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Abstract. This paper presents higher-order numerical methods for solving nonlinear Fisher equations.
These types of equations arise in various fields of sciences and engineering, the main application
of this equation has been found in the biomedical sciences. The solution of this equation helps to
determine the size of the brain tumor. In this paper, we have constructed the numerical method
based on the method of lines and higher order strong stability preserving schemes of order three and
four. These schemes are explicit in nature and easy to implement specially to solve the nonlinear
problems. Due to the stability-preserving nature of the scheme, the restriction on time steps is very
mild. These schemes are very practical to use and produce very accurate results. Various test problems
are considered to validate the scheme along with a comparison of L2 and L∞ errors with the exact
solution, resulting in high accuracy. The scheme is found to be better compared to existing schemes
with less computational effort.
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1. Introduction
We introduced the one-dimensional nonlinear Fisher equation

∂u
∂t

= ∂2u
∂x2 +αu(1−u), 0≤ x ≤ 1, t > 0, (1.1)

where u(x, t) population density.
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The Fisher equation was initially formulated in 1937, and eq. (1.1) is referenced from [10].
The details of the analysis and explanation of eq. (1.1) can be found in Kolmogorov et al. [16].
As a result, it is termed the Fisher-Kolmogorov-Petrovsky-Piscounov (Fisher-KPP) equation,
although it is more commonly recognized as the Fisher equation. The first solutions for eq. (1.1)
were found by Ablowitz and Zeppetella [2]. After that, eq. (1.1) was expressed multiple times
in various form by Korpusov et al. [17], Kudryashov [18], and Polyanin and Zhurov [25].
This equation finds numerous uses in the fields of science and engineering (see, Baker [4],
Chandraker et al. [8], Dattoli et al. [9], Gunzburger et al. [11], Ma and Fuchssteiner [20],
Polyanin and Zhurov [25]). The researchers explored some important variations of this equation
(see, Abd-Elhameed et al. [1], Agbavon et al. [3], Bastani and Salkuyeh [5], Branco et al. [7],
Hussen and Mebrate [13], Jiwrai and Mittal [14], Macías-Díaz et al. [21], Mittal and Jiwari [22],
Verma et al. [29], Vimal et al. [30, 31], and Wang [34]). The literature contains detailed
information regarding the mathematical properties of Fisher’s equation, along with extensive
discussions (see, Kawahara and Tanaka [15], Larson [19], and Tyson and Brazhnik [28]).

In mathematical science, we develop a method for obtaining numerical solutions of a one-
dimensional nonlinear reaction-diffusion equation using the SSPRK-43 technique. We perform
this task by transforming the PDE into ODE over time through the application of the method of
lines (Oymak and Selçuk [23]). The method of lines, which is a technique for finding numerical
solutions of PDE, plays an essential role in preserving the accuracy and stability of the
developing solution. The ODEs resulting from the discretization of the Navier-Stokes equations
are integrated using an implicit method, Adams-Moulton, which is integrated with the widely
recognized ODE solver (Hindmarsh [12]).

In this paper, we introduce a numerical approach for solving Fisher’s equation. We use
the method of lines in the spatial domain and employ the strong stability preserving Runge-
Kutta (SSPRK) method in the time domain for Fisher’s equation. In Section 2, we illustrate
Fisher’s equation in one dimension, including initial and boundary conditions. In Section 3,
involves semi-discretizing the derived equation in the spatial dimension using MOL and fully
discretizing it by implementing the SSP-RK43 method on the resulting ODE system. In Section 4,
we describe numerical experiments of test examples and compare the numerical solutions with
a few existing methods. Our method demonstrates higher accuracy compared to the existing
methods. In Section 5, conclusion is given.

2. Problem Statement

∂u
∂t

= ∂2u
∂x2 +αu(1−u), 0≤ x ≤ 1, t > 0, (2.1)

with initial condition

u(x,0)= u0(x), 0≤ x ≤ 1,

and the boundary conditions

u(0, t)= f3(t), 0≤ t ≤ T,

u(1, t)= f4(t), 0≤ t ≤ T,

where α is the reactive factor and u0(x), f3, and f4, are given functions of the variables which
are sufficiently smooth.

Communications in Mathematics and Applications, Vol. 15, No. 3, pp. 997–1010, 2024



Higher-Order Numerical Technique Based on Strong Stability Preserving Method. . . : V. Vimal et al. 999

3. Numerical Scheme
The Method of Lines (MOL) is a widely recognized technique used for solving time-dependent
partial differential equations. Initially, the PDEs are converted into ODEs using the method
of lines. Then the set of ODEs is solved by applying the SSP-RK43 scheme for integration.
To discretize the solution domain for eq. (1.1), we apply a uniform mesh approach. The spatial
interval [0,1] is divided into M equal sub-intervals, each with a width of ∆x, where ∆x is
calculated as ∆x = 1

M . We then define spatial points xm as xm = m∆x for m is ranging from 0
to M.

3.1 Method of Lines (MOL)
In [26], Rothe first introduced the Method of Lines (MOL), and in subsequent works of Bonkile
et al. [6], and Parambu et al. [24] utilized the MOL to transform the PDEs into a set of ODEs,
effectively addressing the Burger’s equation and Stefan problem. An unsteady linear partial
differential equation undergoes spatial discretization to create a semi-discrete method of lines
(MOL) scheme. This includes discretizing the reaction term ∂u

∂t with a second-order central
method and using the central difference to discretize the diffusion term ∂2u

∂x2 ,

∂u
∂x

= um+1(t)−um−1(t)
2h

, (3.1)

∂2u
∂x2 = um+1(t)−2um(t)+um−1(t)

h2 , h =∆x, (3.2)

dum

dt
=

(
um+1(t)−2um(t)+um−1(t)

h2 +αum(1−um)
)
, (3.3)

where m = 1,2,3, . . . , M−1.
The right-hand side of eq. (3.3) can be expressed using a discrete operator form:

dum

dt
= L(um), (3.4)

where m is ranging from 1 to M−1, and L is basically a nonlinear difference operator.

3.2 Time Integration
In this method, we establish a system of ordinary differential equations that are solved with
a four-stage, third-order time-stepping Runge-Kutta (SSP-RK43) scheme designed to ensure
strong stability preservation. In this case, the SSP method used exhibits the property where
the number of stages (s = 4) exceeds the method’s order (k = 3).

3.2.1 SSP-RK43
The purpose of SSP-RK43 is to achieve high-order accuracy in time integration while
maintaining strong stability properties. Let us express an s-stage explicit Runge-Kutta method
in the following manner,

U (0) =Un , (3.5)

U (i) =
i−1∑
k=0

(ai,kU (k) +∆tbi,kL(U (k))), i = 1,2,3, . . . , s , (3.6)

Un+1 =U (m) . (3.7)
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The SSP-RK43 scheme is characterized by coefficients ai,k that satisfy the conditions ai,k ≥ 0
and ai,k = 0 only if bi,k = 0 (Shu [27]). This scheme also possesses a Courant-Friedrichs-Lewy

(CFL) coefficient is 2. Additionally, it’s required that the sum of coefficients
i−1∑
k=0

ai,k = 1 holds for

i = 1,2,3, . . . , s.
To descretize the temporal domain [0,T] into N equivalent sub-intervals with a uniform

mesh size, we assume ∆t = 1/N = k and utilize tn = n∆t. We perform the integration of eq. (3.4)
from tn to tn +∆t using the following steps for n = 0,1,2 . . . , N , resulting in the complete
determination of the solution u(x, t) at a specific time level.

Table 1 gives the values of aik and bik coefficients.

Table 1. Butcher tableau of SSP-RK43 scheme (Shu [27])

ai,k bi,k

1 1
2

0 1 0 1
2

2
3 0 1

3 0 0 1
6

0 0 0 1 0 0 0 1
2

u(0)
m = un

m

u(0)
m = un

m

}
, (3.8)

u(1)
m = u(0)

m +∆t
(
1
2

)
L(u(0)

m )

u(1)
m = u(0)

m +
(

k
2

)[
u(0)

m+1 −2u(0)
m +u(0)

m−1

h2 +αu(0)
m (1−u(0)

m )

]
 , (3.9)

u(2)
m = u(1)

m +∆t
(
1
2

)
L(u(1)

m )

u(2)
m = u(1)

m +
(

k
2

)[
u(1)

m+1 −2u(1)
m +u(1)

m−1

h2 +αu(1)
m (1−u(1)

m )

]
 , (3.10)

u(3)
m =

(
2
3

)
u(0)

m +
(
1
3

)
u(2)

m +∆t
(
1
6

)
L(u(2)

m )

u(3)
m =

(
2
3

)
u(0)

m +
(
1
3

)
u(2)

m +
(

k
6

)[
u(2)

m+1 −2u(2)
m +u(2)

m−1

h2 +αu(2)
m (1−u(2)

m )

]
 , (3.11)

u(n+1)
m = u(3)

m +∆t
(
1
2

)
L(u(3)

m )

u(n+1)
m = u(0)

m +
(

k
2

)[
u(3)

m+1 −2u(3)
m +u(3)

m−1

h2 +αu(3)
m (1−u(3)

m )

]
 , (3.12)

where ∆t = k, m = 2,3, . . . , M for the next iteration u(0)
m = un+1

m .
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4. Numerical Results
Numerical results for the Fisher equation (1.1) using the SSP-RK43 method in MATLAB are
presented, and the method’s accuracy is assessed by comparing it with the exact solution. Assess
the accuracy and efficiency of the proposed method by evaluating the L2 and L∞ error norms,

L2 =
[

1
M

M∑
m=0

(Um −um)2
] 1

2

, L∞ = max
0≤m≤M

|Um −um|.

Here, um is numerical solution and Um as the similarity solution corresponding to the node at
position xm.

Example 4.1. Consider the Fisher equation

ut = uxx +αu(1−u),

subject to the initial condition

u(x,0)= 1

(1+ e
p

α
6 x)2

,

where the exact solution is presented in [22] given by

u(x, t)= 1

(1+ e
p

α
6 x− 5

6αt)2
.

Example 4.2. Consider the Fisher equation

ut = uxx +u(1−uα),

with initial condition

u(x,0)=
{

1
2

tanh
(
− α

2
p

2α+4
x
)
+ 1

2

} 2
α

.

The exact solution is presented in [22] by

u(x, t)=
{

1
2

tanh
(
− α

2
p

2α+4

(
x− α+4p

2α+4
t
))

+ 1
2

} 2
α

.

Tables 2 and 3 present numerical and exact solutions at various time points for different
values of ‘α’ and N is number of iteration in examples one and two. We compare the numerical
and exact solutions for α = 6 and 1 using at two distinct time steps, namely ∆t = 0.00001
and ∆t = 0.000005, with a specific focus on Examples 4.1 and 4.2. Figures 1, 2, 3, and 4
represent numerical solutions compared to the exact solution, while Figures 5, 6, 7, and 8
display the absolute error graphs about the exact solution for α= 6 and α= 1, with ∆t values of
0.00001 and 0.000005. We have conducted a comparison with existing numerical methods with
[13,22,30,32]. Our proposed numerical approaches, given in Tables 4, 5, 6, , 7, 8 and 9, perform
better than those presented in references [22,30,32]. Tables 10, 11, 12, and 13 provide the L2

and L∞ errors for examples one and two. From these tables and graphs, we observed that the
proposed method yields more accurate values for all time steps.
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Table 2. Numerical and exact solution at α= 6, N = 20 for Example 4.1

∆t = 0.00001 ∆t = 0.000005
x T Numerical solution Exact solution Numerical solution Exact solution

0.25 0.5 0.818397 0.818393 0.818396 0.818393
1.0 0.982919 0.982919 0.982919 0.982919
2.0 0.999883 0.999883 0.999883 0.999883
5.0 1.000000 1.000000 1.000000 1.000000

0.5 0.5 0.775809 0.775803 0.775808 0.775803
1.0 0.978147 0.978147 0.978147 0.978147
2.0 0.999850 0.999850 0.999850 0.999850
5.0 1.000000 1.000000 1.000000 1.000000

0.75 0.5 0.725830 0.725824 0.725828 0.725824
1.0 0.972071 0.972071 0.972071 0.972071
2.0 0.999808 0.999808 0.999808 0.999808
5.0 1.000000 1.000000 1.000000 1.000000

Table 3. Numerical and exact solution at α= 1, N = 20 for Example 4.2

∆t = 0.00001 ∆t = 0.000005
x T Numerical solution Exact solution Numerical solution Exact solution

0.25 0.5 0.334095 0.334094 0.334094 0.334094
1.0 0.455739 0.455739 0.455739 0.455739
2.0 0.683951 0.683951 0.683951 0.683951
5.0 0.966525 0.966525 0.966525 0.966525

0.5 0.5 0.305739 0.305739 0.305739 0.305739
1.0 0.425509 0.425509 0.425509 0.425509
2.0 0.659217 0.659216 0.659217 0.659216
5.0 0.963028 0.963028 0.963028 0.963028

0.75 0.5 0.278354 0.278353 0.278354 0.278353
1.0 0.395412 0.395411 0.395412 0.395411
2.0 0.633359 0.633358 0.633358 0.633358
5.0 0.959178 0.959178 0.959178 0.959178

Figure 1. Solution at α= 6, ∆t = 0.00001, and N = 20 for Example 4.1
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Figure 2. Solution at α= 6, ∆t = 0.000005, and N = 20 for Example 4.1

Figure 3. Solution at α= 1, ∆t = 0.00001, and N = 20 for Example 4.2

Figure 4. Solution at α= 1, ∆t = 0.000005, and N = 20 for Example 4.2
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Figure 5. Absolute errors at α= 6, ∆t = 0.00001, and N = 20 for Example 4.1

Figure 6. Absolute errors at α= 6, ∆t = 0.000005, and N = 20 for Example 4.1

Figure 7. Absolute errors at α= 1, ∆t = 0.00001, and N = 20 for Example 4.2
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Figure 8. Absolute errors at α= 1, ∆t = 0.000005, and N = 20 for Example 4.2

Table 4. Present and existing numerical solution comparison with exact solution at α= 6, N = 20 for
Example 4.1

∆t = 0.0001 ∆t = 0.00005
x T Mittal [22] Present solution Exact solution Mittal [22] Present solution Exact solution

0.25 0.5 0.81847 0.818420 0.818393 0.81843 0.818407 0.818393
1.0 0.98293 0.982921 0.982919 0.98292 0.982920 0.982919
2.0 0.99988 0.999883 0.999883 0.99988 0.999883 0.999883
5.0 1.00000 1.000000 1.000000 1.00000 1.000000 1.000000

0.5 0.5 0.77590 0.775837 0.775803 0.77580 0.775822 0.775803
1.0 0.97816 0.978150 0.978147 0.97815 0.978148 0.978147
2.0 0.99985 0.999850 0.999850 0.99985 0.999850 0.999850
5.0 1.00000 1.000000 1.000000 1.00000 1.000000 1.000000

0.75 0.5 0.72594 0.725862 0.725824 0.72588 0.725844 0.725824
1.0 0.97209 0.972075 0.972071 0.92208 0.972073 0.972071
2.0 0.99981 0.999808 0.999808 0.99981 0.999808 0.999808
5.0 1.00000 1.000000 1.000000 1.00000 1.000000 1.000000

Table 5. Present and existing numerical solution comparision with exact solution at α= 1, N = 20 for
Example 4.2

∆t = 0.0001 ∆t = 0.00005
x T Mittal [22] Present solution Exact solution Mittal [22] Present solution Exact solution

0.25 0.5 0.33412 0.334102 0.334094 0.33409 0.334098 0.334094
1.0 0.45576 0.455747 0.455739 0.45574 0.455743 0.455739
2.0 0.68397 0.683957 0.683951 0.68394 0.683954 0.683951
5.0 0.96653 0.966526 0.966525 0.96653 0.966525 0.966525

0.5 0.5 0.30576 0.305746 0.305739 0.30574 0.305742 0.305739
1.0 0.42553 0.425517 0.425509 0.42551 0.425513 0.425509
2.0 0.65924 0.659223 0.659216 0.65921 0.659220 0.659216
5.0 0.96303 0.963029 0.963028 0.96303 0.963029 0.963028

0.75 0.5 0.27838 0.278361 0.278353 0.27835 0.278357 0.278353
1.0 0.39544 0.395420 0.395411 0.39542 0.395415 0.395411
2.0 0.63338 0.633365 0.633358 0.63336 0.633361 0.633358
5.0 0.95918 0.959179 0.959178 0.95918 0.959179 0.959178

Communications in Mathematics and Applications, Vol. 15, No. 3, pp. 997–1010, 2024



1006 Higher-Order Numerical Technique Based on Strong Stability Preserving Method. . . : V. Vimal et al.

Table 6. Comparison of numerical solution for Example 4.1 at ∆t = 0.0004, T = 0.4 and α= 6.

x SIS [13] Present solution Exact solution

0 0.77580349 0.77580349 0.77580349
0.1 0.75685967 0.75684613 0.75671127
0.2 0.73668727 0.73656282 0.73641959
0.3 0.71528604 0.71508119 0.71492899
0.4 0.69266980 0.69241517 0.69225459
0.5 0.66886832 0.66859637 0.66842802
0.6 0.64392921 0.64367440 0.64349899
0.7 0.61791942 0.61771822 0.61753662
0.8 0.59092643 0.59081698 0.59063034
0.9 0.56305891 0.56305630 0.56289023
1 0.53444665 0.53444665 0.53444665

Table 7. Comparison of numerical solution for Example 4.1 at ∆t = 0.000005, T = 0.1 and α= 6

x BDF1 [32] BDF2 [32] Present solution Exact solution
0.1 0.35841806 0.35842071 0.35842328 0.35842691
0.2 0.32997086 0.32997260 0.32997524 0.32998421
0.3 0.30230060 0.30230157 0.30230424 0.30231742
0.4 0.27558402 0.27558442 0.27558708 0.27560315
0.5 0.24997987 0.24997993 0.24998256 0.25000000
0.6 0.22562504 0.22562500 0.22562757 0.22564477
0.7 0.20263156 0.20263170 0.20263415 0.20264943
0.8 0.18108475 0.18108534 0.18108759 0.18109917
0.9 0.16104234 0.16104363 0.16104557 0.16105159

Table 8. Comparison of numerical solution for Example (4.1) at ∆t = 0.000005, T = 0.1 and α= 1

x BDF1 [30] BDF2 [30] Present solution Exact solution
0.1 0.26073733 0.26073824 0.26073855 0.26073843
0.2 0.25042002 0.25042078 0.25042103 0.25042110
0.3 0.24031064 0.24031127 0.24031149 0.24031169
0.4 0.23041738 0.23041791 0.23041810 0.23041838
0.5 0.22074766 0.22074815 0.22074832 0.22074865
0.6 0.21130823 0.21130872 0.21130889 0.21130920
0.7 0.20210505 0.20210558 0.20210576 0.20210601
0.8 0.19314332 0.19314394 0.19314415 0.19314428
0.9 0.18442751 0.18442824 0.18442848 0.18442843

Table 9. Comparison of numerical solution for Example (4.1) at ∆t = 0.000005, T = 0.1 and α= 6

x BDF1 [30] BDF2 [30] Present solution Exact solution
0.1 0.35840890 0.35842119 0.35842328 0.35842691
0.2 0.32996342 0.32997349 0.32997524 0.32998421
0.3 0.30229465 0.30230278 0.30230424 0.30231742
0.4 0.27557923 0.27558586 0.27558708 0.27560315
0.5 0.24997582 0.24998148 0.24998256 0.25000000
0.6 0.22562126 0.22562655 0.22562757 0.22564477
0.7 0.20262760 0.20263311 0.20263415 0.20264943
0.8 0.18108020 0.18108646 0.18108759 0.18109917
0.9 0.16103685 0.16104428 0.16104557 0.16105159
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Table 10. Error of Example 4.1 at α= 1

∆t = 0.0001 ∆t = 0.00005
T L2 L∞ L2 L∞

0.5 2.87954E-05 3.80053E-05 1.54322E-05 2.02224E-05
1.0 2.99375E-06 4.2997E-06 1.38381E-06 2.0213E-06
2.0 1.99398E-08 2.91E-08 8.69856E-09 1.31E-08
5.0 0 0 0 0

Table 11. Error of Example 4.2 at α= 1

∆t = 0.0001 ∆t = 0.00005
T L2 L∞ L2 L∞

0.5 6.40395E-06 7.6751E-06 3.14702E-06 3.7845E-06
1.0 7.09577E-06 8.2303E-06 3.54533E-06 4.1173E-06
2.0 6.06549E-06 7.2913E-06 3.0837E-06 3.6994E-06
5.0 8.58653E-07 1.0872E-06 4.23784E-07 5.377E-07

Table 12. Error of Example 4.1 at α= 6

∆t = 0.00001 ∆t = 0.000005
T L2 L∞ L2 L∞

0.5 4.74683E-06 5.9958E-06 3.41395E-06 4.3637E-06
1.0 1.05544E-07 1.986E-07 8.09956E-08 1.355E-07
2.0 5.91608E-10 1E-09 1.5411E-09 2.3E-09
5.0 0 0 0 0

Table 13. Error of Example 4.2 at α= 1

∆t = 0.00001 ∆t = 0.000005
T L2 L∞ L2 L∞

0.5 5.41759E-07 6.721E-07 2.16534E-07 2.831E-07
1.0 7.04974E-07 8.268E-07 3.49989E-07 4.155E-07
2.0 6.98402E-07 8.301E-07 4.00322E-07 4.857E-07
5.0 7.58889E-08 9.81E-08 3.24257E-08 4.32E-08

5. Conclusion
We have developed a high-order numerical method for solving the Fisher’s equation.
We implement a technique known as semi-discretization to solve PDEs in the spatial variable
using the Method of Lines (MOL). Using this approach, we derive a system of ODEs that are
solved using the SSP-RK43 scheme. We consider two examples of the Fisher equation, comparing
numerical solutions at various time steps for different values of ‘α’ to determine the efficiency
and accuracy of the method. The L2 and L∞ norms are evaluated for numerical errors.
The introduced method produces better results, approaching the exact solution numerically.
The results are also compared with a few existing methods in Tables 4, 5, 6, 7, 8 and 9, they
are found to be more precise and accurate. This technique can also be implemented to solve
higher-dimensional nonlinear Partial Differential Equations (PDEs).
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