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1. Introduction
Reliability analysis is a method used to assess and quantify the dependability, consistency, and
performance of a system, component, or process. It is an essential concept in various fields,
including engineering, manufacturing, economics, and even in everyday life. Reliability analysis
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aims to understand how well a system or component functions over time, especially in terms of
meeting certain performance or quality criteria. Reliability analysis quantifies the effectiveness
of a system’s performance under specific conditions. To gauge this effectiveness, one must define
the system’s performance requirements and expected performance outcomes.

Various techniques are available for reliability analysis, including Fault Tree Analysis,
Reliability Block Diagrams and Event Tree Method. These methods can help to determine the
probability of success and failure. The techniques aim to capture the system’s overall reliability
by analyzing the failure patterns of its components. Fault Tree Analysis presents a graphical
model that aids in analyzing the factors that may lead to system failure. On the other hand,
Reliability Block Diagrams help us to create a model of the success relationships present in
the complex systems. Event Tree Method provide a detailed overview of all possible operating
states including success and failure (Abdelghany et al. [2]).

Reliability Block Diagram is a graphical representation of a system’s components and
connectors. It can be used to determine the overall system reliability based on the reliability
of its components. Reliability Block Diagram consists of one or more paths that represent
successful system operation. Each path is constructed of blocks/components and lines/connectors.
Computational elements are represented by blocks, and lines indicate essential paths to success.
If any path results in successful execution, the whole system is considered successful. If all the
paths fail, then the overall system also fails (Abd-Allah [1]).

A system is said to be in series, in terms of reliability, if it fails when one or more of its
components fail. For a system with multiple elements in series, the overall availability is equal
to the product of the availability of each component. A system is said to be in parallel, when one
or more of its components fail, the system remains operational. Active redundancy is achieved
when parallel elements perform the same functions and work together (Bourouni [7]).

Reliability Block Diagram construction can follow any of three basic component connection
patterns: Series, Active Redundancy or Standby Redundancy. In a series connection, the entire
system depends on all components functioning properly. While, in active redundancy, at least
one of the redundant stages must be fully operational. The components in an active redundancy
can be connected in a parallel or series-parallel structure, while standby redundancy does
not require all components to be active. In order to build the Reliability Block Diagram of a
system, three types of information are necessary: the functional interaction of the system’s
components needs to be understood, the reliability of each component must be determined and
the mission times at which reliability is desired need to be identified. Then design engineers
utilize this information to determine the appropriate Reliability Block Diagram configuration
(series, parallel or series-parallel) to determine the overall reliability of the system (Ahmed [4]).

Reliability is known as the science of failures. By definition, “Reliability is the ability of a
device to perform a required function under specified conditions during a given period” (Pagès
and Gondran [12]), or, “Reliability is defined as the probability of a component performing its
desired task over certain interval of time t” (Joshi et al. [11]). Mathematically it is represented as

R(t)= 1−P(x ≤ t)=P(x > t). (1.1)
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Reliability analysis by using the method of Event Space Method is the most well-known
analytic method studying the failure modes of complex systems. Event Space Method is a concept
based on mutually exclusive events axiom. In this method, only those events that are mutually
exclusive and lead to the system success are considered. The reliability of the system can be
determined by calculating the probability of the union of all such mutually exclusive events
(Joshi et al. [11]). The event space method involves exhaustively enumerating all conceivable
logical system states. To put it differently, this method assumes that all components initially
operate correctly, and then systematically evaluates their potential failures, starting with
individual failures, followed by pairs of components failing, and so forth. The system’s reliability
is subsequently calculated by combining the outcomes of all successful scenarios.

Event Space Method is used for calculating the reliability of the complex system. In this
method, we calculate the unreliability of a system by determining the probability of all the
mutually exclusive events that can lead to system failure. We construct Reliability Block
Diagram for system which has various configurations of components such as series, parallel and
mixed structure. The blocks in the diagram represent the components and show how they are
arranged and related in terms of reliability. Units that are arranged in parallel are commonly
referred to as redundant units. Redundancy is very precious aspect of system design and system
reliability because it is one of the methods used to improve the reliability of the system (Joshi et
al. [11]).

2. Related Work
Joshi et al. [11] discussed the reliability of the complex system with different configurations
including those with two, three and four components, and compared their reliability.

Abd-Allah [1] has expanded the use of the Reliability Block Diagram to software
architectures. He demonstrated that various conceptual features that cut across architectural
styles can have either positive or negative results on the effective architectural components
modelled failure rates in Reliability Block Diagram. The assumptions of Reliability Block
Diagram can also be breached by the preferences made on the conceptual features and
different architectural connectors. As software systems become more complex through the
use of distribution, coexistence, dynamism, and packaged middleware solutions, estimating the
reliability using Reliability Block Diagram becomes more complex as well.

Bourouni [7] presented a model for a reverse osmosis plant availability based on the
Reliability Block Diagram method used for failure analysis of repairable systems. Also, executed
a comparison with a Fault Tree Analysis. To validate and compare different models, the data
from a functioning RO plant in Kuwait was utilised. The results showed that both the methods
had good agreement, however, the Reliability Block Diagram method resulted in the lowest
unavailability. This difference was explained by the fact that Fault Tree Analysis does not take
into consideration on account redundancy and standby configurations. The results indicate the
plant experiences a very minimal overall unavailability, reflecting very good performance. The
RO modules and high-pressure pumps have higher unavailability rates in the plant, so it is
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necessary to pay close attention to these components to improve the availability of the entire
system. After comparing the Fault Tree Analysis and the Reliability Block Diagram method
is more suitable for availability assessment as it can handle complex configurations such as
redundancy and standby.

3. Objective
The process of evaluating reliability holds significant importance in the realm of system design
and analysis, especially as systems become increasingly complex. As complexity rises, whether
due to system expansion or inherent intricacies, a host of factors come into play that can
substantially impact reliability and availability. When dealing with highly complex systems or
those undergoing expansion or modification, several critical considerations become prominent.
First, common-cause failures may emerge, where multiple components fail due to a shared root
cause. Component interactions and interdependencies can become more intricate, potentially
leading to a cascade of failures if one component malfunctions. Additionally, as systems grow
in complexity, interdependence between components, or the specific sequence in which they
operate, can become a critical factor in assessing reliability. In this paper, our goal is to create
systems with different configurations and evaluate their overall reliability using Reliability
Block Diagram and Event Space Method. This method assesses the reliability of individual
components within each system configuration to determine the overall reliability of the systems.

4. Reliability of the System by Using Reliability Block Diagram and
Event Space Method

4.1 Calculation of Reliability of the System Having Four Components in Series-Parallel
Mixed Configuration

Configuration 4.1.1. In this configuration, Component 1 and Component 2 are connected in
parallel and Component 3 and Component 4 are also connected in parallel, then these two
parallel sub-systems of components are again connected in parallel configuration as shown in
Figure 1.

1

2

3

4

Figure 1. Reliability block diagram of the system having four components.

Let A be the Success of Component 1 event and a be the Failure of Component 1 event.
Let B be the Success of Component 2 event and b be the Failure of Component 2 event.
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Let C be the Success of Component 3 event and c be the Failure of Component 3 event.
Let D be the Success of Component 4 event and d be the Failure of Component 4 event.
Also, here

xi : Success or Failure of Component i’s event

P(xi) : Probability of the Failure of Component i

Rs : Reliability of the system

The mutually exclusive events of given system are:

x1 = ABCD−All components success, x2 = ABCd−Component 4 fail,

x3 = ABcD−Component 3 fail, x4 = ABcd−Component 3 and 4 fail,

x5 = AbCD−Component 2 fail, x6 = AbCd−Component 2 and 4 fail,

x7 = AbcD−Component 2 and 3 fail, x8 = Abcd−Component 2, 3 and 4 fail,

x9 = aBCD−Component 1 fail, x10 = aBCd−Component 1 and 4 fail,

x11 = aBcD−Component 1 and 3 fail, x12 = aBcd−Component 1, 3 and 4 fail,

x13 = abCD−Component 1 and 2 fail, x14 = abCd−Component 1, 2 and 4 fail,

x15 = abcD−Component 1, 2 and 3 fail, x16 = abcd−All components fail.

Event of the system x16 only results in the system failure. Thus, the probability of the failure of
the system is:

P f =P(x16).

Calculation of the probability of event that leads to the system failure:

P(x16)= (1−R1) · (1−R2) · (1−R3) · (1−R4).

Now, equation (1.1) becomes

P f = (1−R1) · (1−R2) · (1−R3) · (1−R4).

Reliability of the system = 1− Probability of the failure of the system,
i.e.,

Rs = 1−P f = 1− [(1−R1) · (1−R2) · (1−R3) · (1−R4)].

If we consider, Reliability of Component 1 is 96%, Reliability of Component 2 is 99%, Reliability
of Component 3 is 95% and Reliability of Component 4 is 97%, i.e.,

R1 = 96%, R2 = 99%, R3 = 95%, R4 = 97% .

As the reliabilities of the components are specified for 7 days, i.e., 168 hours (assumption), then
we will find the value of the Reliability of the system for 7 days as

Rs = 1− [(1−0.96)(1−0.99)(1−0.95)(1−0.97)]

= 1−0.0000006= 0.9999994∼= 0.9999 .
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Configuration 4.1.2. In this configuration, Component 1 and Component 2 are connected in
parallel and Component 3 and Component 4 are also connected in parallel, then these two
parallel sub-systems of components are connected in series as shown in Figure 2.

1

2

3

4

Figure 2. Reliability block diagram of the system having four components

Event of the system x4, x8, x12, x13, x14, x15, x16 only results in the system failure. Thus, the
probability of the failure of the system is:

P f =P(x4 ∪ x8 ∪ x12 ∪ x13 ∪ x14 ∪ x15 ∪ x16).

Calculation of the probability of event that leads to the system failure:

P(x4)=R1 ·R2 · (1−R3) · (1−R4),

P(x8)=R1 · (1−R2) · (1−R3) · (1−R4),

P(x12)= (1−R1) ·R2 · (1−R3) · (1−R4),

P(x13)= (1−R1) · (1−R2) ·R3 ·R4,

P(x14)= (1−R1) · (1−R2) ·R3 · (1−R4),

P(x15)= (1−R1) · (1−R2) · (1−R3) ·R4,

P(x16)= (1−R1) · (1−R2) · (1−R3) · (1−R4).

Now, after combining, equation (1.1) becomes

P f = (1−R3) · [R1 ·R2 · (1−R4)+R1 · (1−R2) · (1−R4)+ (1−R1) ·R2 · (1−R4)]

+ (1−R1) · (1−R2) · [R3 ·R4 +R3 · (1−R4)+ (1−R3) ·R4 + (1−R3) · (1−R4)]

= (1−R3) · [R1 ·R2 −R1 ·R2 ·R4 +R1 −R1 ·R2 −R1 ·R4 +R1 ·R2 ·R4 +R2 −R1 ·R2

−R2 ·R4 +R1 ·R2 ·R4]+ (1−R1) · (1−R2) · [R3 ·R4 +R3 −R3 ·R4 +R4 −R3 ·R4

+1−R3 −R4 +R3 ·R4]

= 1−R1 ·R3 −R1 ·R4 −R2 ·R3 −R2 ·R4 +R1 ·R2 ·R3 +R1 ·R2 ·R4 +R1 ·R3 ·R4

+R2 ·R3 ·R4 −R1 ·R2 ·R3 ·R4 .

Reliability of the system = 1− Probability of the failure of the system,
i.e.,

Rs = 1−P f

= 1− [1−R1 ·R3 −R1 ·R4 −R2 ·R3 −R2 ·R4 +R1 ·R2 ·R3 +R1 ·R2 ·R4 +R1 ·R3 ·R4

+R2 ·R3 ·R4 −R1 ·R2 ·R3 ·R4]

=R1 ·R3 +R1 ·R4 +R2 ·R3 +R2 ·R4 −R1 ·R2 ·R3 −R1 ·R2 ·R4 −R1 ·R3 ·R4 −R2 ·R3 ·R4

+R1 ·R2 ·R3 ·R4 .
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On more simplifying, we get

Rs =R1 ·R3 · (1−R4)+R1 ·R4 · (1−R2)+R2 ·R3 · (1−R1)+R2 ·R4 · (1−R3)+R1 ·R2 ·R3 ·R4.

If we consider, Reliability of Component 1 is 96%, Reliability of Component 2 is 99%, Reliability
of Component 3 is 95% and Reliability of Component 4 is 97%, i.e.,

R1 = 96%, R2 = 99%, R3 = 95%, R4 = 97% .

As the reliabilities of the components are specified for 7 days, i.e., 168 hours (assumption), then
we will find the value of the Reliability of the system for 7 days as

Rs = 0.02736+0.009312+0.03762+0.048015+0.8757936= 0.9981006∼= 0.9981.

Configuration 4.1.3. In this configuration, Component 1, Component 2 and Component 3 are
connected in parallel and then this sub-system is connected to Component 4 in series as shown
in Figure 3.

1

2

3

4

Figure 3. Reliability block diagram of the system having four components

Event of the system x2, x4, x6, x8, x10, x12, x14, x15, x16 only results in the system failure. Thus,
the probability of the failure of the system is:

P f =P(x2 ∪ x4 ∪ x6 ∪ x8 ∪ x10 ∪ x12 ∪ x14 ∪ x15 ∪ x16).

Calculation of the probability of event that leads to the system failure:

P(x2)=R1 ·R2 ·R3 · (1−R4),

P(x4)=R1 ·R2 · (1−R3) · (1−R4),

P(x6)=R1 · (1−R2) ·R3 · (1−R4),

P(x8)=R1 · (1−R2) · (1−R3) · (1−R4),

P(x10)= (1−R1) ·R2 ·R3 · (1−R4),

P(x12)= (1−R1) ·R2 · (1−R3) · (1−R4),

P(x14)= (1−R1) · (1−R2) ·R3 · (1−R4),

P(x15)= (1−R1) · (1−R2) · (1−R3) ·R4,

P(x16)= (1−R1) · (1−R2) · (1−R3) · (1−R4).

Now, after combining, equation (1.1) becomes

P f =R1 ·R2 · [R3 · (1−R4)+ (1−R3) · (1−R4)]+R1 · (1−R2) · [R3 · (1−R4)+ (1−R3) · (1−R4)]

+ (1−R1) ·R2 · (1−R4) · [R3 + (1−R3)]+ (1−R1) · (1−R2) · [R3 · (1−R4)+ (1−R3) ·R4

+ (1−R3) · (1−R4)]
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=R1 ·R2 · (1−R4)+R1 · (1−R2) · (1−R4)+ (1−R1) ·R2 · (1−R4)+ (1−R1) · (1−R2)

· (1−R3R4)

= (1−R4) · [R1R2 +R1 · (1−R2)+ (1−R1) · R2]+ (1−R1) · (1−R2) · (1−R3R4)

= 1−R1 ·R4 −R2 ·R4 −R3 ·R4 +R1 ·R2 ·R4 +R1 ·R3 ·R4 +R2 ·R3 ·R4 −R1 ·R2 ·R3 ·R4 .

Reliability of the system = 1− Probability of the failure of the system,
i.e.,

Rs = 1− P f

= 1− [1−R1 ·R4 −R2 ·R4 −R3 ·R4 +R1 ·R2 ·R4 +R1 ·R3 ·R4 +R2 ·R3 ·R4 −R1 ·R2 ·R3 ·R4]

=R1 ·R4 +R2 ·R4 +R3 ·R4 −R1 ·R2 ·R4 −R1 ·R3 ·R4 −R2 ·R3 ·R4 +R1 ·R2 ·R3 ·R4 .

On more simplifying, we get

Rs =R1 ·R4 · (1−R3)+R2 ·R4 · (1−R1)+R3 ·R4 · (1−R2)+R1 ·R2 ·R3 ·R4.

If we consider, Reliability of Component 1 is 96%, Reliability of Component 2 is 99%, Reliability
of Component 3 is 95% and Reliability of Component 4 is 97%, i.e.

R1 = 96%, R2 = 99%, R3 = 95%, R4 = 97% .

As the reliabilities of the components are specified for 7 days, i.e., 168 hours (assumption), then
we will find the value of the Reliability of the system for 7 days as

Rs = 0.04656+0.038412+0.009215+0.8757936= 0.9699806∼= 0.9700.

4.2 Calculation of Reliability of the System Having Five Components in Series-Parallel
Mixed Configuration

Configuration 4.2.1. In this configuration, Component 1 and Component 2 are connected
in parallel and then this parallel sub-system is connected to Component 5 in series. Also,
Component 3 and Component 4 are connected in parallel, and then these two sub-systems of
components are again connected in parallel as shown in Figure 4.

1

2

3

4

5

Figure 4. Reliability block diagram of the system having five components

Let A be the Success of Component 1 event and a be the Failure of Component 1 event.
Let B be the Success of Component 2 event and b be the Failure of Component 2 event.
Let C be the Success of Component 3 event and c be the Failure of Component 3 event.
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Let D be the Success of Component 4 event and d be the Failure of Component 4 event.
Let E be the Success of Component 5 event and e be the Failure of Component 5 event.
Also, here

xi : Success or Failure of Component i’s event

P(xi) : Probability of Failure of Component i

Rs : Reliability of the system

The mutually exclusive events of given system are:

x1 = ABCDE−All components success, x2 = ABCDe−Component 5 fail,

x3 = ABCdE−Component 4 fail, x4 = ABCde−Component 4 and 5 fail,

x5 = ABcDE−Component 3 fail, x6 = ABcDe−Component 3 and 5 fail,

x7 = ABcdE−Component 3 and 4 fail, x8 = ABcde−Component 3, 4 and 5 fail,

x9 = AbCDE−Component 2 fail, x10 = AbCDe−Component 2 and 5 fail,

x11 = AbCdE−Component 2 and 4 fail, x12 = AbCde−Component 2, 4 and 5 fail,

x13 = AbcDE−Component 2 and 3 fail, x14 = AbcDe−Component 2, 3 and 5 fail,

x15 = AbcdE−Component 2, 3 and 4 fail, x16 = Abcde−Component 2, 3, 4 and 5 fail,

x17 = aBCDE−Component 1 fail, x18 = aBCDe−Component 1 and 5 fail,

x19 = aBCdE−Component 1 and 4 fail, x20 = aBCde−Component 1, 4 and 5 fail,

x21 = aBcDE−Component 1 and 3 fail, x22 = aBcDe−Component 1, 3 and 5 fail,

x23 = aBcdE−Component 1, 3 and 4 fail, x24 = aBcde−Component 1, 3, 4 and 5 fail,

x25 = abCDE−Component 1 and 2 fail, x26 = abCDe−Component 1, 2 and 5 fail,

x27 = abCdE−Component 1, 2 and 4 fail, x28 = abCde−Component 1,2,4 and 5 fail,

x29 = abcDE−Component 1, 2 and 3 fail, x30 = abcDe−Component 1, 2, 3 and 5 fail,

x31 = abcdE−Component 1,2,3 and 4 fail, x32 = abcde−All components fail.

Event of the system x8, x16, x24, x31, x32 results in the system failure. Thus, the probability of
the failure of the system is:

P f =P(x8 ∪ x16 ∪ x24 ∪ x31 ∪ x32).

Calculation of the probability of event that leads to the system failure:

P(x8)=R1 ·R2 · (1−R3) · (1−R4) · (1−R5),

P(x16)=R1 · (1−R2) · (1−R3) · (1−R4) · (1−R5),

P(x24)= (1−R1) ·R2 · (1−R3) · (1−R4) · (1−R5),

P(x31)= (1−R1) · (1−R2) · (1−R3) · (1−R4) ·R5,

P(x32)= (1−R1) · (1−R2) · (1−R3) · (1−R4) · (1−R5) .
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Now, after combing, equation (1.1) becomes

P f = (1−R3) · (1−R4) · (1−R5) · [R1 ·R2 +R1 · (1−R2)+ (1−R1) ·R2]

+ (1−R1) · (1−R2) · (1−R3) · (1−R4) · [R5 + (1−R5)]

= (1−R3) · (1−R4) · (1−R5) · [R1 +R2 −R1 ·R2]+ (1−R1) · (1−R2) · (1−R3) · (1−R4)

= (1−R3) · (1−R4) · [(1−R5) · (R1 +R2 −R1 ·R2)+ (1−R1) · (1−R2)]

= (1−R3 −R4 +R3 ·R4)[1−R1 ·R5 −R2 ·R5 +R1 ·R2 ·R5]

= 1−R1 ·R5 −R2 ·R5 +R1 ·R2 ·R5 −R3 +R1 ·R3 ·R5 +R2 ·R3 ·R5 −R1 ·R2 ·R3 ·R5 −R4

+R1 ·R4 ·R5 +R2 ·R4 ·R5 −R1 ·R2 ·R4 ·R5 +R3 ·R4 −R1 ·R3 ·R4 ·R5 −R2 ·R3 ·R4 ·R5

+R1 ·R2 ·R3 ·R4 ·R5 .

Reliability of the system = 1− Probability of the failure of the system,
i.e.,

Rs = 1−P f

= 1− [1−R1 ·R5 −R2 ·R5 +R1 ·R2 ·R5 −R3 +R1 ·R3 ·R5 +R2 ·R3 ·R5 −R1 ·R2 ·R3 ·R5

−R4 +R1 ·R4 ·R5 +R2 ·R4 ·R5 −R1 ·R2 ·R4 ·R5 +R3 ·R4 −R1 ·R3 ·R4 ·R5

−R2 ·R3 ·R4 ·R5 +R1 ·R2 ·R3 ·R4 ·R5]

=R1 ·R5 +R2 ·R5 −R1 ·R2 ·R5 +R3 −R1 ·R3 ·R5 −R2 ·R3 ·R5 +R1 ·R2 ·R3 ·R5

+R4 −R1 ·R4 ·R5 −R2 ·R4 ·R5 +R1 ·R2 ·R4 ·R5 −R3 ·R4 +R1 ·R3 ·R4 ·R5

+R2 ·R3 ·R4 ·R5 −R1 ·R2 ·R3 ·R4 ·R5 .

On more simplifying, we get

Rs =R3 +R4 −R3 ·R4 · (1+R1 ·R2 ·R5)+R5 · (R1 +R2)−R1 ·R5 · (R2 +R3 +R4)

−R2 ·R5 · (R3 +R4)+R1 ·R2 ·R5 · (R3 +R4)+R3 ·R4 ·R5 · (R1 +R2).

If we consider, Reliability of Component 1 is 96%, Reliability of Component 2 is 99%, Reliability
of Component 3 is 95%, Reliability of Component 4 is 97% and Reliability of Component 5 is
98%, i.e.,

R1 = 96%, R2 = 99%, R3 = 95%, R4 = 97%, R5 = 98% .

As the reliabilities of the components are specified for 7 days, i.e., 168 hours (assumption), then
we will find the value of the Reliability of the system for 7 days as

Rs = 0.95+0.97−1.779777728+1.911−2.737728−1.862784+1.78827264+1.7609865

= 0.999969412∼= 0.9999 .

Configuration 4.2.2. In this configuration, Component 1 and Component 2 are connected
in parallel and Component 3 and Component 4 are also connected in parallel, then these
two parallel sub-systems are connected in series. Then this sub-system is again connected to
Component 5 in parallel as shown in Figure 5.
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1

2

3

4

5

Figure 5. Reliability block diagram of the system having five components

Event of the system x8, x16, x24, x26, x28, x30, x32 results in the system failure. Thus, the
probability of the failure of the system is:

P f =P(x8 ∪ x16 ∪ x24 ∪ x26 ∪ x28 ∪ x30 ∪ x32).

Calculation of the probability of event that leads to the system failure:

P(x8)=R1 ·R2 · (1−R3) · (1−R4) · (1−R5),

P(x16)=R1 · (1−R2) · (1−R3) · (1−R4) · (1−R5),

P(x24)= (1−R1) ·R2 · (1−R3) · (1−R4) · (1−R5),

P(x26)= (1−R1) · (1−R2) ·R3 ·R4 · (1−R5),

P(x28)= (1−R1) · (1−R2) ·R3 · (1−R4) · (1−R5),

P(x30)= (1−R1) · (1−R2) · (1−R3) · R4 · (1−R5),

P(x32)= (1−R1) · (1−R2) · (1−R3) · (1−R4) · (1−R5).

Now, after combing, equation (1.1) becomes

P f = (1−R3) · (1−R4) · (1−R5) · [R1 ·R2 +R1 · (1−R2)+ (1−R1) ·R2]

+ (1−R1) · (1−R2) · (1−R5) · [R3 ·R4 +R3 · (1−R4)+ (1−R3) ·R4 + (1−R3) · (1−R4)]

= (1−R3) · (1−R4) · (1−R5) · [R1 +R2 −R1 ·R2]+ (1−R1) · (1−R2) · (1−R5)

= (1−R5) · [(1−R3) · (1−R4) · (R1 +R2 −R1 ·R2)+ (1−R1) · (1−R2)]

= (1−R5) · [(1−R3 −R4 +R3 ·R4)(R1 +R2 −R1 ·R2)+ (1−R1 −R2 +R1 ·R2)]

= (1−R5) · [1−R1 ·R3 −R1 ·R4 −R2 ·R3 −R2 ·R4 +R1 ·R2 ·R3 +R1 ·R2 ·R4 +R1 ·R3 ·R4

+R2 ·R3 ·R4 −R1 ·R2 ·R3 ·R4]

= 1−R1 ·R3 −R1 ·R4 −R2 ·R3 −R2 ·R4 +R1 ·R2 ·R3 +R1 ·R2 ·R4 +R1 ·R3 ·R4

+R2 ·R3 ·R4 −R1 ·R2 ·R3 ·R4 −R5 +R1 ·R3 ·R5 +R1 ·R4 ·R5 +R2 ·R3 ·R5

+R2 ·R4 ·R5 −R1 ·R2 ·R3 ·R5 −R1 ·R2 ·R4 ·R5 −R1 ·R3 ·R4 ·R5 −R2 ·R3 ·R4 ·R5

+R1 ·R2 ·R3 ·R4 ·R5 .

Reliability of the system = 1− Probability of the failure of the system,
i.e.,

Rs = 1−P f
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= 1− [1−R1 ·R3 −R1 ·R4 −R2 ·R3 −R2 ·R4 +R1 ·R2 ·R3 +R1 ·R2 ·R4 +R1 ·R3 ·R4

+R2 ·R3 ·R4 −R1 ·R2 ·R3 ·R4 −R5 +R1 ·R3 ·R5 +R1 ·R4 ·R5 +R2 ·R3 ·R5

+R2 ·R4 ·R5 −R1 ·R2 ·R3 ·R5 −R1 ·R2 ·R4 ·R5 −R1 ·R3 ·R4 ·R5 −R2 ·R3 ·R4 ·R5

+R1 ·R2 ·R3 ·R4 ·R5]

=R1 ·R3 +R1 ·R4 +R2 ·R3 +R2 ·R4 −R1 ·R2 ·R3 −R1 ·R2 ·R4 −R1 ·R3 ·R4 −R2 ·R3 ·R4

+R1 ·R2 ·R3 ·R4 +R5 −R1 ·R3 ·R5 −R1 ·R4 ·R5 −R2 ·R3 ·R5 −R2 ·R4 ·R5

+R1 ·R2 ·R3 ·R5 +R1 ·R2 ·R4 ·R5 +R1 ·R3 ·R4 ·R5 +R2 ·R3 ·R4 ·R5

−R1 ·R2 ·R3 ·R4 ·R5 .

On more simplifying, we get

Rs =R1 ·R3 · (1−R2 −R5 +R2 ·R4)+R1 ·R4(1−R3 −R5 +R2 ·R5)

+R2 ·R3(1−R4 −R5 +R1 ·R5)+R2 ·R4(1−R1 −R5 +R3 ·R5)

+R5 · (1+R1 ·R3 ·R4 −R1 ·R2 ·R3 ·R4) .

If we consider, Reliability of Component 1 is 96%, Reliability of Component 2 is 99%, Reliability
of Component 3 is 95%, Reliability of Component 4 is 97% and Reliability of Component 5 is
98%, i.e.,

R1 = 96%, R2 = 99%, R3 = 95%, R4 = 97%, R5 = 98% .

As the reliabilities of the components are specified for 7 days, i.e., 168 hours (assumption), then
we will find the value of the Reliability of the system for 7 days as

Rs = 0.999962012∼= 0.9999.

Configuration 4.2.3. In this configuration, Component 1 and Component 2 are connected in
parallel and Component 3 and Component 4 are also connected in parallel, then these two
parallel sub-systems with Component 5 are connected in series as shown in Figure 6.

1

2

3

4
5

Figure 6. Reliability block diagram of the system having five components

Event of the system x2, x4, x6, x7, x8, x10, x12, x14, x15, x16, x18, x20, x22, x23, x24, x25, x26, x27,
x28, x29, x30, x31, x32 results in the system failure. Thus, the probability of the failure of the
system is:

P f =P(x2 ∪ x4 ∪ x6 ∪ x7 ∪ x8 ∪ x10 ∪ x12 ∪ x14 ∪ x15 ∪ x16 ∪ x18 ∪ x20 ∪ x22 ∪ x23 ∪ x24 ∪ x25

∪ x26 ∪ x27 ∪ x28 ∪ x29 ∪ x30 ∪ x31 ∪ x32).

Calculation of the probability of event that leads to the system failure:

P(x2)=R1 ·R2 ·R3 ·R4 · (1−R5)
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P(x4)=R1 ·R2 ·R3 · (1−R4) · (1−R5)

P(x6)=R1 ·R2 · (1−R3) ·R4 · (1−R5)
...

P(x31)= (1−R1) · (1−R2) · (1−R3) · (1−R4) ·R4

P(x32)= (1−R1) · (1−R2) · (1−R3) · (1−R4) · (1−R5).

Now, after combing, equation (1.1) becomes

P f =R1 ·R2 ·R3 · (1−R5)+R1 ·R2 · (1−R3) · (1−R4 ·R5)+R1 · (1−R2) ·R3 · (1−R5)

+ R1 · (1−R2) · (1−R3) · (1−R4 ·R5)+ (1−R1) ·R2 ·R3 · (1−R5)

+ (1−R1) ·R2 · (1−R3) · (1−R4 ·R5)+ (1−R1) · (1−R2) ·R3 + (1−R1) · (1−R2) · (1−R3)

=R3 · (1−R5) · [R1 +R2 −R1 ·R2]+ (1−R3) · (1−R4 ·R5) · [R1 +R2 −R1 ·R2]

+ (1−R1) · (1−R2)

= (1−R3 ·R5 −R4 ·R5 +R3 ·R4 ·R5)(R1 +R2 −R1 ·R2)+ (1−R1 −R2 +R1 ·R2)

= 1−R1 ·R3 ·R5 −R1 ·R4 ·R5 −R2 ·R3 ·R5 −R2 ·R4 ·R5 +R1 ·R2 ·R3 ·R5

+R1 ·R2 ·R4 ·R5 +R1 ·R3 ·R4 ·R5 +R2 ·R3 ·R4 ·R5 −R1 ·R2 ·R3 ·R4 ·R5 .

Reliability of the system = 1− Probability of the failure of the system,
i.e.,

Rs = 1−P f

= 1− [1−R1 ·R3 ·R5 −R1 ·R4 ·R5 −R2 ·R3 ·R5 −R2 ·R4 ·R5 +R1 ·R2 ·R3 ·R5

+R1 ·R2 ·R4 ·R5 +R1 ·R3 ·R4 ·R5 +R2 ·R3 ·R4 ·R5 −R1 ·R2 ·R3 ·R4 ·R5]

=R1 ·R3 ·R5 +R1 ·R4 ·R5 +R2 ·R3 ·R5 +R2 ·R4 ·R5 −R1 ·R2 ·R3 ·R5

−R1 ·R2 ·R4 ·R5 −R1 ·R3 ·R4 ·R5 −R2 ·R3 ·R4 ·R5 +R1 ·R2 ·R3 ·R4 ·R5 .

On more simplifying, we get

Rs =R1 ·R3 ·R5 · (1−R4)+R1 ·R4 ·R5 · (1−R2)+R2 ·R3 ·R5 · (1−R1)+R2 ·R4 ·R5 · (1−R3)

+R1 ·R2 ·R3 ·R4 ·R5.

If we consider, Reliability of Component 1 is 96%, Reliability of Component 2 is 99%, Reliability
of Component 3 is 95%, Reliability of Component 4 is 97% and Reliability of Component 5 is
98%, i.e.,

R1 = 96%, R2 = 99%, R3 = 95%, R4 = 97%, R5 = 98%.

As the reliabilities of the components are specified for 7 days, i.e., 168 hours (assumption), then
we will find the value of the Reliability of the system for 7 days as

Rs = 0.858277728∼= 0.8583.
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5. Results
The configuration of the system and the Reliability of the system obtained from the study are
shown in the following table:

Table 1. Reliability of the system with their respective configuration

Sr. No Configuration of the system Reliability of the system

1 Figure 1 99.99%

2 Figure 2 99.81%

3 Figure 3 97.00%

4 Figure 4 99.99%

5 Figure 5 99.99%

6 Figure 6 85.83%

Graphical representation of system configuration and system reliability is shown in Graph 1.
Here we consider four and five components arranged in various configuration, where R1 = 96%,
R2 = 99%, R3 = 95%, R4 = 97%, R5 = 98% for given period. In Table 1, we consider six different
configurations and calculated their respective system reliability and. The result obtained in
illustrated graphically in Graph 1.
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6. Conclusion
In this paper, we focus on the analytical study of system reliability with diverse configurations.
Our investigation reveals a key finding: when we augment the redundancy within a system,
the overall system reliability increases. Redundancy here refers to the inclusion of backup
components or pathways, which can take over in case the primary ones fail. It’s worth noting
that while adding redundancy can substantially enhance system reliability, it often comes at a
cost. This expense can manifest in the form of additional components, equipment, or increased
maintenance. We also provide a detailed examination of the graphical representations of these
various system configurations, helping to visualize how redundancy impact’s reliability.
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Additionally, we emphasize the advantage of employing parallel redundancy, a configuration
where multiple components or pathways work simultaneously to achieve the same task. This
strategy is particularly effective in bolstering overall system reliability because it ensures that
the system can continue to operate even if one or more components fail.
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