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1. Introduction
Ward and Dilworth [11] developed the concept of residuated lattices as a generalisation of the
form of a ring’s set of ideals. BL-algebras are the most well-known example of residuated lattices
in logic. Hájek [2] created Basic Logic algebra (BL-algebra), a type of logical algebra, to offer an
algebraic demonstration of completeness of ‘Basic Logic’. Xu and Qin [12] first proffered the
conception of filter and implication filter in lattice implication algebras.

Filter theory is a crucial component of the study of innumerable logical algebras (Park and
Ahn [7], and Zhang et al. [14]). They play a key role in the case made for the completeness
of certain logical algebras. Researchers from several academic fields have looked into the
conception of filters. Neutrosophy is acknowledged as a scientific study, investigates the origin,
nature, and scope of neutralities (Salama and Alagamy [8], and Smarandache [9]). Fuzzy [13],
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intuitionistic fuzzy sets and logic are generalised as neutrosophic sets and neutrosophic logic
(Atanassov [1]). Recently, the authors examined some of the features of the neutrosophic filter,
neutrosophic fantastic filter of BL-algebras (Ibrahim and Gunaseeli [4,5]).

In Section 2, the basic notions and outcomes are recalled. In Section 3, we explore the
concept of neutrosophic implicative filter. In Section 4, we exhibit the conception of neutrosophic
n-fold implicative filter.

2. Preliminaries
In this part, few of the definitions and findings from the literature are referred to progress the
major conclusions.

Definition 2.1 ([2, 3]). A BL-algebra (G,∨,∧,◦,→,0,1) of type (2,2,2,2,0,0) such that the
subsequent requirements are persuaded for all g1,h1, i1 ∈G,

(i) (G,∨,∧,0,1) is a bounded lattice,

(ii) (G,◦,1) is a commutative monoid,

(iii) ‘◦’ and ‘→’ form an adjoint pair, that is, i1 ≤ g1 → h1 if and only if g1 ◦ i1 ≤ h1, for all
g1,h1, i1 ∈G,

(iv) g1 ∧h1 = g1 ◦ (g1 → h1),

(v) (g1 → h1)∨ (h1 → g1)= 1.

Proposition 2.2 ([6,10]). The succeeding requirements are persuaded in a BL-algebra G for all
g1,h1, i1 ∈G,

(i) h1 → (g1 → i1)= g1 → (h1 → i1)= (g1 ◦h1)→ i1,

(ii) 1→ g1 = g1,

(iii) g1 ≤ h1 if and only if g1 → h1 = 1,

(iv) g1 ∨h1 = ((g1 → h1)→ h1)∧ ((h1 → g1)→ g1),

(v) g1 ≤ h1 implies h1 → i1 ≤ g1 → i1,

(vi) g1 ≤ h1 implies i1 → g1 ≤ i1 → h1,

(vii) g1 → h1 ≤ (i1 → g1)→ (i1 → h1),

(viii) g1 → h1 ≤ (h1 → i1)→ (g1 → i1),

(ix) g1 ≤ (g1 → h1)→ h1,

(x) g1 ◦ (g1 → h1)= g1 ∧h1,

(xi) g1 ◦h1 ≤ g1 ∧h1,

(xii) g1 → h1 ≤ (g1 ◦ i1)→ (h1 ◦ i1),

(xiii) g1 ◦ (h1 → i1)≤ h1 → (g1 ◦ i1),

(xiv) (g1 → h1)◦ (h1 → i1)≤ g1 → i1,

(xv) (g1 ◦ g∗
1)= 0.
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Definition 2.3 ([9]). A neutrosophic subset C of the universe U is a triple (TC, IC,FC) where
TC : U → [0,1], IC : U → [0,1] and FC : U → [0,1] represents truth membership, indeterminacy
and false membership functions respectively where 0 ≤ TC(g1)+ IC(g1)+FC(g1) ≤ 3, for all
g1 ∈U .

Definition 2.4 ([5]). A neutrosophic set C of an algebra G is called a neutrosophic filter, if it
persuades the following:

(i) TC(g1)≤ TC(1), IC(g1)≥ IC(1) and FC(g1)≥ FC(1),

(ii) min{TC(g1 → h1),TC(g1)}≤ TC(h1),
min{IC(g1 → h1), IC(g1)}≥ IC(h1), and
min{FC(g1 → h1),FC(g1)}≥ FC(h1)}, for all g1,h1 ∈G.

Proposition 2.5 ([5]). Let C be a neutrosophic filter of G if and only if
(i) If g1 ≤ h1 then TC(g1)≤ TC(h1), IC(g1)≥ IC(h1) and FC(g1)≥ FC(h1),

(ii) TC(g1 ◦h1)≥min{TC(g1),TC(h1)}, IC(g1 ◦h1)≤min{IC(g1), IC(h1)}
and FC(g1 ◦h1)≤min{FC(g1),FC(h1)}, for all g1,h1 ∈G.

Proposition 2.6 ([4,5]). Let C be a neutrosophic filter of G, for all g1,h1, i1 ∈G then the following
hold:

(i) TC(g1 → h1)= TC(1), then TC(g1)≤ TC(h1),
IC(g1 → h1)= IC(1), then IC(g1)≥ IC(h1),
FC(g1 → h1)= FC(1), then FC(g1)≥ FC(h1),

(ii) TC(g1 ∧h1)=min{TC(g1),TC(h1)},
IC(g1 ∧h1)=min{IC(g1), IC(h1)},
FC(g1 ∧h1)=min{FC(g1),FC(h1)},

(iii) TC(g1 ◦h1)=min{TC(g1),TC(h1)},
IC(g1 ◦h1)=min{IC(g1), IC(h1)},
FC(g1 ◦h1)=min{FC(g1),FC(h1)},

(iv) TC(0)=min{TC(g1),TC(g∗
1)},

IC(0)=min{IC(g1), IC(g∗
1)},

FC(0)=min{FC(g1),FC(g∗
1)}.

3. Neutrosophic Implicative Filter
Here we put forward the conception of a neutrosophic implicative filter and confer its features
with illustrations.

Definition 3.1. Let C be a neutrosophic filter of a BL-algebra G. C is called a neutrosophic
implicative filter if it persuades the following:

(i) TC(g1)≤ TC(1), IC(g1)≥ IC(1) and FC(g1)≥ FC(1),

(ii) min{TC(g1 → (h1 → i1)),TC(g1 → h1)}≤ TC(g1 → i1),
min{C(g1 → (h1 → i1)), IC(g1 → h1)}≥ IC(g1 → i1),
min{FC(g1 → (h1 → i1)),FC(g1 → h1)} ≥ FC(g1 → i1), for all g1,h1, i1 ∈G.
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Example 3.2. Let C = {0, g1,h1, i1,1}. The bi-fold operations are specified by Tables 1 and 2.

Table 1. ‘◦’ operation

◦ 0 g1 h1 i1 1

0 1 g1 0 0 0

g1 g1 1 g1 g1 g1

h1 0 g1 1 h1 h1

i1 0 g1 h1 1 i1

1 0 g1 h1 i1 1

Table 2. ‘→’ operation

→ 0 g1 h1 i1 1

0 1 1 1 1 1

g1 g1 1 1 1 1

h1 0 g1 1 1 1

i1 0 g1 h1 1 1

1 0 g1 h1 i1 1

Consider
C = {(0, [0.5,0.4,0.4]), (g1, [0.5,0.4,0.4]), (h1, [0.5,0.4,0.4]), (i1, [0.5,0.4,0.4]), (1, [0.6,0.3,0.3])}.
It is evident that C assures Definition 3.1. Hence, C is a neutrosophic implicative filter of G.

Proposition 3.3. Every neutrosophic implicative filter of G is a neutrosophic filter. But,
the converse is not true.

Proof. Let C be a neutrosophic implicative filter of G.

To prove: C is a neutrosophic filter of G.
Taking g1 = 1 in Definition 3.1, we get

min{TC(1→ (h1 → i1)),TC(1→ h1)}≤ TC(1→ i1), for all g1,h1, i1 ∈G,

which implies

TC(i1)≥min{TC(h1 → i1),TC(h1)}.

Similarly,

IC(i1)≤min{IC(h1 → i1), IC(h1)},FC(i1)≤min{FC(h1 → i1),FC(h1)}.

Thus, from Definition 2.4, C is a neutrosophic filter of G.

The converse part may not be true. This can be proved by an illustration.

Example 3.4. Let C = {0, g1,h1,1}. The bi-fold operations are specified by Tables 3 and 4.

Table 3. ‘◦’ operation

◦ 0 g1 h1 1

0 0 0 0 0

g1 0 0 g1 h1

h1 0 g1 h1 h1

1 0 g1 h1 1

Table 4. ‘→’ operation

→ 0 g1 h1 1

0 1 1 1 1

g1 g1 1 1 1

h1 0 g1 1 1

1 0 g1 h1 1

Consider C = {(0, [0.9,0.2,0.1]), (g1, [0.5,0.3,0]), (h1, [0.5,0.3,0]), (1, [0.9,0.2,0.1])}.
Here, C is not a neutrosophic implicative filter.
Since, TC(h1 → 1)= TC(h1)= 0.5≱ 0.9= TC(0).
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Proposition 3.5. Let C be a neutrosophic filter of a BL-algebra G. The following are equivalent
for all g1,h1, i1 ∈G.

(i) C is a neutrosophic implicative filter.

(ii) TC(g1 → h1)≥ TC(g1 → (g1 → h1)),
IC(g1 → h1)≤ IC(g1 → (g1 → h1)),
FC(g1 → h1)≤ FC(g1 → (g1 → h1)),

(iii) TC(g1 → h1)= TC(g1 → (g1 → h1)),
IC(g1 → h1)= IC(g1 → (g1 → h1)),
FC(g1 → h1)= FC(g1 → (g1 → h1)).

Proof. (i)⇒(ii): Assume that C is a neutrosophic implicative filter of G.
Put i1 = h1, h1 = g1 in Definition 3.1, we get

TC(g1 → h1)≥min{TC(g1 → (g1 → h1)),TC(g1 → g1)}

≥min{TC(g1 → (g1 → h1)),TC(1)}

= TC(g1 → (g1 → h1)).

Therefore,

TC(g1 → h1)≥ TC(g1 → (g1 → h1)).

Similarly, we can prove for IC , FC .
Hence (ii) holds.

(ii)⇒(iii): Let TC(g1 → h1)≥ TC(g1 → (g1 → h1)).
Since g1 → h1 ≤ g1 → (g1 → h1) and from Proposition 2.6, we have

TC(g1 → h1)≤ TC(g1 → (g1 → h1)), for all g1,h1 ∈G
and from (ii) we get

TC(g1 → h1)= TC(g1 → (g1 → h1)).

Similarly, we can prove for IC , FC . Hence (iii) holds.

(iii)⇒(i): Let TC(g1 → h1)= TC(g1 → (g1 → h1)).
If C is a neutrosophic filter of G, then from Proposition 2.6,

min{TC(g1 → (h1 → i1)),TC(g1 → h1)}≤ TC(g1 → i1), for all g1,h1, i1 ∈G.

Similarly, we can prove for IC , FC .
Hence, C is a neutrosophic implicative filter of G.

Proposition 3.6. Let C and D be two neutrosophic filters of G. Let C ⊆ D, TC(1) = TD(1),
IC(1)= ID(1), FC(1)= FD(1). If C is a neutrosophic implicative filter, then so is D.

Proof. Let C and D be two neutrosophic filters of G.
From Proposition 3.5, we only prove that

TC(g1 → h1)≥ TC(g1 → (g1 → h1)),

IC(g1 → h1)≤ IC(g1 → (g1 → h1)),

FC(g1 → h1)≤ FC(g1 → (h1 → i1)).
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Let x1 = g1 → (g1 → h1).
Then, g1 → (g1 → (x1 → h1))= x1 → (g1 → (g1 → h1))= 1.
Suppose, C is a neutrosophic implicative filter of G, then from (iii) of Proposition 3.5 and since
C ⊆ D, TC(1)= TD(1),

TD(x1 → (g1 → h1))= TD(g1 → (x1 → h1))

≥ TC(g1 → (x1 → h1))

= TC(g1 → (g1 → (x1 → h1))

= TC(x1 → (g1 → (g1 → h1))

= TC(1)

= TD(1).

Thus,

TD(x1 → (g1 → h1))≥ TD(1).

This together with (i) of Definition 3.1,

TD(x1 → (g1 → h1))≤ TD(1)

imply that

TD(x1 → (g1 → h1))= TD(1).

Since, D is a neutrosophic filter then by Definition 2.4, we have

TD(g1 → h1)≥min{TD(x1 → (g1 → h1)),TD(x1)}

=min{TD(1),TD(x1)}

= TD(x1)

= TD(g1 → (g1 → h1)).

Hence,

TD(g1 → h1)≥ TD(g1 → (g1 → h1)).

Similarly, we can prove for ID , FD .
Therefore, from (ii) of Proposition 3.5, D is a neutrosophic implicative filter.

4. Neutrosophic n-fold Implicative Filter
Here, we put forward the conception of the neutrosophic n-fold implicative filter and confer its
features with illustrations.

For any element g1 and h1 of a BL-algebra G and a positive integer n, let gn
1 → h1 signify

g1 → (g1 → . . . (g1 → h1)) where g1 happens n-times and g0
1 → h1 = h1.

Definition 4.1. Let C be a neutrosophic filter of a BL-algebra G. C is called a neutrosophic
n-fold implicative filter if it persuades,

(i) TC(1)≥ TC(g1), IC(1)≤ IC(g1) and FC(1)≤ FC(g1),
(ii) TC(gn

1 → i1)≥min{TC(gn
1 → (h1 → i1)),TC(gn

1 → h1)},
IC(gn

1 → i1)≤min{IC(gn
1 → (h1 → i1)), IC(gn

1 → h1)},
FC(gn

1 → i1)≤min{FC(gn
1 → (h1 → i1)),FC(gn

1 → h1)}, for all g1,h1, i1 ∈G.
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Note. The neutrosophic 1-fold implicative filter is the same as neutrosophic implicative filter.

Example 4.2. Let C = {0, g1,h1, i1, j1,1}. The bi-fold operations are specified by Tables 5 and 6.
Consider C = {(0, [0.6,0.4,0.4]), (g1, [0.6,0.4,0.4]), (h1, [0.8,0.3,0.3]), (i1, [0.8,0.3,0.3]),
( j1, [0.6,0.4,0.4]), (1, [0.8,0.3,0.3])}.

Table 5. ‘◦’ operation

◦ 0 g1 h1 i1 j1 1

1 1 1 1 1 1 1

g1 i1 1 h1 i1 h1 1

h1 j1 g1 1 h1 g1 1

i1 g1 g1 1 1 g1 1

j1 h1 1 1 h1 1 1

1 0 g1 h1 i1 j1 1

Table 6. ‘→’ operation

→ 0 g1 h1 i1 j1 1

0 1 1 1 1 1 1

g1 1 1 h1 i1 h1 i1

h1 1 g1 1 h1 g1 j1

i1 1 g1 1 1 g1 g1

j1 1 1 1 h1 1 h1

1 1 g1 h1 i1 j1 0

It is evident that C assures Definition 3.1. Hence, C is a neutrosophic n-fold implicative filter
of G.

Proposition 4.3. Every neutrosophic n-fold implicative filter of a BL-algebra G is a neutrosophic
filter but the adverse is not true.

Proof. Let C be a neutrosophic n-fold implicative filter of G.
Taking g1 = 1 in (ii) of Definition 4.1 and from (ii) of Proposition 2.2, we get

TC(i1)≥min{TC(h1 → i1),TC(h1)},

IC(i1)≤min{IC(h1 → i1), IC(h1)},

FC(i1)≤min{FC(h1 → i1),FC(h1)}, for all h1, i1 ∈G.

Thus, (ii) of Definition 2.4 holds.
Hence, C is a neutrosophic filter of G.

The adverse of the proposition may not be true. It can be verified by an illustration.

Example 4.4. Let D = {0, g1,h1, i, j1,1}. The bi-fold operations are specified by Tables 5 and 6.
Consider D = {(0, [0.6,0.4,0.4]), (g1, [0.6,0.4,0.4]), (h1, [0.6,0.4,0.4]), (i1, [0.6,0.4,0.4]),
( j1, [0.6,0.4,0.4]), (1, [0.8,0.3,0.3])}.
Here, D is not a neutrosophic n-fold implicative filter of G.
Since, TD( j1 → i1)= TD(h1)= 0.6≱ 0.8= TD(1).

Proposition 4.5. Let C be a neutrosophic filter of a BL-algebra G.Then the succeeding
requirements are equivalent.

(i) C is a neutrosophic n-fold implicative filter of G.

(ii) TC(gn
1 → h1)≥ TC(gn+1

1 → h1), IC(gn
1 → h1)≤ IC(gn+1

1 → h1)
FC(gn

1 → h1)≤ FC(gn+1
1 → h1), for all g1,h1 ∈G.
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(iii) TC((gn
1 → h1)→ (gn

1 → i1))≥ TC(gn
1 → (h1 → i1)),

IC((gn
1 → h1)→ (gn

1 → i1))≤ IC(gn
1 → (h1 → i1)),

FC((gn
1 → h1)→ (gn

1 → i1))≤ FC(gn
1 → (h1 → i1)), for all g1,h1, i1 ∈G.

Proof. (i)⇒(ii): Let C be a neutrosophic n-fold implicative filter of G.
Putting i1 = h1, h1 = g1 in (ii) of Definition 4.1,

TC(gn
1 → h1)≥min{TC(gn

1 → (g1 → h1)),TC(gn
1 → g1)}

=min{TC(gn+1
1 → h1),TC(1)}

= TC(gn+1
1 → h1).

Hence,

TC(gn
1 → h1)≥ TC(gn+1

1 → h1), for all g1,h1 ∈G.

Similarly, we can prove for IC , FC .

(ii)⇒(iii): Let (ii) holds.
Since,

gn
1 → (h1 → i1)≤ gn

1 → (gn
1 → h1)→ (gn

1 → i1)),

we have

TC(gn
1 → ((gn

1 → h1)→ (gn
1 → i1)))≥ TC(gn

1 → (h1 → i1)) (from Definition 3.1).

Since,

gn+1
1 → ((gn−1

1 → ((gn
1 → h1)→ i1))= gn

1 → ((gn
1 → ((gn

1 → h1)→ i1))

= gn
1 → ((gn

1 → h1)→ (gn
1 → i1))

and using (ii), we have

TC(gn+1
1 → ((gn−2

1 → ((gn
1 → h1)→ i1)))= TC(gn

1 → ((gn−1
1 → ((gn

1 → h1)→ i1))))

≥ TC(gn+1
1 → ((gn−1

1 → ((gn
1 → h1)→ i1)))

= TC(gn
1 → ((gn

1 → h1)→ (gn
1 → i1)))

≥ TC(gn
1 → (h1 → i1)).

Repeating the process, we conclude that

TC((gn
1 → h1)→ (gn

1 → i1))= TC(gn
1 → ((gn

1 → h1)→ i1))

≥ TC(gn
1 → (h1 → i1)).

Similarly, we can prove for IC , FC .
Therefore, (iii) holds.

(iii)⇒(i): Let (iii) holds.
By (iii) and (ii) of Definition 3.1,

TC(gn
1 → i1)≥min{TC((gn

1 → h1)→ (gn
1 → i1)),TC(gn

1 → h1)}

≤min{TC(gn
1 → (h1 → i1)),TC(gn

1 → h1)}, for all g1,h1, i1 ∈G.

Similarly, we can prove for IC , FC . Thus, C is a neutrosophic n-fold implicative filter.
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5. Conclusion
In BL-algebras, we have put forth the conception of a neutrosophic implication in filters. We have
also demonstrated the neutrosophic nature of every implicative and n-fold implicative filter.
Moreover, other analogous circumstances for neutrosophic implicative filters are conferred.
Further, research on the structure of BL-algebras and the above study will give us a wide range
of applications in medical, industrial, and other fields.
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