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1. Introduction
For all terms and definitions, not defined specifically in this paper, we refer to [10]. Unless
mentioned otherwise, all graphs considered here are simple, finite and have no isolated vertices.

Many problems in extremal graph theory seek the extreme values of graph parameters on
families of graphs. The classic paper of Nordhaus and Gaddum [6] study the extreme values of
the sum (or product) of a parameter on a graph and its complement, following solving these
problems for the chromatic number on n-vertex graphs. In this paper, we study such problems
for some graphs and their associated graphs.
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Definition 1.1 ([5]). A Walk, W = v0e1v1e2v2 . . .vk−1ekvk , in a graph G is a finite sequence
whose terms are alternately vertices and edges such that, for 1 ≤ i ≤ k, the edge e i has ends
vi−1and vi .

Definition 1.2 ([5]). If the vertices v0,v1, . . . ,vk of a walk W are distinct then W is called a
Path. A path with n vertices will be denoted by Pn . Pn has length n−1.

Definition 1.3 ([12]). The Covering number of a graph G is the size of a minimum vertex cover
in a graph G , known as the vertex cover number of G , denoted by β(G).

Definition 1.4 ([4]). Two vertices that are not adjacent in a graph G are said to be independent.
A set S of vertices is independent if any two vertices of S are independent. The vertex
independence number or simply the independence number, of a graph G , denoted by α(G)
is the maximum cardinality among the independent sets of vertices of G .

Definition 1.5 ([2]). A subset M of the edge set of G , is called a matching in G if no two of
the edges in M are adjacent. In other words, if for any two edges e and f in M , both the end
vertices of e are different from the end vertices of f .

Definition 1.6 ([2]). A perfect matching of a graph G is a matching of G containing n/2 edges,
the largest possible, meaning perfect matchings are only possible on graphs with an even
number of vertices. A perfect matching sometimes called a complete matching or 1-factor.

Definition 1.7 ([2]). The matching number of a graph G , denoted by ν(G), is the size of a
maximal independent edge set. It is also known as edge independence number. The matching
number ν(G) satisfies the inequality ν(G)≤ bn

2 c.
Equality occurs only for a perfect matching and graph G has a perfect matching if and only if
|G| = 2ν(G), where |G| = n is the vertex count of G .

Definition 1.8 ([2]). A maximal independent set in a line graph corresponds to maximal
matching in the original graph.

In this paper, we discussed the sum and product of the covering numbers of certain class of
graphs and their line graphs.

2. New Results
Definition 2.1 ([13]). The line graph L(G) of a simple graph G is the graph whose vertices are
in one-one correspondence with the edges of G , two vertices of L(G) being adjacent if and only
if the corresponding edges of G are adjacent.

Theorem 2.2 ([12]). The independence number α(G) of a graph G and vertex cover number
β(G) are related by α(G)+β(G)= |G|, where |G| = n, the vertex count of G .

Theorem 2.3 ([12]). The independence number of the line graph of a graph G is equal to the
matching number of G .
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Proposition 2.4. For a complete graph Kn , n ≥ 3,

β(Kn)+β(L(Kn))=


n2−2
2 ; if n is even

n2−1
2 ; if n is odd

and

β(Kn) ·β(L(Kn))=


n(n−1)(n−2)
2 ; if n is even

(n−1)3
2 ; if n is odd .

Proof. The independence number of a complete graph Kn on n vertices is 1, since each
vertex is joined with every other vertex of the graph G . By Theorem 2.2, the covering
number, β(Kn) of Kn = n−1. By [11], α(L(Kn)) = bn

2 c. Then, since there are n(n−1)
2 vertices

in L(Kn), by Theorem 2.2, β(L(Kn)) = n(n−1)
2 −bn

2 c = n(n−1)
2 − n

2 = n(n−2)
2 , when n is even and

n(n−1)
2 − ( n−1

2 )= (n−1)2
2 , when n is odd.

Therefore

β(Kn)+β(L(Kn))=
{n2−2

2 ; ; if n is even
n2−1

2 ; ; if n is odd

and

β(Kn) ·β(L(Kn))=


n(n−1)(n−2)
2 ; if n is even

(n−1)3
2 ; if n is odd .

Proposition 2.5. For a complete bipartite graph Km,n ,

β(Km,n)+β(L(Km,n))= mn and β(Km,n) ·β(L(Km,n))= m2(n−1) .

Proof. Without the loss of generality, let m < n. The independence number of a complete
bipartite graph, α(Km,n) = max(m,n) = n. Since a complete bipartite graph consists of m+n
number of vertices, by Theorem 2.2, β(Km,n) = m + n − n = m. The number of vertices in
L(Km,n) is mn and α(L(Km,n))= matching number of Km,n = ν(Km,n)=min(m,n)= m. Then by
Theorem 2.2, β(L(Km,n))= mn−m = m(n−1).
Therefore,

β(Km,n)+β(L(Km,n))= mn and β(Km,n) ·β(L(Km,n))= m2(n−1) .

Definition 2.6. [10] For n ≥ 3, a wheel graph Wn+1 is the graph K1+Cn . A wheel graph Wn+1

has n+1 vertices and 2n edges.

Theorem 2.7. For n ≥ 3,

β(Wn+1)+β(L(Wn+1))=
{

2n+1 ; if n is even

2(n+1) ; if n is odd

and

β(Wn+1) ·β(L(Wn+1))=


3n(n+2)
4 ; if n is even

(n+3)(3n+1)
4 ; if n is odd .
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Proof. By [11], the independence number of a wheel graph Wn+1 is bn
2 c. The number of vertices

in Wn+1 is n+1. Then by theorem 2.2, β(Wn+1) = (n+1)−bn
2 c = (n+1)− n

2 = (n+2)
2 , if n is even

and (n+1)− (n−1)
2 = (n+3)

2 , if n is odd.
Now, consider the line graph of the wheel graph Wn+1 . By [11], the independence number,

α(L(Wn+1)) = bn
2 c. Since Wn+1 consists of 2n edges, the line graph L(Wn+1) have exactly

2n vertices, and by theorem 2.2, β(L(Wn+1)) = 2n − bn
2 c = 2n − n

2 = 3n
2 , if n is even and

2n− (n−1)
2 = 3n+1

2 , if n is odd.
Therefore,

β(Wn+1)+β(L(Wn+1))=
{

2n+1 ; if n is even

2(n+1) ; if n is odd

and

β(Wn+1) ·β(L(Wn+1))=


3n(n+2)
4 ; if n is even

(n+3)(3n+1)
4 ; if n is odd .

Definition 2.8 ([9]). Helm graphs are graphs obtained from a wheel by attaching one pendant
edge to each vertex of the cycle.

Theorem 2.9. For a helm graph Hn , n ≥ 3, β(Hn)+β(L(Hn))= 3n and β(Hn) ·β(L(Hn))= 2n2 .

Proof. A helm graph (Hn) consists of 2n+1 vertices and 3n edges. By [11], the independence
number of a helm graph, α(Hn) = n+1. Since, the number of vertices of (Hn) is 2n+1, by
Theorem 2.2, β(Hn)= (2n+1)− (n+1)= n.

Now consider the line graph of the helm graph Hn . By theorem 2.3, the independence
number of L(Hn) is equal to the matching number of Hn = n. Since, the number of vertices of
L((Hn))= 3n, by Theorem 2.2, β(L(Hn))= 3n−n = 2n.

Therefore, β(Hn)+β(L(Hn))= 3n and β(Hn) ·β(L(Hn))= 2n2 .

Definition 2.10 ([12]). Given a vertex x and a set U of vertices, an x, U−fan is a set of paths
from x to U such that any two of them share only the vertex x. A U−fan is denoted by F1,n .

Theorem 2.11. For a fan graph F1,n ,

β(F1,n)+β(L(F1,n))=
{

2n ; if n is even

2n−1 ; if n is odd

and

β(F1,n) ·β(L(F1,n))=


(n+2)(3n−2)
4 ; if n is even

(n+1)(3n−3)
4 ; if n is odd .

Proof. A fan graph F1,n is defined to be a graph K1+Pn . By [11], the independence number of a
fan graph F1,n is either n

2 or n+1
2 , depending on n is even or odd. Since the number of vertices of
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F1,n is n+1, by Theorem 2.2, β(F1,n)= (n+1)− n
2 = n+2

2 , if n is even and (n+1)− (n+1)
2 = n+1

2 , if
n is odd. Now consider the line graph of the fan graph F1,n . By Theorem 2.3, the independence
number of L(F1,n), α(L(F1,n))= ν(F1,n) is either n

2 or n+1
2 depending on n is even or odd. Since

the number of vertices in F1,n is 2n−1, by Theorem 2.2, β(L(F1,n))= (2n−1)− n
2 = (3n−2)

2 , if n is
even and (2n−1)− (n+1)

2 = (3n−3)
2 , if n is odd.

Therefore For a fan graph F1,n ,

β(F1,n)+β(L(F1,n))=
{

2n ; if n is even

2n−1 ; if n is odd

and

β(F1,n) ·β(L(F1,n))=


(n+2)(3n−2)
4 ; if n is even

(n+1)(3n−3)
4 ; if n is odd .

Definition 2.12 ([1, 14]). An n−sun or a trampoline, denoted by Sn , is a chordal graph on 2n
vertices, where n ≥ 3, whose vertex set can be partitioned into two sets U = {u1,u2,u3, . . . ,un}
and W = {w1,w2,w3, . . . ,wn} such that U is an independent set of G and ui is adjacent to w j if
and only if j = i or j = i+1(modn). A complete sun is a sun G where the induced subgraph 〈U〉
is complete.

Theorem 2.13. For a complete sun graph Sn , n ≥ 3, β(Sn)+β(L(Sn)) = n(n+3)
2 and β(Sn) ·

β(L(Sn))= n2(n+1)
2 .

Proof. Let Sn be a complete sun graph on 2n vertices. By [11], the independence number
of Sn , α(Sn) = n. Since Sn consists of 2n vertices, by theorem 2.2, β(Sn) = 2n− n = n. Now
consider the line graph L(Sn) of Sn . By [11], the independence number of L(Sn), αL(Sn)= n.
The number of vertices of L(Sn) is the number of edges of Sn = n(n−1)

2 +2n = n(n+3)
2 . Then by

theorem 2.2, β(L(Sn)) = [ n(n+3)
2 ]− n = n(n+1)

2 . Therefore, n ≥ 3, β(Sn)+β(L(Sn)) = n(n+3)
2 and

β(Sn) ·β(L(Sn))= n2(n+1)
2 .

Definition 2.14 ([14]). The n−sunlet graph is the graph on 2n vertices obtained by attaching
n pendant edges to a cycle graph Cn and is denoted by Ln .

Theorem 2.15. For a sunlet graph Ln on 2n vertices, n ≥ 3, β(Ln)+ β(L(Ln)) = 2n and
β(Ln) ·β(L(Ln))= n2 .

Proof. Let Ln be a sunlet graph on 2n vertices. By [11], the independence number of Ln ,
α(Ln)= n. Since Ln consists of 2n vertices, by Theorem 2.2, β(Ln)= 2n−n = n. Now consider
the line graph L(Ln) of Ln . The number of vertices of L(Ln) is the number of edges of Ln = 2n.
Then by theorem 2.2, β(L(Ln))= 2n−n = n.
Therefore, β(Ln)+β(L(Ln))= 2n and β(Ln) ·β(L(Ln))= n2 .

Definition 2.16 ([10]). The armed crown is a graph G obtained by adjoining a path Pm to every
vertex of a cycle Cn .
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Theorem 2.17. For an armed crown graph G with a path Pm and a cycle Cn ,

β(G)+β(L(G))=
{

mn+1 ; if m, n are odd

mn ; otherwise

and

β(G) ·β(L(G))=


(mn+1)2
4 ; if m, n are odd

m2n2

4 ; otherwise .

Proof. Note that the number of vertices of Pm is m. By [11], α(G) = mn
2 , except for m

and n are odd. The number of vertices of an armed crown graph is mn. By Theorem 2.2,
β(G) = mn− mn

2 = mn
2 . Now consider the line graph, L(G) of G . From [11], the independence

number of the line graph of G is mn
2 . The number of vertices of L(G) is the number of edges in

G and is equal to n(m−1)+n = mn. Then by Theorem 2.2, β(G)= mn− mn
2 = mn

2 .
Therefore, β(G)+β(L(G))= mn

2 + mn
2 = mn and β(G).β(L(G))= mn

2 · mn
2 = m2n2

4 .
When m and n are odd, by [11], the independence number of G , α(G)= bn

2 c[ m+1
2 ]+dn

2 e[ m−1
2 ]. By

Theorem 2.2,

β(G)= mn−
[⌊n

2

⌋[m+1
2

]
+

⌈n
2

⌉[m−1
2

]]
= mn−

[(n−1
2

)(m+1
2

)
+

(n+1
2

)(m−1
2

)]
= mn+1

2
.

Now consider the line graph, L(G) of G . From [11], α(L(G)) = n( m−1
2 )+bn

2 c. The number of
vertices of L(G) is the number of edges in G and is equal to n(m−1)+n = mn. Then by theorem
2.2,

β(L(G))= mn−
[
n
(m−1

2

)
+

⌊n
2

⌋]
= mn−

[
n
(m−1

2

)
+ n−1

2

]
= mn+1

2
.

That is, β(G)+β(L(G))= mn+1
2 + mn+1

2 = mn+1 and β(G) ·β(L(G))= mn+1
2 · mn+1

2 = (mn+1)2
4 .

Therefore, for an armed crown graph,

β(G)+β(L(G))=
{

mn+1 ; if m, n are odd

mn otherwise

and

β(G) ·β(L(G))=


(mn+1)2
4 ; if m, n are odd

m2n2

4 ; otherwise .
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3. Conclusion
The theoretical results obtained in this research may provide a better insight into the problems
involving covering number and independence number by improving the known lower and upper
bounds on sums and products of independence numbers of a graph G and an associated graph of
G . More properties and characteristics of operations on covering number and also other graph
parameters are yet to be investigated. The problems of establishing the inequalities on sums
and products of covering numbers for various graphs and graph classes still remain unsettled.
All these facts highlight a wide scope for further studies in this area.
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