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Abstract. Given a connected graph G and a configuration D of pebbles on the vertices of G, a pebbling
transformation takes place by removing two pebbles from one vertex and placing one pebble on its
adjacent vertex. A monophonic path is considered to be a longest chordless path between two vertices
u and v which are not adjacent. A monophonic cover pebbling number, γµ(G), is a minimum number
of pebbles required to cover all the vertices of G with at least one pebble each on them after the
transferring of pebbles by using monophonic paths. In this paper, we determine the monophonic cover
pebbling number of cycles, square of cycles, shadow graph of cycles, complete graphs, Jahangir graphs,
fan graphs, zero divisor graphs and unit graphs.
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1. Introduction
Beeler et al. [2] stated that Lagarias and Saks suggested the concept of graph pebbling to
solve a number theoretic conjecture. Then, Chung [3] gave further developmental ideas using
graph pebbling concepts to solve the number theory problems. A pebbling move is defined as
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extracting two pebbles from one vertex and keeping one pebble on the adjacent vertex and
eliminating the other pebble. Crull et al. [4], defined the cover pebbling number γ(G), as follows:
It is the minimum number of pebbles needed to cover all the vertices with at least one pebble
however we place pebbles in the initial configuration. Lourdusamy et al. [6,7] defined detour
pebbling number, and monophonic pebbling number. A monophonic cover pebbling number,
γµ(G), is a minimum number of pebbles require to cover all the vertices of G with at least one
pebble each on them after shifting of pebbles by using monophonic paths which is chordless
and the longest. The application of this concept plays a vital role in the supply of goods and
transportation problems. This is also applied in the network transmission of the information
from one node to the other. The application of monophonic cover pebbling number decides the
equal distribution of goods on every customers by using the monophonic path. In this paper, we
determine the monophonic cover pebbling number of some graphs. To prove the worst condition,
we use the stacking theorem (Crull et al. [4]). It is stated as: Let D be the initial configuration of
pebbles. When the initial configuration D is placed on a single vertex v such that the dist(v) is
a maximum, such a way s(v)= ∑

u∈V (G)
2dis(u,v), and do this for every vertex v ∈V (G). Then, γ(G)

is the largest s(v).

Note 1.1. The notation D2(G) stands for shadow graph which is taken from Jayagopal and
Raju [5]. The notation Γ(Z) stands for zero-divisor graph of a ring R which is taken from
Anderson and Livingston [1]. The notation U(R) stands for the unit graph which is taken from
Maimani et al. [8].

Theorem 1.1. For the path Pn, γµ(Pn) is 2n −1.

Theorem 1.2. For K1,n, γµ(K1,n)= 4n−1.

Result 1.1 ([6]). Let G be a connected graph. The monophonic distance between u and v is 0 if
and only if u = v and 1 if and only if u−v is an edge of G.

Definition 1.1 ([9]). Let v ∈V (G). Then, v is called a key or source vertex if dis(v) is maximum.

Notation
Throughout this article, we denote

• β as the source vertex,

• Mi is the monophonic path and M∼
i contains the vertices which are not on Mi ,

• We use MCPN for monophonic cover pebbling number,

• N(v0) is the neighborhood of v0.

2. Monophonic Cover Pebbling Number of Some Standard Graphs

Theorem 2.1. For Cn,γµ(Cn) is


2

n−2∑
k= n

2 +1
2k +2

n
2 +5, if n is even,

2
n−2∑

k=⌈ n
2 ⌉
+5, if n is odd.
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Proof. Let V (Cn)= {u1,u2, . . . ,un} and E(Cn)= {uiui+1,unu1}, where 1≤ i ≤ n−1.

Case 1: When n is even.

Let p(u1) = 2
n−2∑

k= n
2 +1

2k + 2
n
2 + 4. Now to cover the vertices u2,un, we use 4 pebbles;

to cover the vertex u n
2
, we use 2

n
2 pebbles; subsequently, to place one pebble each

on u3,u4, · · · ,u n
2 −1,u n

2 +1,u n
2 +2, · · · ,un−2,un−1, we have the following pebble distributions:

2(2n−2,2n−3,2n−4, · · · ,2
n
2 +2,2

n
2 +1) and so the total number of pebbles is 2

(
n−2∑

k= n
2 +1

2k
)
+ 2

n
2 + 4.

Now there is no pebble to cover u1. Thus, γµ(Cn)≥ 2
n−2∑

k= n
2 +1

2k +2
n
2 +5.

To prove γµ(Cn) ≤ 2
n−2∑

k= n
2 +1

2k +2
n
2 +5, let us consider any configuration of 2

n−2∑
k= n

2 +1
2k +2

n
2 +5

pebbles on V (Cn). Let β= u1. To cover the vertices of N(u1), we require 4 pebbles; to cover the
vertices u3,u4, · · · ,u n

2 −1,u n
2 +1,u n

2 +2, · · · ,un−2,un−1, we require 2(2n−2,2n−3,2n−4, · · · ,2
n
2 +2,2

n
2 +1)

pebbles; to cover the vertex u n
2
, we require 2

n
2 pebbles; to cover u1, we require 1 pebbles. Thus,

to cover the vertices in Cn we require 2
(

n−2∑
k= n

2 +1
2k

)
+2

n
2 +5. By symmetry the proof follows for

any source vertex ui where 2≤ i ≤ n.

Case 2: When n is odd.

Let p(u1) = 2
n−2∑

k=⌈ n
2 ⌉
+4. Now to cover the vertices u2,un, we use 4 pebbles; subsequently,

to place one pebble each on u3,u4, · · · ,u⌈ n
2 ⌉,u⌈ n

2 ⌉+1, · · · ,un−2,un−1, we have the following
pebble distributions: 2(2n−2,2n−3,2n−4, · · · ,2⌈ n

2 ⌉+1,2⌈ n
2 ⌉) and so the total number of pebbles is

2
(

n−2∑
k=⌈ n

2 ⌉
2k

)
+4. Now there is no pebble to cover u1. Thus, γµ(Cn)≥ 2

(
n−2∑

k=⌈ n
2 ⌉

2k
)
+5.

To prove γµ(Cn)≤ 2
(

n−2∑
k=⌈ n

2 ⌉
2k

)
+5, let us consider any configuration of 2

(
n−2∑

k=⌈ n
2 ⌉

2k
)
+5 pebbles on

V (Cn). Let β= u1. To cover the vertices of N(u1), we require 4 pebbles; to cover the vertices
u3,u4, · · · ,un−2,un−1 we need 2(2n−2,2n−3,2n−4, · · · ,2⌈ n

2 ⌉+1,2⌈ n
2 ⌉) pebbles; to cover u1, we need

1 pebble. Thus, to cover the vertices in Cn, we need 2
(

n−2∑
k=⌈ n

2 ⌉
2k

)
+ 5 pebbles. By symmetry

the proof follows for any source vertex ui , where 2≤ i ≤ n.

Theorem 2.2. For D2(Cn),γµ(D2(Cn)) is


4
(

n−2∑
k= n

2 +1
2k

)
+2

n
2 +13, if n is even,

4
(

n−2∑
k=⌈ n

2 ⌉

)
+13, if n is odd.

Proof. Let V (D2(Cn))= {u1,u2, · · · ,un,v1,v2, · · · ,vn} and E(D2(Cn))= {u ju j+1,unu1,v jv j+1,vnv1,
u jv j+1,unv1,v ju j+1,vnu1}, where j = 1,2, · · · ,n−1.
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Case 1: When n is even.

Let p(u1)= 4
(

n−2∑
k= n

2 +1
2k

)
+2

n
2 +12. To cover the vertices v2,vn,u2,un, we need 8 pebbles; to cover

v1, we need 4 pebbles; to cover the vertices u3,u4, · · · ,u n
2 −1,u n

2 +1, · · · ,un−1,v3,v4, · · · ,v n
2 −1,v n

2 +1,
· · · ,vn−1 we need 4(2

n
2 +1,2

n
2 +2, · · · ,n−3,n−2) pebbles; to cover u n

2
we need 2 n

2
pebbles. Now

there is no pebble to cover u1. Thus, p(D2(Cn))≥ 4
(

n−2∑
k= n

2 +1
2k

)
+2

n
2 +13.

To prove p(D2(Cn)) ≤ 4
(

n−2∑
k= n

2 +1
2k

)
+2

n
2 +13, let us consider any configuration of 4

(
n−2∑

k= n
2 +1

2k
)
+

2
n
2 +13 pebbles on V (D2(Cn)). Let β= u1. To cover the vertices of N(u1), we need 4(2) pebbles;

to cover v1, which is at the monophonic distance 2, we need 4 pebbles; to cover the vertices
u3,u4, · · · ,u n

2 −1,u n
2 +1, · · · ,un−1,v3,v4, · · · ,v n

2 −1,v n
2 +1, · · · ,vn−1 we need 4(2

n
2 +1,2

n
2 +2, · · · ,n−3,n−2)

pebbles; to cover u n
2

we need 2 n
2

pebbles; to cover u1 we need 1 pebble. Thus, the total number

of pebbles used is 4
(

n−2∑
k= n

2 +1
2k

)
+2

n
2 +13. By symmetry the proof follows for any source vertex ui

where 2≤ i ≤ n, and vk where 1≤ k ≤ n.

Case 2: When n is odd.

Let p(u1)= 4
(

n−2∑
k=⌈ n

2 ⌉
2k

)
+12. To cover the vertices v2,vn,u2,un, we need 8 pebbles; to cover v1,

we need 4 pebbles; to cover the vertices u3,u4, · · · ,un−1,v3,v4, · · · ,vn−1 we need 4(2⌈ n
2 ⌉,2⌈ n

2 ⌉+1, · · · ,
n−3,n−2) pebbles. Now there is no pebble to cover u1. Thus, p(D2(Cn))≥ 4

(
n−2∑

k=⌈ n
2 ⌉

2k
)
+13.

To prove p(D2(Cn)) ≤ 4
(

n−2∑
k=⌈ n

2 ⌉
2k

)
+ 13, let us consider any configuration of 4

(
n−2∑

k=⌈ n
2 ⌉

2k
)
+ 13

pebbles on V (D2(Cn)). Let β = u1. To cover the vertices of N(u1), we need 4(2) pebbles; to
cover v1, which is at the monophonic distance 2, we need 4 pebbles; to cover the vertices
u3,u4, · · · ,un−1,v3,v4, · · · ,vn−1 we need 4(2⌈ n

2 ⌉,2⌈ n
2 ⌉+1, · · · ,n−3,n−2) pebbles; to cover u1 we

need 1 pebble. Thus, the total number of pebbles used is 4
(

n−2∑
k=⌈ n

2 ⌉
2k

)
+13. By symmetry the proof

follows for any source vertex ui where 2≤ i ≤ n, and vk where 1≤ k ≤ n.

Theorem 2.3. For the graph Fn,γµ(Fn)= 2n−1 +1.

Proof. Let V (Fn) = {v0,v1, · · · ,vn−1} and E(Fn) = {vivi+1,v0v j} where i = 0,1, · · · ,n − 2 and
j = 1,2, · · · ,n−1. Let p(v1) = 2n−1. By Theorem 1.1 to cover n−1 vertices of the fan graph
from v1 to vn−1 we require 2n−1−1 pebbles. We are left with 2 pebbles on v1 which can be used
to cover v1 or v0. So there will be a vertex which is not covered. Thus, γµ(Fn)≥ 2n−1 +1.

Now we prove γµ(Fn)≤ 2n−1 +1.

Case 1: Let the key vertex be vk, where k = 1 or n−1.
Let k = 1 and p(v1)= 2n−1+1. To cover vn−1 we require 2n−2 pebbles and to cover vn−2 we require
2n−3 pebbles. Following this process to cover the remaining vertices by using the monophonic
path we need 2n−2 +2n−3 +·· ·+21 +20 pebbles. Thus, we need 2n−1 −1 pebbles to cover v1 to
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vn−1. In order to cover v0, we require 2 pebbles. Thus, using 2n−1 +1 pebbles we are able to
cover V (Fn).

Case 2: Let the key vertex be v0.
The monophonic distance from v0 to any vertex is 1 and degree of v0 is n−1. Hence, using
2(n−1) pebbles we can cover n−1 vertices and to cover v0, we need an additional pebble. Thus,
to cover all the vertices we need 2(n−1)+1= 2n−1< 2n−1 −1.

Case 3: Let the key vertex be vl where 1< l < n−1.
The monophonic distance from vl to vn−1 is n− l and the monophonic distance from vl to v1

is l −1. Thus, to cover vl to vn−l we require 2n−l −1 pebbles and to cover vl to v1 we require
2l−1−2 pebbles. To cover v0 we require 2 pebbles. Thus, the total number of pebbles to cover Fn

is 2n−l −1+2l−1 −2+2= 2n−l +2l−1 +−1< 2n−1 −1. Hence, γµ(Fn)= 2n−1 +1.

Theorem 2.4. For the complete graph Kn,γµ(Kn) is 2n−1.

Proof. Let V (Kn) = {v1,v2, · · · ,vn}, where every pair of distinct vertices are connected.
Let p(v1)= 2n−2. All the vertices are adjacent to each other. Therefore, to cover n−1 adjacent
vertices of v1, we require 2n−2 pebbles. But v1 is not covered. Therefore, γµ(Kn)≥ 2n−1. Let us
prove γµ(Kn) ≤ 2n−1. Let p(vn) = 0. Then, there is i such that p(vi) ≥ 2, where 1 ≤ i ≤ n−1.
Using the pigeonhole principle we can shift a pebble from vi to vn. Then, using 2n−3 pebbles
we can cover the remaining n−1 vertices.

Theorem 2.5. For Jm,n,γµ(Jm,n) is


2
(

nm−2∑
k=⌈ nm

2 ⌉
2k

)
+2n +5, if nm is odd,

2
(

nm−2∑
k= nm

2 +1

)
+2

nm
2 +2n +5, if nm is even.

Proof. Let V (Jm,n) = {v0,v1, · · · ,vmn−1,vmn} and E(Jm,n) = {vivi+1,vnmv1,v0v1,v0vn+1,v0v2n+1,
v0v3n+1, · · · ,v0v(m−1)n+1}, where 1≤ i ≤ nm−1.

Case 1: When nm is odd.

Let p(v2) = 2
(

nm−2∑
k=⌈ nm

2 ⌉
2k

)
+2n +4. To cover the vertex v0, we need 2n pebbles; to cover v1,v3,

we need 4 pebbles; to cover the vertices v4,v5, · · · ,vnm−1,vnm we need 2(2⌈ nm
2 ⌉ + 2⌈ nm

2 ⌉+1 +
·· · + 2nm−3 + 2nm−2) pebbles, i.e., 2

(
nm−2∑

k=⌈ nm
2 ⌉

2k
)
. Now there is no pebble to cover v2. Thus,

V (Jm,n)≥ 2
(

nm−2∑
k=⌈ nm

2 ⌉
2k

)
+2n +5.

Now we prove V (Jm,n)≤ 2
(

nm−2∑
k=⌈ nm

2 ⌉
2k

)
+2n +5.

Subcase 1.1: Let β= N(v0).
Without loss of generality, let β = v1. From Table 1, to cover the vertices from v3 to vnm−1

we need 2(2⌈ nm
2 ⌉,2⌈ nm

2 ⌉+1, · · · ,2nm−3,2nm−2) pebbles, i.e., 2
(

nm−2∑
k=⌈ nm

2 ⌉
2k

)
. To cover N(v0) we need 6

Communications in Mathematics and Applications, Vol. 15, No. 2, pp. 619–634, 2024



624 Monophonic Cover Pebbling Number of Standard and Algebraic Graphs: A. Lourdusamy et al.

pebbles; to cover v1 we need 1 pebble. Thus, in this we require 2
(

nm−2∑
k=⌈ nm

2 ⌉
2k

)
+7 pebbles.

Table 1. Monophonic distance from v1 to V (Jn,m)

v0 v1 v2 v3 v4 · · · v⌈ nm
2 ⌉ v⌈ nm

2 ⌉+1 · · · vnm−2 vnm−1 vnm

v1 1 0 1 nm−2 nm−3 · · · v⌈ nm
2 ⌉+1 v⌈ nm

2 ⌉+1 · · · nm−3 nm−2 1

Subcase 1.2: Let β= vk where vk is an adjacent vertex of a vertex in N(v0).
Without loss of generality, let β= vnm. From Table 2, to cover the vertices v2,v3, · · · ,vnm−2, we

need 2
(

nm−2∑
k=⌈ nm

2 ⌉
2k

)
pebbles; to cover the vertices v1,vnm−1, we need 4 pebbles; to cover v0, we

require 2n pebbles; to cover vnm, we need 1 pebble. Thus, the number of pebbles to cover V (Jn,m)

is 2
(

nm−2∑
k=⌈ nm

2 ⌉
2k

)
+2n +5.

Table 2. Monophonic distance from vnm to V (Jn,m)

v0 v1 v2 v3 v4 · · · v⌈ nm
2 ⌉ v⌈ nm

2 ⌉+1 · · · vnm−2 vnm−1 vnm

vnm n 1 nm−2 nm−3 nm−4 · · · v⌈ nm
2 ⌉ v⌈ nm

2 ⌉+1 · · · nm−2 1 0

Subcase 1.3: Let β= vs where vs ∉ N(v0) and vs ∉ N(N(v0)).
Covering the vertices vs+2,vs+3, · · · ,vnm,v1,v2, · · · ,vs−2, we require 2(2⌈ nm

2 ⌉+2⌈ nm
2 ⌉+1+·· ·+2nm−3+

2nm−2) pebbles; to cover the vertices vs−1,vs+1, we need 4 pebbles; to cover vs, we require
1 pebble. Now covering v0 which is of the monophonic distance < n, it will cost < 2n pebbles.

Thus, using fewer 2
(

nm−2∑
k=⌈ nm

2 ⌉
2k

)
+2n +5, pebbles we cover all the vertices of the graph.

Subcase 1.4: Let β= v0.
We have m−1 paths of having the same length n from v0. To cover the vertices of N(v0), we need

2m pebbles; to cover v0, we need 1 pebble; to cover the remaining vertices we need 2m
(

n∑
⌈ n

2 ⌉+1
2k

)
pebbles. Thus, using 2m

(
n∑

⌈ n
2 ⌉+1

2k
)
+2m+1 pebbles we cover V (Jn,m).

Case 2: When nm is even.

Let p(v2) = 2
(

nm−2∑
k= nm

2 +1

)
+ 2

nm
2 + 2n + 4. To cover the vertex v0, we need 2n pebbles; to cover

v1,v3, we need 4 pebbles; to cover the vertices v4,v5, · · · ,v nm
2 −1,v nm

2 +1, · · · ,vnm−1,vnm we need

2(2
nm
2 +1+ 2

nm
2 +2+·· ·+2nm−3+2nm−2) pebbles, i.e., 2

(
nm−2∑

k= nm
2 +1

)
pebbles. To cover the vertex v nm

2
, we

need 2
nm
2 pebbles. Now there is no pebble to cover v2. Thus, V (Jm,n)≥ 2

(
nm−2∑

k= nm
2 +1

)
+2

nm
2 +2n +5.
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Now we prove V (Jm,n)≤ 2
(

nm−2∑
k= nm

2 +1

)
+2

nm
2 +2n +5.

Subcase 2.1: Let β= N(v0).
Without loss of generality, let β= v1. From Table 3, to cover the vertices from v3 to vnm−1 we

need 2(2
nm
2 +1+2

nm
2 +2+·· ·+2nm−3+2nm−2) pebbles, i.e., 2

(
nm−2∑

k= nm
2 +1

2k
)
. To cover N(v0) we need 6

pebbles; to cover v1 we need 1 pebble. Thus, in this we require 2
(

nm−2∑
k= nm

2 +1
2k

)
+7 pebbles.

Table 3. Monophonic distance from v1 to V (Jn,m)

v0 v1 v2 v3 v4 · · · v nm
2 −1 v nm

2
v nm

2 +1 · · · vnm−2 vnm−1 vnm

v1 1 0 1 nm−2 nm−3 · · · v nm
2 +1 v nm

2
v nm

2 +1 · · · nm−3 nm−2 1

Subcase 2.2: Let β= vk where vk is an adjacent vertex of a vertex in N(v0).
Without loss of generality, let β = vnm. From Table 4, to cover the vertices

v2,v3, · · · ,v nm
2 −2,v nm

2
,v nm

2 +1, · · · ,vnm−2, we need 2
(

nm−2∑
k= nm

2 +1
2k

)
pebbles; to cover the vertices

v1,vnm−1, we need 4 pebbles; to cover v0, we require 2n pebbles; to cover vnm, we need 1
pebble; to cover v nm

2 −1, we need 2
nm
2 pebbles. Thus, the number of pebbles to cover V (Jn,m) is

2
(

nm−2∑
k= nm

2 +1
2k

)
+2

nm
2 +2n +5.

Table 4. Monophonic distance from vnm to V (Jn,m)

v0 v1 v2 · · · v nm
2 −2 v nm

2 −1 v nm
2

· · · vnm−3 vnm−2 vnm−1 vnm

vnm n 1 nm−2 · · · v nm
2 +1 v nm

2
v nm

2 +1 · · · nm−3 nm−2 1 0

Subcase 2.3: Let β= vs where vs ∉ N(v0) and vs ∉ N(N(v0)).
Covering the vertices vs+2,vs+3, · · · ,vnm,v1,v2, · · · ,vs−2, we require 2(2

nm
2 +1+2

nm
2 +2+·· ·+2nm−3+

2nm−2) and 2
nm
2 pebbles; to cover the vertices vs−1,vs+1, we need 4 pebbles; to cover vs, we

require 1 pebble. Now covering v0 which is of the monophonic distance < n, it will cost < 2n

pebbles. Thus, using fewer 2
(

nm−2∑
k= nm

2 +1
2k

)
+2

nm
2 +2n +5, pebbles we cover all the vertices of the

graph.

Subcase 2.4: Let β= v0.
We have m−1 paths of having the same length n from v0. If n is even then to cover the vertices
of N(v0), we need 2m pebbles; to cover v0, we need 1 pebble; to cover the remaining vertices

we need 2m
(

n∑
k= n

2 +2
2k

)
and 2

n
2 +1 pebbles. Thus, using 2m

(
n∑

k= n
2 +2

2k
)
+2

n
2 +1+2m+1 pebbles we

cover V (Jn,m). If n is odd then to cover the vertices of N(v0), we need 2m pebbles; to cover v0,
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we need 1 pebble; to cover the remaining vertices we need 2m
(

n∑
k=⌈ n

2 ⌉+1
2k

)
pebbles. Thus, using

2m
(

n∑
k=⌈ n

2 ⌉+1
2k

)
+2m+1 pebbles we cover V (Jn,m).

3. The Monophonic Cover Pebbling Number of Some Zero Divisor
Graphs

Theorem 3.1. For Γ(Z6), γµ(Γ(Z6))= 7.

Proof. Let V (Γ(Z6)) be {v2,v3,v4}. Then, E(Γ(Z6)) be {(v2,v3), (v3,v4)}. Since Γ(Z6)∼= P3, the proof
follows by Theorem 1.1.

Theorem 3.2. For Γ(Z8), γµ(Γ(Z8))= 7.

Proof. Let V (Γ(Z8)) = {v2,v4,v6}. Then, E(Γ(Z8)) = {(v2,v4), (v4,v6)}. Since Γ(Z8) ∼= P3, we are
done by Theorem 1.1.

Theorem 3.3. For Γ(Z9), γµ(Γ(Z9))= 3.

Proof. Let V (Γ(Z9)) be {v3,v6}. Then, E(Γ(Z9)) be {(v3,v6)}. We note that Γ(Z9) ∼= P2. Hence,
we are done by Theorem 1.1.

Theorem 3.4. For Γ(Z10), γµ(Γ(Z10))= 15.

Proof. Let V (Γ(Z10)) be {v2,v4,v5,v6,v8} and E(Γ(Z10)) be {(v2,v5), (v4,v5), (v6,v5), (v8,v5)}. Since
Γ(Z10)∼= K1,4, by Theorem 1.2, µ(Γ(Z10))= 15.

Theorem 3.5. For Γ(Z12), γµ(Γ(Z12))= 31.

Table 5. Monophonic distances of all the pairs of vertices in Γ(Z12)

v2 v3 v4 v6 v8 v9 v10 dµ(vi,v j)

v2 0 3 2 1 2 3 2 3

v3 3 0 1 2 1 2 3 3

v4 2 1 0 1 2 1 2 2

v6 1 2 1 0 1 2 1 2

v8 2 1 2 1 0 1 2 2

v9 3 2 1 2 1 0 3 3

v10 2 3 2 1 2 3 0 3

Proof. Let V (Γ(Z12))={v2,v3,v4,v6,v8,v9,v10}. Then, E(Γ(Z12))={(v2,v6), (v6,v8), (v6,v4), (v6,v10),
(v8,v9), (v4,v9), (v4,v3), (v8,v3)}. Here n = 12. Let the monophonic path M1 be {v2,v6,v8,v3}.
From Table 5, consider the monophonic distances of all the pairs of vertices in Γ(Zn). If we
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place 2
n
6 (2

n
4 )− 2 pebbles on the vertex v2 we cannot cover all the vertices in Γ(Zn). Thus,

γµ(Γ(Zn))≥ 2
n
6 (2

n
4 )−1. Now let us prove the sufficient condition.

Case 1: Let v2 be the source vertex.
Consider the monophonic path M3 : v2,v6,v8,v9. To cover the vertices of M3, by Theorem 1.1,
we need 24 −1 pebbles; covering v9 which is at distance 3 it will cost 8 pebbles, and covering
v4,v10 which is at distance 2 it will cost 8 pebbles. So with 31 pebbles we can put a pebble on all
vertices simultaneously. By symmetry the proof follows for v10.

Case 2: Let v9 be the source vertex.
N(v9) consists of v4 and v8. Let M2 : v9,v8,v6,v2 be the monophonic path. We note that v8 is on
the monophonic path M2. To cover the vertices of M2 we require 2

n
3 −1 pebbles and to cover v4

we require 2 pebbles. Now we are left with v3 and v10 which are at the monophonic distance of 2
and 3 respectively. Thus, we require 2

n
6 +2

n
4 pebbles. The number of pebbles needed to cover all

the vertices is 2
n
3 +1+2

n
6 +2

n
4 which are fever than 2

n
6 (2

n
4 )−1. By symmetry the proof follows

for the source vertex v3.

Case 3: Let v4 be the source vertex.
The vertices in N(v4) is {v3,v9,v6}. To place a pebble on the vertices of N(v4) we require 6
pebbles. The remaining 3 vertices are at distance 2. To cover these vertices we require 12
pebbles and 1 pebble for source vertex. Thus, we are done using a fewer than 31. By symmetry
the proof follows for the source vertex v8.

Case 4: Let v6 be the source vertex.
The vertices in N(v6) are v10,v8,v4,v2. To cover the vertices in N(v6) and v6 we need 9 pebbles;
to cover v3,v9 which are at distance 2, we need 8 pebbles. Thus, with fewer than 31 pebbles we
put a pebble on all the vertices simultaneously.
Thus, γµ(Γ(Z12))= 31.

Theorem 3.6. For Γ(Z14), γµ(Γ(Z14))= 23.

Proof. Let V (Γ(Z14))={v2,v4,v6,v7,v8,v10,v12}. Then E(Γ(Z14)) is {(v2,v7), (v4,v7), (v6,v7), (v8,v7),
(v10,v7), (v12,v7)}. Since Γ(Z14)∼= K1,6, γmu(Γ(Z14))= 8 by Theorem 1.2.

Theorem 3.7. For Γ(Z15), γµ(Γ(Z15))= 17.

Proof. Let V (Γ(Z15)) be {v3,v5,v6,v9,v10,v12}. Then E(Γ(Z14)) be {(v3,v5), (v9,v5), (v12,v5), (v10,v3),
(v10,v9), (v10,v12), (v6,v5), (v6,v10)}. The graph we obtain for Γ(Z15) is a complete bipartite graph
with bipartite sets of sizes 2 and 4. Let p(v3)= 16. To cover v6,v9,v12 which are at distance 2,
we need 12 pebbles and to cover v5,v10 which are in N(v3) we need 4 pebbles and there are zero
pebble to cover v3. Thus, γµ(Γ(Z15))≥ 17. Now we prove γµ(Γ(Z15))≤ 17.

Case 1: Let v5 be the source vertex.
N(v5) is {v3,v6,v9,v12}. To cover the vertices in N(v5), it will cost 8 pebbles; to cover v5 it will
cost one pebble and to cover v10 which is at the monophonic distance 2 it will cost 4 pebbles.
Thus, with fewer than 17 pebbles we could cover all the vertices. By symmetry the proof follows
for the source vertex v10.
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Case 2: Let the source vertex be v6.
Then N(V6) is {v5,v10}. To cover the vertices in N(v6), it will cost 4 pebbles; to cover v6 it will
cost one pebble and to cover v3,v9,v12 which are at the monophonic distance 2 it will cost 12
pebbles. By symmetry the proof follows for the source vertices v3 and v12.
Thus, γµ(Γ(Z15))= 17.

Theorem 3.8. For Γ(Z16), γµ(Γ(Z16))= 23.

Proof. Let V (Γ(Z16)) = {v2,v4,v6,v8,v10,v12,v14}. Then, E(Γ(Z16)) = {(v8,v12), (v8,v4), (v8,v6),
(v8,v10), (v8,v12), (v8,v14), (v4,v12)}. Here n = 16. Consider the monophonic path M1 : v2,v6,v14.
Place 6(2

n
8 )−2 pebbles on v2. To cover v4,v6,v10,v12,v14 which are at the monophonic distance

2, it will cost 20 pebbles and to cover the vertices in N(v2) it will cost 2 pebbles and so there are
zero pebbles to cover v2. Thus, γµ(Γ(Zn))≥ 6(2

n
8 )−1. Now we show γµ(Γ(Zn))≤ 6(2

n
8 )−1.

Case 1: Let the source vertex be v14.
To cover the vertices v2,v4,v6,v10,v12 which is at the distance 2 it will cost 20 pebbles; to cover
v14 it will cost 1 pebble and to cover v8 it will cost 2 pebbles. Thus, with a configuration of
6(2

n
8 )−1 pebbles we can cover all the vertices. By symmetry the proof follows for the source

vertices v2,v6,v10.

Case 2: Let v12 be the source vertex.
The vertices in N(v12) are v4,v8. There are four vertices that are at the distance 2 and so to
cover these vertices it will cost 16 pebbles; to cover v4,v8 it will cost 4 pebbles and to cover v12

will cost 1 pebble. Thus, with a configuration of 21 pebbles we are able to cover all the vertices.
By symmetry the proof follows for the source vertex v4.

Case 3: Let v8 be the source vertex.
We note that six vertices are adjacent to the source vertex. So to cover these six vertices we
need 12 pebbles and to cover v8 we need 1 pebble. Hence, with a configuration of 13 pebbles we
can cover all the vertices.
Thus, γµ(Γ(Z16))= 23.

Theorem 3.9. For Γ(Z18), γµ(Γ(Z18))= 61.

Proof. Let V (Γ(Z18))= {v2,v13,v4,v6,v8,v9,v10,v12,v14,v15,v16}.
Then, E(Γ(Z18)) = {v9vi,v6v j,v12v15,v12v13} where i = 6,12,2,4,8,10,14,16 and j = 12,13,15.
Here n = 18. Let us place 7(2

n
6 )+4 pebbles on v13. There are six vertices at the monophonic

distance of n
6 , which will cost 6(2

n
6 ) pebbles to cover; there are 2 vertices at the monophonic

distance of n
9 which will cost 2(2

n
9 ) pebble to cover; there are 2 vertices at the monophonic

distance 1 which will cost 4 pebbles to cover. So obviously the source vertex is not covered.
Hence, γµ(Γ(Zn))≥ 7(2

n
6 )+5.

Now we prove γµ(Γ(Zn))≤ 7(2
n
6 )+5.

Case 1: Let v13 be the source vertex.
Now consider the monophonic distance from v13 to any other vertex in Γ(Zn). There will be 6
vertices at the monophonic distance n

6 which needs 6(2
n
6 ) pebbles to cover; 2 vertices at the
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Table 6. Monophonic distance between all pairs of vertices in Γ(Z18)

v2 v13 v4 v6 v8 v9 v10 v12 v14 v15 v16 dµ(vi,v j)

v2 0 3 2 2 2 1 2 2 2 3 2 3

v13 3 0 3 1 3 2 3 1 3 2 3 3

v4 2 3 0 2 2 1 2 2 2 3 2 3

v6 2 1 2 0 2 1 2 1 2 1 2 2

v8 2 3 2 2 0 1 2 2 2 3 2 3

v9 1 2 1 1 1 0 1 1 1 2 1 2

v10 2 3 2 2 2 1 0 2 2 3 2 3

v12 2 1 2 1 2 1 2 0 2 1 1 2

v14 2 3 2 2 2 1 2 2 0 3 2 3

v15 3 2 3 1 3 2 3 1 3 0 3 3

v16 2 3 2 2 2 1 2 2 2 3 0 3

monophonic distance of n
9 which will cost 2(2

n
9 ) pebbles to cover and 2 vertices which are at

monophonic distance 1 which will cost 4 pebbles to cover and the remaining pebble will cover
the source vertex. Thus, with a configuration 6(2

n
6 )+2(2

n
9 )+4+1= 7(2

n
6 )+5 pebbles we cover

all the vertices. By symmetry the proof follows for the source vertex v15.

Case 2: Let v16 be the source vertex.
Table 2 gives the monophonic distances between all pairs of vertices in Γ(Zn). There are 7
vertices v13 at the monophonic distance 2 which will cost 7(2

n
9 ) pebbles to cover; 2 vertices at

the monophonic distance 3 which will cost 2(2
n
6 ) pebbles to cover and with the remaining pebble

we cover v16. So with a configuration of less than 7(2
n
6 )+5 pebbles we cover all the vertices. By

symmetry the proof follows for the source vertices v14,v10,v8,v4,v2.

Case 3: Let v9 be the source vertex.
By considering the monophonic distances from Table 6, we have 8 vertices at distance 1 which
will cost 8(2

n
18 ) pebbles to cover them and 2 vertices at distance 2 which will cost 2(2

n
9 ) pebbles

to cover them. With one pebble we can cover v9. Thus, to cover all the vertices using monophonic
path it will cost 8(2

n
18 )+2(2

n
9 )+1< 7(2

n
6 )+5 pebbles.

Theorem 3.10. For Γ(Z2p), γµ(Γ(Z2p))= 4p−1, where p is any prime number.

Proof. Let V (Γ(Z2p)) = {v2,v4, · · · ,v2p−2,vp}. Then E(Γ(Z2p)) = {vivp, 2 ≤ i ≤ 2p − 2}. Since
Γ(Z2p)∼= K1,p−1, by Theorem 1.2 the result follows.
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4. Monophonic Cover Pebbling Number for Unit Graphs of Zn

In this section, we compute the monophonic cover pebbling number of unit graphs of Zn where
2≤ n ≤ 10.

Theorem 4.1. For Z2,γµ(U(Z2)) is 3.

Proof. Let V (U(Z2)) be {v0,v1}. Then, E(U(Z2)) = v0v1. The resulting graph is of a path of
length 1. By Theorem 1.1, γµ(U(Z2))= 3.

Theorem 4.2. For Z3,γµ(U(Z3)) is 7.

Proof. Let V (U(Z3)) be {v0,v1,v2}. Then, E(U(Z3))= {vov1,v0v2}. The resulting graph is a path
of length 2. By Theorem 1.1, γµ(U(Z3) is 7.

Theorem 4.3. For U(Z4),γµ(U(Z4)) is 9.

Proof. Let V (U(Z4)) = {v0,v1,v2,v3}. Then, E(U(Z4)) = {v0v1,v0v3,v1v2,v2v3}. Now U(Z4) ∼= C4.
By Theorem 2.1, γµ(U(Z4)) is 9.

Theorem 4.4. For U(Z5),γµ(U(Z5)) is 11.

Proof. Let V (U(Z5)) be {v0,v1,v2,v3,v4}. Then E(U(Z5))= {v0v1,v0v2,v0v3,v0v4,v1v2,v1v3,v2v4,
v3v4}. In the resulting graph deg(v0)= 4 and deg(vi)= 3 where 1≤ i ≤ 4. Let the source vertex
be v0. If we place 10 pebbles on v1 then to cover the vertices in N(v1) it will cost 6 pebbles; to
cover v4 which is at the monophonic distance 2 it will cost 4 pebbles and there are no pebbles
to cover v1. Thus, γµ(U(Z5))≥ 11. Now let us prove γµ(U(Z5))≤ 11.

Case 1: Let v0 be the source vertex.
The vertex v0 is adjacent to every vertex. To cover N(v0) it will cost 8 pebbles and to cover
the source vertex one pebble is used. So with 8 pebbles we cover all the vertices of the graph.

Case 2: Let v2 be the source vertex.
The vertices in N(v2) are v0,v1,v4. To cover the vertices in N(v2) it will cost 6 pebbles; to cover
the vertex v3 which is at the monophonic distance 2 it will cost 4 pebbles and one pebble is used
to cover the source vertex. Thus, to cover all the vertices it will cost 6+4+1= 11 pebbles. By
symmetry the proof follows for the source vertices v1,v3,v4.
Hence, γµ(U(Z5))= 11.

Theorem 4.5. For U(Z6),γµ(U(Z6)) is 33.

Proof. Let V (U(Z6)) = {v0,v1,v2,v3,v4,v5}. Then, E(U(Z5)) = {v0v1,v0v5,v2v3,v2v5,v3v4,v4v1}.
Since U(Z6)∼= C6, by Theorem 3.1, γµ(U(Z6)) is 33.

Theorem 4.6. For U(Z7),γµ(U(Z7)) is 15.

Proof. Let V (U(Z7))= {v0,v1,v2,v3,v4,v5,v6}. Then, E(U(Z7))= {v0v1,v0v2,v0v3,v0v4,v0v5,v0v6,
v1v2,v1v3,v1v4,v1v5,v2v3,v2v4,v2v6,v3v5,v3v6,v4v5,v4v6,v5v6}. In resulting graph deg(v0) = 6
and deg(vi)= 5 where 1≤ i ≤ 6. If we place 14 pebbles on v1 then to cover the vertices in N(v1)
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it will cost 10 pebbles; to cover v6 which is at the monophonic distance 2 it will cost 4 pebbles
and there are zero pebbles to cover v1. Thus, γµ(U(Z7))≥ 15.
Now let us prove γµ(U(Z7))≤ 15.

Case 1: Let v0 be the source vertex.
The vertex v0 is adjacent to every vertex. To cover N(v0) it will cost 12 pebbles and one pebble
is used for the source vertex. Thus, we need 9 pebbles to cover all the vertices of the graph.

Case 2: Let v2 be the source vertex.
N(v2)= {v0,v1,v3,v4,v6}. To cover the vertices in N(v2) it will cost 10 pebbles; to cover the vertex
v5 which is at the monophonic distance 2 it will cost 4 pebbles and one pebble is used to cover
the source vertex. Thus, to cover all the vertices it will cost 10+4+1= 15 pebbles. By symmetry
the proof follows for the source vertices v1,v3,v4,v5,v6.
Hence, γµ(U(Z5))= 11.

Theorem 4.7. For U(Z8),γµ(U(Z8)) is 21.

Proof. Let V (U(Z8)) = {v0,v1,v2,v3,v4,v5,v6,v7}. Then, E(U(Z8)) = {v0v1,v0v3,v0v5,v0v7,v1v2,
v2v3,v2v5,v2v7,v1v4,v3v4,v4v5,v4v7,v1v6,v3v6,v5v6,v6v7}. In the resulting graph deg(v j) = 4
where 0 ≤ j ≤ 7 and U(Z8) is a complete bipartite graph with partite sets of sizes 4 and 4.
Let p(v0) = 20. To cover v2,v4,v6 which are at distance 2, we need 12 pebbles and to cover
v1,v3,v5,v7 which are in N(v0) we need 8 pebbles and there are zero pebbles to cover v0. Thus,
γµ(U(Z8))≥ 21.
Now we prove γµ(U(Z8))≤ 21.

Case 1: Let v1 be the source vertex.
N(v1) is {v0,v2,v4,v6}. To cover the vertices in N(v1) it will cost 8 pebbles; to cover v1 it will cost
one pebble and to cover v3,v5,v7 which are at the monophonic distance 2 it will cost 12 pebbles.
Thus, with 21 pebbles we could cover all the vertices. By symmetry the proof follows for the
source vertices v0,v2,v3,v4,v5,v6,v7.

Theorem 4.8. For U(Z9),γµ(U(Z9)) is 23.

Proof. Let V (U(Z9))= {v0,v1,v2,v3,v4,v5,v6,v7,v8}. Then, E(U(Z9))= {v0v1,v0v2,v0v4,v0v5,v0v7,
v0v8,v1v3,v1v4,v1v6,v1v7,v2v3,v2v5,v2v6,v2v8,v3v4,v3v5,v3v7,v3v8,v4v6,v4v7,v5v6,v5v8,v6v7,
v6v8}. In the resulting graph deg(v j)= 6, where j = 0,3,6 and deg(vk)= 5, where k = 1,2,4,5,7,8.
Let p(v1)= 22. Then, there will be 5 vertices at the monophonic distance 1 and 3 vertices at the
monophonic distance 2. Thus, to cover these vertices it will cost 5×2+3×4= 22 pebbles and
there are zero pebbles to cover v1. Thus, γµ(U(Z9))≥ 23.
Now we prove γµ(U(Z9))≤ 23.

Case 1: Let v0 be the source vertex.
N(v0) is {v1,v2,v4,v5,v7,v8}. To cover the vertices in N(v0) it will cost 12 pebbles; to cover v0 it
will cost 1 pebble and to cover the vertices v3,v6 which are at the monophonic distance 2 it will
cost 8 pebbles. Thus, to cover all the vertices in the graph it will cost 21 pebbles. By symmetry
the proof follows for the source vertices v3,v6.
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Case 2: Let v2 be the source vertex.
N(v2) is {v0,v3,v5,v6,v8}. To cover the vertices in N(v2) it will cost 10 pebbles; to cover v2 it will
cost 1 pebble and to cover the vertices v1,v4,v7 which are at the monophonic distance 2 it will
cost 12 pebbles. Thus, to cover all the vertices in the graph it will cost 23 pebbles. By symmetry
the proof follows for the source vertices v1,v4,v5,v7,v8.
Hence, γµ(U(Z9))= 23.

Theorem 4.9. For U(Z10),γµ(U(Z10)) is 81.

Table 7. Monophonic distance of all the vertices Z10

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 dµ(vi,v j)

v0 0 1 4 1 4 3 4 1 4 1 4

v1 1 0 1 4 3 4 1 4 1 4 4

v2 4 1 0 3 4 1 4 1 4 1 4

v3 1 4 3 0 1 4 1 4 1 4 4

v4 4 3 4 1 0 1 4 1 4 1 4

v5 3 4 1 4 1 0 1 4 1 4 4

v6 4 1 4 1 4 1 0 1 4 3 4

v7 1 4 1 4 1 4 1 0 3 4 4

v8 4 1 4 1 4 1 4 3 0 1 4

v9 1 4 1 4 1 4 3 4 1 0 4

Proof. Let V (U(Z10))= {v0,v1,v2,v3,v4,v5,v6,v7,v8,v9}. Then E(U(Z10))= {v0v1,v0v3,v0v7,v0v9,
v1v2,v1v6,v1v8,v2v5,v2v7,v2v9,v3v4,v3v6,v3v8,v4v5,v4v7,v4v9,v5v6,v5v8,v6v7,v8v9}. In the re-
sulting graph deg(v j) = 4 where 0 ≤ i ≤ 9. Let p(v0) = 80 and N(v0) is {v1,v3,v7,v9}. To cover
the vertices in N(v0) it will cost 8 pebbles; to cover v5 which is at the monophonic distance 3 it
will cost 8 pebbles; to cover v2,v4,v6,v8 which are at the monophonic distance 4 it will cost 64
pebbles and there are zero pebbles to cover v0. Hence, γµ(U(Z10))≥ 81.
Now we prove γµ(U(Z10))≤ 81.

Case 1: Let v1 be the source vertex.
N(v1) is {v0,v2,v6,v8}. To cover the vertices in N(v1) it will cost 8 pebbles; to cover the vertex v4

which is at the monophonic distance 3 it will cost 8 pebbles; from Table 7, to cover the vertices
v3,v5,v7,v9 which are at the monophonic distance 4 it will cost 64 pebbles and one pebble is
used to cover v1. Thus, to cover all the vertices in the graph it will cost 81 pebbles. By symmetry
the proof follows for the source vertices v0,v2,v3,v4,v5,v6,v7,v8,v9.

Theorem 4.10. If p is a prime number where p ≥ 3, then γµ(U(Zp)) is 2p+1.
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Proof. Let V (U(Zp))= {x0, x1, x2, . . . , xp−1}. The unit graph of Zp forms a connected graph with

E(U(Zp)) =
{
E(Kp)− {xixp−i} | i = 1,2, · · · , p − 1

2

}
. Moreover, deg(x0) = p−1 and deg(x j) = p−2

where j = 1,2, · · · , p − 1. In the resulting graph deg(v0) = p − 1 and deg(vi) = p − 2, where
1≤ i ≤ p−1. Let p(v1)= 2p. Now to cover the vertices in N(v1) it will cost 2p−4 pebbles and to
cover the vertex vp−1 which is at the monophonic distance 2 it will cost 4 pebbles and there are
zero pebbles to cover v1. Hence, γµ(Zp)≥ 2p+1.
Now we prove γµ(Zp)≤ 2p+1.

Case 1: Let v0 be the source vertex.
We see that v0 is adjacent to all vertices. Thus, the number of pebbles needed to cover all
vertices is 2p−1.

Case 2: Let v1 be the source vertex.
There will be p−2 vertices at monophonic distance 1 and one vertex at the distance 2. Thus, to
cover all the vertices it will cost 2(p−2)+4+1= 2p+1 pebbles. By symmetry the proof follows
for the source vertices v2,v3, · · · ,vp−1.

5. Conclusion
We determined the monophonic cover pebbling number of cycles, square of cycles, shadow graph
of cycles, complete graphs, Jahangir graphs, fan graphs, zero divisor graphs and unit graphs.
For the future research we can find the monophonic cover pebbling number of network-related
graphs, product graphs and prove the NP-completeness of monophonic cover pebbling number.
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