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1. Introduction

In 1922, Polish mathematician, Banach [3], established a theorem guaranteeing the presence
and uniqueness of a fixed point under suitable conditions. This finding is recognized as the
Banach contraction principle. Over time, numerous researchers have expanded upon and
develop this principle in various ways.

Bhaskar and Lakshmikantham [4] pioneered the idea of coupled fixed points, leveraging
the mixed monotone property to show several theorems in this area. Subsequently,
Lakshmikantham and Cirié [14] improved and generalized this work by giving the notion
of coupled coincidence points of functions applying the mixed g-monotone property.
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For further exploration of coupled fixed point theory in diverse spaces like partial order
metric spaces, modular function spaces, cone metric spaces, G-metric spaces and complex-valued
metric spaces, see, Aydi et al. [2], Chifu and Petrusel [5], Cho et al. [6], Dorié et al. [7], Gandhi
and Aserkar [8], Gu [9], He et al. [10], Jain et al. [[11]], Karapinar [[13]], Lakshmikantham and
Cirié [14], Mohammad et al. [|15], Shatanawi et al. [17], and Singh et al. [18]. However, research
in multiplicative S-metric spaces remains scarce, prompting the authors to explore into this
area.

This study aims to create a unique common coupled fixed point theorem for two functions in
multiplicative S-metric space by introducing a novel contraction condition. The uniqueness of
coupled fixed point is proven by employing w*-compatibility. An illustration is provided for the
validation of the theorem, and potential application is discussed in this paper.

Definition 1.1 ([16]). Assume S : M3 — [0,00) is a function, that satisfy the constraints, as here
under, for every h,i,j,ke M,

() S(h,i,j)=0,iff h=i=j.
(i) S(h,i,j)<S(h,h,k)+S3,i,k)+SG,j,k).

The couple (M,S) is named as S-metric space. Here M is non-empty set.

Example 1.1. Consider M = R", also || - || be norm on M. Then, S-metric spaces are:

@) Sh,i,))=1lli+j=2h]+Ili-jl,

(i) Sh,i,/)=1h—jl+1i-Jjl.

Definition 1.2 ([12]). Let M be a non-empty set. Then, the function S : M3 — [0,00) is named

as multiplicative S-metric on M, if and only if, the constraints below are true for all 4,i,; and
xeM,

@) S(h,i,j)=1,
Gi) S(h,i,f)=1<h=i=},
(1) S(h,i,j)<Sh,h,x)S,i,x)S(j,j,x), forxe M.

Here (M, S) is named as multiplicative S-metric space.

Definition 1.3 ([12]). A sequence {A,} in multiplicative S-metric space (M,S) is multiplicative
S-converges to some h € M iff for each € > 1, there exists a H € N such that

Sthy,hy,h)<e, foralln>H.

Definition 1.4 ([12]). The sequence {A,} in multiplicative S-metric space (M,S), is known as
multiplicative S-Cauchy sequence in M if and only if, for every € > 1, there occurs a H € N such
that S(h,,h,,hy) <e, for each n,m > H.

Definition 1.5 ([12]). The multiplicative S-metric space (M,S) is complete if and only if, each
multiplicative S-Cauchy sequence in M is multiplicative S-convergent in M.

Definition 1.6 ([4]]). Let M be a non-empty set. A pair (h,i) e M x M is called as coupled fixed
point of the mapping T': M xM — M if T(h,i)=h and T'(i,h) =1i.
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Definition 1.7 ([[14]). Let M be a nonempty set.

(i) A pair(gh,gi) e M xM is known as coupled coincidence point of the functions 7': M xM — M
and g: M — M if T(h,i)=gh and T'(i,h) = gi.

(i) A pair (h,i)e M x M is known as common coupled fixed point of functions T': M x M — M
and g:M —- M if T(h,i)=gh=h and T(i,h)=gi=1.

Definition 1.8 ([1]). Let M be a non-empty set. The functions T:M xM — M and g: M — M
are called

(i) w-compatible if g(T'(h,i))=T(gh,gi), whenever T'(h,i) = gh and T'(i,h) = gi.
(ii) w*-compatible if g(T'(h,h)) = T(gh,gh), whenever T'(h,h) = gh.

2. Main Result

Theorem 2.1. Let (M,S) be a multiplicative S-metric space, T:M xM — M and g: M — M
satisfy the following constraints:

(1) T(M xM)c g(M),g(M) is multiplicative complete subspace of M,
1) S[T'(h,i),T(h,i), T(j,R)ISITG,h), T, h), T(k,j)]<SP(gh,gh,gj)SP(gi,gi,gk), for pe(0,1),

#

(iii) T and g are w"-compatible mappings.

Then, T and g have unique common coupled fixed point (j,j) e M x M.

Proof. Let (ho,i9) € M. SinceT(M x M) c g(M), we can choose (h1,i1),(hg,i2) € M such that
g(h1) =T(ho,i0), g(i1) = T(io,ho) and g(hg) = T'(h1,11), g(iz) = T'(i1,h1).

Continuing in this way, we can construct the sequences {gh,} and {gi,} in g(M) such that
ghn+1)=T(hn,in), 8lin+1) =T(in,hy), for all n=0.

S(ghn,8hn,8hn+1)S(8in,81n,81n+1)
=S(T(hp-1,in-1),T(hn-1,in-1), T(hpn, i NDS(TGp-1,hn-1), T@n-1,hn-1),T(in, hy))
<SP(ghn-1,8hn-1,8hn)SP(gin-1,8in-1,8in)
<SP’ (ghn-9,8hn-2,8hn-1)S” (&in-2,8in-2,8in1)

< Spn(gho,gho,ghl)Spn(gio,gio,gi1), for all natural numbers n.
Now
S(ghm,8hm,8hn)S(8im,8im,81n)

<S(ghm,8hm;8hm+1)S(&hm,8hm,8hm+1)S(ghn,ghn,ghm+1)
S(gim,8im,8lm+1)S(8im;8im,8im+1)S(81n,81n,8lm+1)

< S*(8hm,&8hm:8hm+1)S*(@im,&im>8im+1)S(&hn,8hn,8hn+1)S(@hn,8hn,&hn+1)

S(ghm+1,8hm+1,8hn+1)S(8in,81n,81n+1)S(8in,81n,81n+1)S(Gim+1,8Im+1,81n+1)

= S%(ghm,&hm,8hm+1)S*(&im,&im:&im+1)S*(&hn,&hn,8hn+1)

-S*(gin,&in,&in+1)S(8hm+1,8Rm+1,87n+1)S(Eim+1,8im+1,8in+1)
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= S%(ghm,&hm:8hm+1)S*(&im,&im:&im+1)S*(ghn,&hn,8hn+1)
-S%(gin, &ins Gint STy i)y Ty im), TR, in))
ST G, o), Ty Bom), T, n))
< S%(ghm,8hm, 8hm+1S*(Gim, 8im,&im+1)S*(ghn, 8hn,ghn+1)
-S*(gin, gin,&in+1)SP(ghm,&hm,8hn)SP(gim,&im,&in).
Therefore,
SYP(ghm,ghm,8hn)S P (gim,&im,gin)
< S%" (gho,gho,gh1)S*" (gio,gi0,811)S*" (gho,gho,gh1)S*" (gio,gio,gi1)-
Therefore,

S(Ehm,8hm,8hn)S(8lm,8im,8in)

< S5 (gho,gho,gh1)S 7 (gio,gio,gi1)S 17 (gho,gho, gh1)S 7 (gio,gio,gi1).
This implies
S(ghm,g8hm,gh)S(Eilm,81m,81n)— 1, asn,m — oo
such that
S(ghm,8hm,ghn)— 1, S(gim,8im,81x)—1, asn,m — oo.
Thus, the sequences {gh,} and {gi,}are Cauchy sequences in g(M).
Due to the completeness of g(M), there exists g(h),g(i) € g(M) such that {gh,} and {gi,}
converges to g(h) and g(i) correspondingly.
Now, we prove that T'(h,i) = g(h), T(i,h) = g(i),
S(T'(h,i),T(h,i),gh)S(T(b,h),T(i,h),g1)
<8(T(h,i),T(h,i),ghn+1)S(T(h,1),T(h,i),ghn+1)S(gh,gh,ghnp+1)
-S(T(@i,h), TG,h),8in+1)S(T(,h), T(,h),8in+1)S(81,81,8in+1)
< SA(T(h,i),T(h,i),ghn+1)S*(T(i,h), T(i,h),gin+1)S(gh,gh,ghn+1)S(gi,gi,8in+1)
= SA(T(h,i), T(h,i), T(hn,in))S*(TG, ), T(i 1), T, hn)S(gh,gh, ghn+1)S(gi, 81, 8in+1)
<SP (gh,gh,gh)S* (gi,gi,gin)S(gh,gh,ghn+1)S(gi,gi,gin+1)
=S?(gh,gh,gh)S?P(gi,gi,gi)S(gh,gh,gh)S(gi,gi,gi) =1, asn— oo.
Thus
S(T(h,i),T(h,i),gh)S(T(i,h),T(,h,gi)=1
= T(h,i)=gh,T@G,h)=gi
Thus (gh, gi) is coupled coincidence point of mappings 7' and g.

To prove uniqueness, consider (A*,i*) € M x M such that (gh*,gi*) is coupled coincidence point
of functions 7" and g.

S(gh,gh,gh*)S(gi,gi,gi*) = S(T(h,i), T(h,i), T(h*,i*NS(TG,h), TG, k), TG* k"))
<SP(gh,gh,gh*)S"(gi,gi,gi")
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= S'"P(gh,gh,gh*)S' P (gi,gi,gi*) =1
— S'"P(gh,gh,gh*)=1, S P(gi,gi,gi*) =1
= gh=gh™, gi=gi".
Thus (gh, gi) is unique coupled coincidence point of functions T and g.
S(gh,gh,gi)S(gi,gi,gh)=S(T(h,1),T(h,i), T,h)S(TG,h), T, h),T(h,i))
<SP(gh,gh,gi)SP(gi,gi,gh)
= S(gh,gh,g1)S(gigi,gh)=1
= S(gh,gh,gi)=1, S(gi,gi,gh)=1
= gh=gi.
Therefore, (gh,gh) is unique coupled coincidence point of 7' and g.
To show that unique common coupled fixed point.
Let gh # h and gh = j, then
Jj=8gh=T(h,i), j=gi=T(,h)
= Jj=8i=8j=TG)=T(,1)
= i=]J
Therefore, gh =T(h,h)=j. Since T and g are compatible, we have
gj=8(gh)=gT(h,h)=T(gh,gh)=T(,)).
By uniqueness of coupled coincidence point, we have gi = gh.
Thus j=gj=T(.,)).
Therefore, (j,7)=gj=T(,j).
Hence (j,j) is unique common coupled fixed point of 7' and g.

3. Example

Let M =[0,11, S(h,i,j) = 22"~/ T(h,i) = 4+ g(h)=5h -2, forall h,ie M, p = 3.

The below mentioned conditions are fulfilled:
(1) Sh,i,j)=1,
1) Sh,i,)=1<=h=i=],
(iii) S(h,i,j)<S(h,h,x)SG,1,x)S(j,j,x), for x e M.
R.H.S. = S(h,h,x)S(i,i,%)S(j, j,x) = 22h~h-lgRizi=xIgi2j=j=al = glh—xl+li=xl+lj=x|
LH.S. = S(h, i, j) = 2/2h=i=il = gl2th-0~(i-x)~G=x)
Obviously, L.H.S. <R.H.S.
S[T(h,i), T(h,)),T(G,RISITG,h), T(,h),T(k,j)] <SP(gh,gh,gj)SP(gi,gi,gk)
L.H.S.=8[T(h,i),T(h,i),T(j,RISITG,h), T3, h), Tk, )]

h+i+1 h+i+1 j+k+1 (i+h+1 i+h+1 k+j+1)
4 7 4 7 4 4 4 4
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| 2h+i+l) htit+l jtk+l | | 206+h+1) _j+h+1_k+j+1
1 1 1 1 1 1

|h+i—j—k|
=9 7
R.H.S.=SP(gh,gh,gj)SP(gi,gi,gk)
— S2(5h —2,5h—2,5]—2)S%(5i—2,5i — 2,5k —2)

h+i—j—k |
o| Leigik

=2
Therefore, L.H.S. < R.H.S. Hence contraction condition is satisfied.

The function g is continuous. 7' and g are compatible functions.

1
11 -+-+1 1 1 1
Now (L) = E 7 (1) s(1) 2=
2’2 2 2 2

1 1
Hence T (— —) =g (5) = —,i.e., T and g have unique common coupled fixed point (2 2)

4. Applications

In this section, we will discuss the presence and uniqueness of solution for a class of non-linear
integral equations using the results obtained. We consider M is set of continuous functions
defined on [0, 1].

Theorem 4.1. Let S:M? — R* by S(h,i,j)= sup 22MV-{D-iWI Tpen (M,8S) is a multiplicative
A€(0,1)
S-metric space. The non-linear integral equations as here under, have unique solution in CF[0,1],

1
h(A) = e(/1)+f0 LA, W1 (e, () + fo(p, i) i,

1
i(A) =e() +f0 LA, i{f1(p, () + fo(p, ()} p,
where e:[0,11— R, 1:[0,11x[0,1]1 = R™, f1,f2:[0,11x R — [0, 1], under the following conditions:

(1) f1,f2,e,l are continuous functions,
(i1) the constants 11,79 > 0 such that
If1(A, )= fo(A, D) < T1lh —il, |f2(A,h) = fo(A, 1) < T2lh —il, forall A€[0,1], h,i€R,

(i) 0<A=2max(11,71)Illloo, where ||l]loo =sup{l(A,u): A, ue[0,11}.
Proof. Let T:M xM — M and g: M — M are defined as
1
T(h,1)(A) =e(A) +f0 LA, wf1(u, A () + fo(p, i(u)}du, forallh,ie M,

gh(A)=h(1), forallhe M.
Then
GM xM)c g(M).
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Now
SIT(h,i), T(h, i), T(j,R)ISITG, k), T(i,h), T(k, j)]

<SP(gh,gh,g))S"(gi,gi,gk)

= sup 2|2T(h,i)(7t)—T(h,i)(/1)—T(j,k)(/l)l sup 2|2T(i,h)(/l)—T(i,h)(l)—T(k,j)(/l)l
AE[O,].] /lE[O,].]

= sup oIT (R, XA)=T(}, k) sup oI TG WA =Tk,
A€[0,1] 2€[0,1]

= sup 2|e(/1)+foll(/l,u){fl(u,h(u))+f2(u,i(,u))}du—e(/l)—foll(A,p){fl(uj(u)nfg(u,k(u))}du|
A€(0,1)
. sup 2|e(/1)+f01l(/l,#){fl(,U,i(ﬂ))+f2(#,h(p))}du—e(l)—foll(A,p){fl(y,k(p))+f2(#j(’u))}dy|
1€(0,1)

= sup 2|fo1 LU P10~ 1 J ) + P )~ Fo s kb |
A€(0,1)
. sup 2|foll(/'l,l»l){fl(,u,i(u))—f1(,u,k(p))+f2(y,h(p))_f2(y,j(y))}dy|
1€(0,1)

< sup oo WL )= F(pasf G+ o i) = Fo(pr ()] N
A€(0,1)
. sup 2f01|l(A’/J)[fl(H,i(ﬂ))—fl(ﬂ,k(ﬂm+|f2(#,h(#))—fz(ﬂ,j(u))l]dy.
A€(0,1)

From (ii),

|f1(, A () = f1(p, i) < 71| (W) — i(w)l,

|fo(u, h(1) — folp, i(w)] < To|A(w) — i(WI.
Therefore,

S[T(h,1),T(h,i), T(G,RISITG,h), T3, h), Tk, )]

< sup 200 LAITIAG=jGl+72liG=j4oldk g0 ofo LAMITIIGO=ul+Talh(n)-jGdu

21€(0,1) A€(0,1)
s( sup 2foll(A,u)nh(u)—j(un+|i(u)—k(u)|]du)ma"(““)
1€(0,1)

( sup 2 foll(/l,p)[li(,u)—k(u)l+|h(,u)—j(u)|]d#)max(”’72).
A€(0,1)

Now, using Cauchy-Schwartz inequality
1 1
oo LAWURGW =1+ -kdp < 9lfy Ppdw 2 (fg (R =@+ i -kG)d w2

sup |A(W)—j(wl+ sup |i(w)—k (W)l Il
< (2/1&(0,1) 2€(0,1) o

Similarly
1 1
oo LAWLIEW-RWI+HAW-j(Wdp < oy 1PApdw 2 (f (i -kGI+ R -jG)2d w2

sup |i(u)—k(l+ sup |A(W—j(w) Il
< (zmo,n A€(0,1) oo
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Therefore,

S[T(h,1), T(h,1),TG,RISITE,h), TG, ), T(k,j)]

sup |h(w)—j(Wl+ sup li(W-R(Wl\ max(r1,72)1llco
| B

sup 91€(0,1) Ae(
1€(0,1)
sup li(wW—k(wl+ sup [A(w-j(Wl\max(r1,72)1llco
( sup 240D 1€(0,1) )
A€(0,1)

<( sup 2/I—JGl+i()~k(w)]

)max(Tl,T2)||l||oo (
Ve,

sup zli(u)—k(u)l+|h(u)—j(u)l)maX(Tl’TZ)”l”m

1€(0,1)

) . 2max(71,72) 1 o
< ( sup 2P0 gup 2|z(u)—k(u)|)

A€(0,1) A€(0,1)

< sup 2EM-8 gup glei-gk)

)2max(11,‘l’2)||l lloo
1€(0,1) A€(0,1)

( sup 228h-8hW-gjW| g oI28i)-giGn-gh()

)2max(r1,T2)lll lloo
1€(0,1) A€(0,1)

:( sup 9128h(1)~gh(W—-g (W sup 9128b(1)-gb(-gk(w)|
2€(0,1) 1€(0,1)

. S2max(f1,12)||l||oo(gh,gh’gj)SzmaX(Tl’Tz)”l”"o(gi,gi,gk).

Thus contraction condition is satisfied.

)2max(11,T2)|ll||oo

Thus T and g fulfill all conditions of Theorem [2.1] Therefore, T' and g possesses unique common
coupled fixed point (J, ).

Therefore,
TG,))=87=J.
Hence (J, j) is unique solution of integral equation. O

5. Conclusion

We established a new common coupled fixed point theorem for pair of mappings in multiplicative
S-metric space with an example and an Application.
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