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differential equation (ODE) together with its boundary conditions. Using the local Lyapunov-Schmidt
approach, we demonstrate that this function is identical to the key function that corresponds to
the functional of the ODE. The bifurcation analysis of the function has been investigated by border
singularities. The parametric equation for the bifurcation set (caustic) and its geometric description
together with the critical points’ bifurcation spreading has been found.
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1. Introduction
The nonlinear equations in the infinite dimension of the type:

g(x,λ)= b, x ∈O, b ∈Y , λ ∈Rn, (1)

can be convert to an equations of the type

θ(ξ,λ)= η, ξ ∈A, η ∈B, (2)

in the finite dimension by Lyapunov-Schmidt (LS) method, so that the smooth Fredholm map g
has an index of zero, Banach’s spaces are X and Y , O ⊆ X is open and, A, B are smooth finite
dimensional manifolds. The bifurcation diagram, multiplicity, and analytical and topological
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1142 Border Singularities as Solutions of an Ordinary Differential Equation: H. K. Kadhim

properties, etc. of equation (1) are all included in equation (2) (see Darinskii et al. [4], Loginov
[10], Sandstede [13], Shveriova [15], Thompson and Stewart [16], Vainberg and Trenogin [17]).
The research of smooth map singularities is necessary for the investigation of the bifurcation
solutions of BVPs ([5]). The study of the singularities of smooth maps and its applications to
VPB captured interest of the Sapronov group in many of their studies (e.g, see, Arnol’d [1],
Danilova [3], Ishibashi [6], Kadhim and Hussain [7], Krasnosel’skii [8], Li and Qiao [9]).

The method (LS) assumes that g :Ω ⊂ E → F is an index 0 smooth nonlinear Fredholm
map. The map g has variational property, when there is a functional V :Ω⊂ E →R such that
∂V
∂x (x,λ)h = 〈g(x,λ),h〉H , for all x ∈Ω, h ∈ E, where 〈·, ·〉H is the scalar inner product in Hilbert
space H and E ⊂ F ⊂ H. The solutions of equation g(x,λ) = 0 are the own critical points of
functional V (x,λ). The method (LS) can reduce the problem V (x,λ)→ extr, x ∈ E, λ ∈Rn into an
equivalent problem W(ξ,λ)→ extr, ξ ∈Rn, where W(ξ,λ) is called key function. The function W
possesses the topological and analytical properties of the functional V (multiplicity, bifurcation
diagram, etc.) (Sapronov [13]).

The study of functional V bifurcating solutions is identical to the study of key function W
bifurcating solutions.

In this paper, we study the boundary singularities of the following real smooth function,

W(y,λ)= 1
3

v6
1 +

1
6

v6
2 +v4

1v2
2 +v2

1v4
2 +ϵv2

1 +δv2
2, (3)

y= (v1,v2), λ= (ϵ,δ) and ϵ,δ are parameters with considering the functional,

(z,η)= 01
(
−α (z′)2

2
+β z2

2
+ z6

6

)
d y, (4)

where z = z(y), η= (α,β) and α,β are parameters.

2. Fredholm Functional’s Border Singularities [5]

To study how a Fredholm functional behaves in a border singular point’s neighborhood, the
reducing to an equivalent extremes problem is employed:

W(x)→ extr,

where x ∈ D, D = {x = (x1, x2)⊤ ∈R2 : x1 ≥ 0}.
A point a ∈ D is referred to as conditionally critical for a smooth function W in R2 if gradW(a)

(grad denotes gradient of W ) is perpendicular to the least face of D containing a. The multiplicity
of the conditionally critical point a (and its symbol is µ̄) is the quotient algebra’s dimension
where the quotient algebra denotes by, Q̄ = Γa(R2)

I , such that Γa(R2) is the ring of germs of
smooth functions on R2 at point a and I = (

x1
∂W
∂x1

, ∂W
∂x2

)
is the corner Jacobi ideal in Γa(R2). The

multiplicity µ̄ of a conditionally critical point a is equal to the sum of multiplicities µ+µ0, where
µ is the (usual) multiplicity of W on R2, while µ0 is the (usual) multiplicity of the restriction
W | ∂D (where ∂D is the boundary of the set D).

If a critical point is usual, then spreading of bifurcating extremes (bif-spreading) are
represented by the row (r0, r1, r2), where r i is the number of critical points of the Morse
index i. If we are dealing with a border critical point, then bif-spreading are represented by
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the following matrix of order 2×3:(
r1

0 r1
1 r1

2
r0 r1 r2

)
,

where r j
i is the number of the border critical points of index i (for j = 1), while r i is the number

of usual (situated inside D) critical points of index i (i = 0,1,2).

3. Main Results
In this section, we take into account the function (3), which is defined in the first section.
The function (3) has codimension twenty-four at the origin, hence it has multiplicity twenty-
five. The main goals are to first determine the geometry bifurcation diagram of the caustic
of the function (3), and secondly to determine the distribution of the critical points of this
function. In order to use the border singularities method in studying the function (3), we make
the following assumptions, v2

1 = u, v2 = v. Therefore, studying of the function (3) is equivalent
to the studying of the following function:

W(y,λ)= 1
3

u3 + 1
6

v6 +u2v2 +uv4 +ϵu+δv2, (5)

where y= (u,v), λ= (ϵ,δ), and u ≥ 0.
Since, the germ (the principal part) of the function (5) is W0 = 1

3 u3 + 1
6 v6, so, from the second

section, we have I = (
u ∂W0

∂u , ∂W0
∂v

)= (u3,v5), and µ̄= 15, where µ= 10, µ0 = 5. Since multiplicity
µ̄ is equal to the number of critical points (Berczi [2]), function (5) has fifteen critical points,
five of which are on the border u = 0 and the remaining ten are in the interior. So, the following
union of three sets is the caustic of function (5):

Ξ=Ξint
0,1

⋃
Ξext

0,1
⋃
Ξ1,1,

where Ξint
0,1 and Ξext

0,1 are the subsets (components) of the caustic that correspond to the border
singularities degenerating along the border and along the normal, respectively, and Ξ1,1 is the
component that corresponds to the interior critical points degenerating (non-boundary).

Lemma 3.1 (Ddegeneration on the border u = 0 and its normal). (a) There is no parametric
equation that describes the set Ξint

0,1 .

(b) The parametric equation that describes the set Ξext
0,1 has the following structure:

δϵ2(2δ−ϵ)= 0.

Proof. (a) All points (0,v,ϵ,δ) that satisfy the following relations are represented by the set
Ξint

0,1 : ∂W(0,v,ϵ,δ)
∂v = ∂2W(0,v,ϵ,δ)

∂v2 = 0. From these relations, we have v5 +2δv = 2v = 0. In case,
v5+2δv = 0 or v(v4+2δ)= 0, such that v = 0 and v4+2δ ̸= 0, we have δ ̸= 0. This is, there
is not a parametric equation which represents the set Ξint

0,1 for all points (0,v). Hence, the
parametric equation which represents the set Ξint

0,1 is not exist.

(b) All points (0,v,ϵ,δ) that fulfill the following relations are represented by the set Ξext
0,1 :

∂W(0,v,ϵ,δ)
∂v = ∂W(0,v,ϵ,δ)

∂u = 0, this implies v5 +2δv = v4 + ϵ = 0. Then, we have the following
system:
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v(v4 +2δ)= 0, (6)

v4 +ϵ= 0. (7)

The analysis of the equation (6) is divided into three cases:

Case 1: If v = (v4 +2δ) = 0, then we have from this and the equation (7) the following
equation

δϵ= 0 . (8)

Case 2: If v = 0, (v4 +2δ) ̸= 0, then put v = 0 in the equation (7), to get

ϵ= 0 . (9)

Case 3: If (v4+2δ)= 0, v ̸= 0, then we can eliminate v from the equation v4+2δ= 0 and
the equation (7) to obtain

2δ−ϵ= 0 . (10)

From the equations (8), (9) and (10) we get the equation with parameters that represents the set
Ξext

0,1 : δϵ2(2δ−ϵ)= 0.

Lemma 3.2 (Interior (non-boundary) degeneration). The equation with parameters that
represents the set Ξ1,1 is given by the equation:

δ−ϵ= 0.

Proof. The set Ξ1,1 consists of all points (ϵ,δ) that satisfy the following relations:
∂W(u,v,ϵ,δ)

∂u
= ∂W(u,v,ϵ,δ)

∂v
= 0, u > 0.

These relations imply

v4 +2uv2 +u2 +ϵ= 0 , (11)

v5 +4uv3 +2u2v+2δv = 0 . (12)

To obtain the degenerate critical points, we make the determinate of the Hessian matrix of
the function (5) equal to zero as follows:

−6v6 +2uv4 +12u2v2 +4δv2 +4u3 +4δu = 0. (13)

Simplifying and taking the common factor for the equation (13), one gets

2(v2 +u)(−3v4 +4uv2 +2u2 +2δ)= 0,

but u > 0, thus we have (v2 +u) ̸= 0 and

−3v4 +4uv2 +2u2 +2δ= 0. (14)

Taking the common factor for the equation (12), we have

v(v4 +4uv2 +2u2 +2δ)= 0.

Then, we have three cases:

Case 1: if v = 0 and (v4+4uv2+2u2+2δ) ̸= 0, then, put v = 0 in the equation (14) to get u2+δ= 0,
but u2 +δ ̸= 0 (by supposing), this is a contradiction.
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Case 2: if v = 0 and (v4 +4uv2 +2u2 +2δ) = 0, then put v = 0 in the equation (11) and in the
equation: v4 +4uv2 +2u2 +2δ = 0, respectively to get u2 + ϵ = 0 and u2 +δ = 0, and
eliminating the variable u from the last two equations, we get δ−ϵ= 0.

Case 3: if v4+4uv2+2u2+2δ= 0 and v ̸= 0, then, solving the equation v4+4uv2+2u2+2δ= 0,
and the equation (14) simultaneously, yields v = 0, this is a contradiction.

This completes the proof.

Theorem 3.1. The formula that follows, represents the parametric equation of bifurcation set
(the caustic) of the function (5):

δϵ2(2δ−ϵ)(δ−ϵ)= 0.

Proof. Considering that the caustic of the function (5) is the union of the following three sets:

Ξ=Ξint
0,1

⋃
Ξext

0,1
⋃
Ξ1,1,

the left sides of all the equations for the caustic components will therefore be multiplied by one
another and set to zero to create the parametric equation for the caustic. We know the equations
of the caustic components have been found in Lemmas 3.1 and 3.2. Hence the following equation,

δϵ2(2δ−ϵ)(δ−ϵ)= 0,

represents the parametric equation of the bifurcating set (caustic) of the function (5).

Proposition 3.1. (a) If ϵ< 0 and δ< 0, then one inside point and three border points make
up the function (5) has four non-degenerate critical points.

(b) If ϵ< 0 and δ> 0, then the function (5) has two real non-degenerate critical points (one
interior point and one border point).

(c) If ϵ> 0 and δ> 0, then the function (5) has one real non-degenerate border critical point.
(d) If ϵ> 0 and δ< 0, then the function (5) has three real non-degenerate border critical points.

Proof. The following equations system represents the critical points of the function (5):

v4 +2uv2 +u2 +ϵ= 0, (15)

v5 +4uv3 +2u2v+2δv = 0. (16)

Taking the common factor for equation (16), we get v(v4 +4uv2 +2u2 +2δ) = 0, this equation
implies v = 0 or v4 +4uv2 +2u2 +2δ= 0. Then, we have three cases:

Case 1: If v ̸= 0 and v4 +4uv2 +2u2 +2δ= 0, then we get the following equation:

v4 +4uv2 +2u2 +2δ= 0 . (17)

Subtracting the equation (15) from the equation (17) and solving for v, we have

v = ∓1
2

p
−2u(u2+2δ−ϵ)

u , substituting the value of v in the equation (15) and solving

for u, we have u = ∓
√

2δ−3ϵ+2
p
−2δϵ+2ϵ2. Since, u > 0, thus we get u =√

2δ−3ϵ+2
p
−2δϵ+2ϵ2.

In order get a real interior critical point, we must set the equation 2δ − 3ϵ +
2
p
−2δϵ+2ϵ2 > 0 and −2δϵ+2ϵ2 ≥ 0, from this, we get ϵ< 0 and δ= ϵ, but this implies

the real interior critical point is degenerate (see Theorem 3.1).
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Case 2: If v = 0 and v4+4uv2+2u2+2δ= 0, then, from the equations (15) and (17) we get δ= ϵ,
so we have a real degenerate interior critical point.

Case 3: If v = 0 and v4+4uv2+2u2+2δ ̸= 0. Put v = 0 in the equation (15) to get u2+ϵ= 0, and
solving for u, we have u =∓p−ϵ. Since, u > 0, we have ϵ< 0. This is, we have one real
non-degenerate interior critical point (u =p−ϵ, with ϵ< 0).

The real border critical points can get by the equation 2δv+ v5 = 0, where its solution is as
follows v = 0; for all δ and v =± 4p−2δ, where δ≤ 0. The non-degenerate border critical points
can be obtained by setting δ ̸= 0. From this and Case 3 of this proof, we get the wanted result.

Theorem 3.2. The matrices of bif-spreading of the critical points of the function (5) are as follow:(
1 0 0
0 0 0

)
,
(
1 0 0
1 0 0

)
,
(
0 3 0
1 0 0

)
,
(
0 3 0
0 1 0

)
,
(
0 3 0
0 0 0

)
. (18)

Proof. The caustic equation has been established by Theorem 3.1, and we can infer its geometric
form from this equation, which is depicted in Figure 1.

Figure 1. The caustic of the function 5 in ϵδ-plane

The plane of parameters can be divided into six parts (regions) Ni , i = 1,2,3,4,5,6 using this
figure. There are a definite number of non-degenerate real critical points in each region. There
are two types of these points: internal and border points. The internal points’ and border points’
quality can be determined using the second derivative test (with the help of MATHEMATICA

program in classification the critical points). Hence, the spreading of the critical points is as
follows:

1. if the parameters pair (ϵ,δ) belongs to N1 or N2, then there is one minimal border critical
point on border u = 0.
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2. if the parameters pair (ϵ,δ) belongs to N3, then there are two critical points (one minimal
border point and one minimal interior point).

3. if the parameters pair (ϵ,δ) belongs to N4, then there are four critical points (three saddle
border points and one minimum point in the interior).

4. if the parameters pair (ϵ,δ) belongs to N5, then there are four critical points (three saddle
border points and one saddle point in the interior).

5. if the parameters pair (ϵ,δ) belongs to N6 then there are three saddle border critical
points.

The matrices of bif-spreading are obtained from the above points, as indicated in (18).

Parts (a), (b), (c), (d), and (e) of Figure 2 illustrate the locations of contour lines with regard
to the domain borders of the function (5), as well as the number and kind of critical points
corresponding to all regions in caustic of the function (5).

(a) (b) (c) (d) (e)

Figure 2

4. An Application

The generalized Korteweg-de Vries equation (KdV) is given by Sandstede [12]:

ut +umux +uxxx = 0 , (19)

where m is a positive parameter.
In this paper, we study equation (19) with m = 4 as an application of our work, i.e., we study

the following equation:

ut +u4ux +uxxx = 0 . (20)

The following transformation u(x, t) = z(y), y = kx−λt, can convert the equation (20) into
the ordinary differential equation (ODE):

αz′′+βz+ z5 = 0 , (21)

where α= 5k2, β=−5λ
k , k ̸= 0, z = z(y), y ∈ [0,1] and ′ = d

dy .
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The equation (21) with the boundary conditions forms the following problem:
f (z,η)=αz′′+βz+ z5 = 0,

z(0)= z(1)= 0,

}
(22)

where η= (α,β), and f : E → F is a not linear Fredholm operator with an index of zero, where
E = C2([0,1],R) is the space of all continuous functions that have derivative of order at most
two, F = C0([0,1],R) is the space of all continuous functions.

The purpose of the paper is to find the bifurcating solution areas of the equation (22) where
each bifurcating solution of the equation (22) equals a critical point of the functional (4) and each
critical point of the functional (4) coincides a critical point of the key function of the functional (4)
(Darinskii et al. [4]). Therefore, we shall show that the function (3) is tantamount to the key
function of the functional (4), that is, the study of the equation (22)’s bifurcating solutions is
equivalent to the study of bifurcating solutions of the function (3). Hence, we have interested
studying the bifurcating solutions of the function (3).

In the following theorem, we show that the function (3) is equivalent to the key function of
the functional (4).

Theorem 4.1. The key function’s normal form W1, which corresponds to the functional (4), is

W1(y,λ)= 1
3

v6
1 +

1
6

v6
2 +v4

1v2
2 +v2

1v4
2 +ϵv2

1 +δv2
2,

where y= (v1,v2), λ= (ϵ,δ).

Proof. The linearized equation that corresponds to equation (22) at point (0,λ) using
the Lyapunov-Schmidt scheme has the following structure:

Dh = 0, h ∈ E,

h(0)= h(1)= 0,

where D =α d2

dx2 +β.
The linearized equation solution that fulfills the boundary conditions is given by eq(y) =

cq sin(qπy), q = 1,2, . . ., and the characteristic equation to which this solution relates is
−α(qπ)2 +β = 0. This equation yields characteristic lines ℓq in 2-space. The characteristic
lines ℓq are made up of the points (α,β) for which the linearized equation has non-zero
solutions (Sapronov [14]). The bifurcation point (α,β)= (0,0) for the equation (22) is the point
of intersection of the characteristic lines in αβ-plane. The parameters α, and β are localized
as follows, α = 0+δ1, β = 0+δ2, δ1, and δ2 are small parameters, lead to bifurcation along
the modes, e1(y) = c1 sin(πy), and e2(y) = c2 sin(2πy). Since, ∥e1∥ = ∥e2∥ = 1, then we have
c1 = c2 =

p
2.

Let N = ker(D) = span{e1, e2}, then the space E can be decomposed in direct sum of two
subspaces, N and the orthogonal complement to N ,

E = N ⊕N⊥, N⊥ =
{

v ∈ E :
∫ 1

0
vekdy= 0, k = 1,2

}
.
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There exist two projections P : E → N and I−P : E → N⊥ such that (Pm)=ω and (I−P)m = v,
(I is the identity operator). Hence every vector m ∈ E can be written in the form, m = ω+ v,
where ω= v1e1 +v2e2 ∈ N , v ∈ N⊥, vi = 〈m, e i〉.

Thus, by the implicit function theorem, there exists a smooth map, Θ : N → N⊥ such that
W̃(ζ,ϑ) = V (Θ(ω,ϑ),ϑ), ζ= (v1,v2), ϑ= (δ1,δ2), the key function W̃ can therefore be written in
the way,

W̃(ζ,ϑ)=V (v1e1 +v2e2 +Θ(v1e1 +v2e2,ϑ),ϑ)

=W2(ζ,ϑ)+ o(|ζ|6)+O(|ζ|6)O(ϑ),

where

W2(ζ,ϑ)= 5v1
6

12
+ 5v2

6

12
+ 25v1

4v2
2

8
+ 15v1

2v2
4

4
(−1/2π2α+β/2)v2

1 + (−2π2α+β/2)v2
2.

The geometrical form of bifurcations of critical points and the first asymptotic of branches of
bifurcating for the function W̃ are completely determined by its principal part W2. If, we replace
v1 by 6

√
4
5 v1 and v2 by 6

√
2
5 v2 in the function W2, then W1 and W2 are contact equivalence,

since in this case they have the same germ(the same principal part), W0 = 1
3 v1

6+ 1
6 v2

6, and the
unfolding.

As a result, the caustic of the function W2 corresponds with the caustic of the function W1

(Marsden and Hughes [11]). Thus, the function W1 has all of the functional (4)’s topological
and analytical features. As a conclusion, studying the bifurcation analysis of equation (22)
is identical to studying the bifurcation analysis of the function W1. This demonstrates that
studying the bifurcating solutions of equation (22) is similar to studying the bifurcating solutions
of function (3).

5. Conclusion
In this paper, we found the functional (4) that satisfies the variational property for operator
(22). We found the key function corresponding to functional (4) in Theorem 4.1. We proved
that function (3) of the sixth degree is equivalent to the key function. We found the bifurcation
solution regions of equation (21), which are the critical points of function (3) spread in the
branching diagram (caustic). Also, the parametric equation was found. The critical points were
classified and their regions of existence in the diagram were found. Finally, an application of
this work was given.
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