server is on the ith working vacations;

Cµ ≡ Cost for service;

P0 = Probability when the server is on busy state;

Pi = Probability when the server is on the ith working vacation;

E(L) = The expected number of beneficiaries in the system;

E(W) = The expected waiting time of a beneficiary in the system, respectively.

Our aim can be displayed mathematically as Minimize TC against µ, µ1 and µ2, where µ is
optimum service rate for busy period, µ1 is optimum service rate for optional-I working vacation
and µ2 is optimum service rate for optional-II working vacation.

Figures 10 to 13 shows that total cost TC against various µ, µ1 and µ2. It is clear that for
different values of µ, µ1 and µ2 the total cost curve is concave. Specifically, Figure 10 indicates
the optimal service rate for the total cost, and Figure 11 compares the TC to a for different
arrival rates; that is, increasing in the arrival rate corresponds to an increase in the TC for
different service rates (µ). Figure 12 shows TC against µ1 for different arrival rates; that is, an
increase in arrival rate corresponds to an increase in the total cost TC for different optional I
working service rates (µ1). Figure 13 shows TC against µ2 for different arrival rates; that is, an
increase in arrival rate corresponds to an increase in the total cost TC for different optional-II
working service rates (µ2).

Figure 10. TC against µ
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Figure 11. TC against µfor various λ

Figure 12. TC against µ1 for various λ

Figure 13. TC against µ2 for various λ
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7.1 Particle Swarm Optimization Algorithm
A population-based strategy approach is used in Particle Swarm Optimization (PSO). Many
swarming particles are used in it. Every particle suggests for a possible solution. The collection
of possible solutions cooperates and coexists concurrently. Every particle in the swarm looks for
the best spot to land inside the search region. The set of potential solutions is represented by
the search region, and the group (swarm) of flying particles symbolizes the evolving solutions.
Every particle records its own optimal solution as well as the best one in the swarm across a
number of generations, or iterations. The flying position and velocity settings are then adjusted.
Specifically, every particle reacts to its own and its neighbours’ flight experiences by dynamically
adjusting its speed. Using information about its current position, velocity, distance from personal
and swarm optimums, and it attempts to change its location in a manner similar to this. In this
case, we minimized the cost of corresponding to the best service by using the PSO optimization
method for Table 1.

Table 1. PSO values for various Λ

Λ E(L) E(W) µ∗ TC

0.50 0.4115 0.8230 1.4786 101.9793

0.55 0.4233 0.7697 1.4904 102.0641

0.60 0.4325 0.7208 1.5053 102.3032

0.65 0.4392 0.6757 1.5224 102.6625

0.70 0.4436 0.6337 1.5409 103.1150

From Table 1 we conclude that, the arrival rates are increasing then the corresponding
total cost will be increased. Also, the mean number of customers and expected waiting
time of a customer will be increased. In Figure 10, we get the best optimization value
(µ∗,TC)= (1.4786,101.9793).

8. Practical Application of the Model
Consider a bank teller (server), who occasionally has additional responsibilities in addition to
servicing customers.
Optional Working Vacation I: The teller serves customers while handling standard adminis-

trative duties (such as document filing), but because they are multitasking, service is
delayed.

Optional Working Vacation II: The teller divides their concentration between updating the
bank’s software system and serving customers, which further slows down operations.

The bank may prevent prospective customers from joining the queue during these working
vacations in an effort to better manage workloads and prevent long queues.

Customers might not understand the wait or may decide to leave as a result of this restriction,
which could significantly affect the bank’s efficiency and level of customer service.

This illustration demonstrates the queuing model’s performance in concept but also focuses
attention on the difficulties in putting it into practice, particularly in relation to customer
happiness and service effectiveness.
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9. Conclusion
The present research examines the concept of an M/M/1 queueing system with different
optional working vacations I and II. In addition, the arrival is restricted when the server
is on vacation. Computing the probability-generating function provided an analysis of the
mean number of customers in the system and the expected waiting time for each customer.
We analysed a number of numerical examples for arriving rate values, service values for busy
and working vacation periods, the mean number of customers, and the expected waiting time
of customers during vacation periods for both optional vacations. The total cost for busy and
different vacation periods was also determined for different service rate values, the mean
number of customers in the system, and the expected waiting times of customers. Next, the PSO
technique for reducing expenses was discussed for various arrival rates. If the arrival rates are
increasing, then the corresponding total cost will increase. Also, the mean number of customers
and expected waiting time of a customer will increase, while the total cost is reduced by the PSO
algorithm. The concept’s focus is future development using the MX/M/1 queueing system with
optional differentiated working vacation queues with arrival restriction and server breakdown
or M/G/1 with optional differentiated working vacation queues with arrival restriction.
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