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Abstract. A function ψ :V→ {0,1,2} satisfying the requirement that each vertex x for which ψ(x)= 0
is adjacent to at least one vertex y for which ψ(y) = 2 is known as a Roman dominating function
(Rdf) on a graph. A Rdf’s weight is represented by the value ψ(y)=∑

x∈Vψ(x). The Roman domination
number (Rdn) of a graph G is the minimal weight of a Rdf on that graph. In this article, we establish
Rdn for the shadow distance graph of the path, cycle, and star graphs with predetermined distance
sets.
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1. Introduction
An outstanding historical account about the military prowess of the Roman empire serves as the
inspiration for the problem of Roman dominance (see ReVelle and Rosing [10], and Stewart [11]).
Constantine the Great established a new, comprehensive defense strategy that involved search
and motion of the legions throughout the Empire to defend the Roman empire’s enclave. There
has been a need to provide protection for areas vulnerable due of the Empire’s fourth century
energy reduction. The locality that had no legions had been considered insecure, whereas the
locality that had at least one legion had been considered secure. Unsecured areas can be escorted
by a legion deployed from a nearby location, however the motion of legions through new locality
is only permitted if the old zone is still escorted, i.e., if any other legion still resides there, a
legion may be transferred from one territory to a nearby one. For this reason, before a legion is
deployed to any other zone, at least two legions must be stationed at the comfortable area. This
motivated us to study the domination number in shadow distance graphs (Mekala et al. [9],
and Kumar and Murali [7]). Motivated by the ancient Roman empire’s fourth century proposal
of this military tactic, The Roman Domination Problem (RDP) first formally introduced by
Cockayne et al. [5] and more Roman domination was studied by Ahangar et al. [1,2], Chellali et
al. [4], Henning and Hedetniemi [6], and Beeler et al. [3].

Let G= (V,E) be a directionless and simple graph, a function ψ :V→ {0,1,2} fulfilling the
requirement that each vertex x for which ψ(x)= 0 is neighbor to a minimum of one vertex y for
which ψ(y)= 2 is known as a Roman dominating function (Rdf). A Rdf’s weight is represented
by the value ψ(y)=∑

x∈Vψ(x). The minimum weight of a Rdf on a graph G is called the Roman
domination number (Rdn) of G. The Rdn of G, outlined γR(G), is defined as the minimum value
of a Rdf γR(G)=min

ψ∈F
ψ(y), where F is the set of all Rdf.

The Roman Dominance Problem is a part of a major class of domination set problems which
has recently been the focus of extensive research. If each vertex in VD has a minimum of one
vertex in D, the set D⊂V is said to be dominating set. The domination number γ(G) is defined
as the minimum cardinality of the dominating set in G. In their study of the fundamental
characteristics of Roman dominant functions, Cockayne et al. [5] determined γR(G) for few
classes of graphs.

The shadow graph of G is created by taking two copies of G, G itself and G′, and attaching
each vertex x ∈G to its neighbour x′ ∈G′, denoted by the symbol D(G). The total distances in G

between unique twins of vertices are collected in D, and let DS ⊂D (known as distance set).
The distance graph of G is given by the symbol D(G,DS), and it has the same vertex set as G

with the vertices x and y being neighbors, whenever d(x, y) ∈DS. The shadow distance graph
(sdG) DSD(G,DS) is created from G under mentioned constraints (Kumar and Murali [8]):

(i) There having 2 copies of G, say G and G′.

(ii) If x ∈V(G), then x′ ∈V(G′) is used to represent the matching vertex.

(iii) The vertex set is V(G)∪V(G′).

(iv) The edge set is E(G)∪E(G′)∪EDS where EDS is the set of all edges between two unique
vertices x ∈V(G) and x′ ∈V(G′) that fulfill the constraint d(u,v) ∈DS.
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2. Main Results
The sdG associated with the path Pn, cycle Cn and star K1,n serves as the foundation for our
results.

Theorem 2.1. For n ≥ 3, γR(DSD{Pn, {1}})=
{

n+1, n ≡ 1 (mod3),
3⌈n

3 ⌉, n ≡ 0,2 (mod3).

Proof. Consider there are two instances of Pn, one of which is Pn directly and the other
represented by P ′

n. Let the vertices of Pn be x1, x2, . . . , xn and let the vertices of P ′
n be x′1, x′2, . . . , x′n.

Let the edges of the first copy of Pn be s1, s2, . . . , sn−1 and the edges of the second copy P ′
n are

s′1, s′2, . . . , s′n−1, where si = (xi, xi+1), s′i = (x′i, x′i+1) for i = 1,2, . . . ,n−1. Let G = (DSD{Pn, {1}}).
Then E(G)= {si}∪ {s′i}∪ {s( j),( j+1)′}∪ {s(k−1)′,(k)} where 1≤ i ≤ n−1, 1≤ j ≤ n−1, 2≤ k ≤ n.

Let ψ be a γR function with ψ= (X0, X1, X2), by definition with each u ∈ X0 will be adjacent to
atleast one vertex v ∈ X2.

Contemplate the following two cases:

Case I: n ≡ 0,2 (mod3), there exist a minimal Roman dominating set D= {v3a−1}, 1 ≤ a ≤ ⌈n
3 ⌉

with ψ(vi)= 2, vi ∈D. Hence γR(G)= 3⌈n
3 ⌉.

Case II: n ≡ 1 (mod3), there exist a minimal Roman dominating set D= {v3b−1}, 1≤ b ≤ ⌈n
3 ⌉−1

with ψ(vi)= 2, vi ∈D. Hence γR(G)= n+1.

Theorem 2.2. For n ≥ 3, γR(DSD{Pn, {2}})=


4n
5 , n ≡ 0 (mod5),(
n−⌊n

5 ⌋
)+1, n ≡ 1 (mod5),

4⌈n
5 ⌉, n ≡ 2,3,4 (mod5).

Proof. Consider there are two instances of Pn, one of which is Pn directly and the other
represented by P ′

n. Let the vertices of Pn be x1, x2, . . . , xn and let the vertices of P ′
n be x′1, x′2, . . . , x′n.

Let the edges of the first copy of Pn be s1, s2, . . . , sn−1 and the edges of the second copy P ′
n are

s′1, s′2, . . . , s′n−1, where si = (xi, xi+1), s′i = (x′i, x′i+1) for i = 1,2, . . . ,n−1. Let G = (DSD{Pn, {2}}).
Then E(G)= {si}∪ {s′i}∪ {s( j),( j+2)′}∪ {s(k−2)′,(k)} where 1≤ i ≤ n−1, 1≤ j ≤ n−2, 3≤ k ≤ n.

Let ψ be a γR function with ψ= (X0, X1, X2), by definition with each u ∈ X0 will be adjacent to
atleast one vertex v ∈ X2.

Let n ≥ 8, contemplate the following cases:

Case I: n ≡ 0 (mod5), there exist a minimal Roman dominating set D= {v5a−2}∪{v′5a−2}, 1≤ a ≤ n
5

with ψ(vi)= 2, vi ∈D. Hence γR(G)= 4n
5 .

Case II: n ≡ 1 (mod5), there exist a minimal Roman dominating set D = {v5b−2}∪ {v′5b−2},
1≤ b ≤ ⌊n

5 ⌋ with ψ(vi)= 2, vi ∈D. Hence γR(G)= (n−⌊n
5 ⌋)+1.

Case III: n ≡ 2 (mod5), there exist a minimal Roman dominating set D = {v5c−2}∪ {v′5c−2},
1≤ c ≤ ⌊n

5 ⌋ with fψ(vi)= 2, vi ∈D. Hence γR(G)= 4⌈n
5 ⌉.

Case IV: n ≡ 3,4 (mod5), there exist a minimal Roman dominating set D = {v5d−2}∪ {v′5d−2},
1≤ d ≤ ⌈n

5 ⌉ with ψ(vi)= 2, vi ∈D. Hence γR(G)= 4⌈n
5 ⌉.
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Theorem 2.3. For n ≥ 3, γR(DSD{Cn, {1}})=
{

3⌈n
3 ⌉, n ≡ 0,2 (mod3),

n+1, n ≡ 1 (mod3).

Proof. Consider there are two copies of Cn, one of which is Cn itself and the other indicated by
C′

n. Let the vertices of Cn and C′
n be represented by x1, x2, . . . , xn and x′1, x′2, . . . , x′n, respectively.

Let the first copy Cn of edges be s1, s2, . . . , sn. The edges of the second copy C′
n of are defined as

s′1, s′2, . . . , s′n, where si = (xi, xi+1) and s′i = (x′i, x′i+1) for i = 1,2, . . . ,n, where calculation is under
modulo n.

Let G=DSD{Cn, {1}}.

Let ψ be a γR function with ψ= (X0, X1, X2), by definition with each u ∈ X0 will be adjacent to
atleast one vertex v ∈ X2.

Let n ≥ 5, contemplate the following two cases:

Case I: n ≡ 0,2 (mod3), there exist a minimal Roman dominating set D= {v3a−2}, 1 ≤ a ≤ ⌈n
3 ⌉

with ψ(vi)= 2, vi ∈D. Hence γR(G)= 3⌈n
3 ⌉.

Case II: n ≡ 1 (mod3), there exist a minimal Roman dominating set D= {v3b−2}, 1≤ b ≤ ⌈n
3 ⌉−1

with ψ(vi)= 2, vi ∈D. Hence γR(G))= n+1.

Theorem 2.4. For n ≥ 4, γR(DSD{Cn, {2}})=


4n
5 , n ≡ 0 (mod5),(
n−⌊n

5 ⌋
)+1, n ≡ 1 (mod5),

4⌈n
5 ⌉, n ≡ 2,3,4 (mod5).

Proof. Consider there are two copies of Cn, one of which is Cn itself and the other indicated by
C′

n. Let the vertices of Cn and C′
n be represented by x1, x2, . . . , xn and x′1, x′2, . . . , x′n, respectively.

Let the first copy Cn of edges be s1, s2, . . . , sn. The edges of the second copy C′
n of are defined as

s′1, s′2, . . . , s′n, where si = (xi, xi+1) and s′i = (x′i, x′i+1) for i = 1,2, . . . ,n, where calculation is under
modulo n.

Let G=DSD{Cn, {2}}.

Let ψ be a γR function with ψ= (X0, X1, X2), by definition with each u ∈ X0 will be adjacent to
atleast one vertex v ∈ X2.

Let n ≥ 8, contemplate the following cases:

Case I: n ≡ 0 (mod5), there exist a minimal Roman dominating set D= {v5a−4}∪{v′5a−4}, 1≤ a ≤ n
5

with ψ(vi)= 2, vi ∈D. Hence γR(G)= 4n
5 .

Case II: n ≡ 1 (mod5), there exist a minimal Roman dominating set D = {v5b−4}∪ {v′5b−4},
1≤ b ≤ ⌊n

5 ⌋ with ψ(vi)= 2, vi ∈D. Hence γR(G)= (n−⌊n
5 ⌋)+1.

Case III: n ≡ 2 (mod5), there exist a minimal Roman dominating set D = {v5c−4}∪ {v′5c−4},
1≤ c ≤ ⌊n

5 ⌋ with ψ(vi)= 2, vi ∈D. Hence γR(G)= 4⌈n
5 ⌉.

Case IV: n ≡ 3,4 (mod5), there exist a minimal Roman dominating set D = {v5d−4}∪ {v′5d−4},
1≤ d ≤ ⌈n

5 ⌉ with ψ(vi)= 2, vi ∈D. Hence γR(G)= 4⌈n
5 ⌉.

Theorem 2.5. For n ≥ 3, γR(DSD{K1,n, {1}})= 3.
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Proof. We skip since it is simple to prove.

Theorem 2.6. For n ≥ 3, γR(DSD{K1,n, {2}})= 4.

Proof. The proof is obvious.

Acknowledgment

The first author expresses appreciation to the administration and personnel of the School of
Applied Sciences (Mathematics), REVA University, Bengaluru. The Dr. Ambedkar Institute of
Technology’s Management and Research Center in Bengaluru is also credited by the authors.

Competing Interests
The authors declare that they have no competing interests.

Authors’ Contributions
All the authors contributed significantly in writing this article. The authors read and approved
the final manuscript.

References
[1] H. A. Ahangar, A. Bahremandpour, S. M. Sheikholeslami, N. D. Soner, Z. Tahmasbzadehbaee and

L. Volkmann, Maximal Roman domination numbers in graphs, Utilitas Mathematica 103 (2017),
245 – 258.

[2] H. A. Ahangar, T. W. Haynes and J. C. Valenzuela-Tripodoro, Mixed Roman domination in
graphs, Bulletin of the Malaysian Mathematical Sciences Society 40 (2017), 1443 – 1454,
DOI: 10.1007/s40840-015-0141-1.

[3] R. A. Beeler, T. W. Haynes and S. T. Hedetniemi, Double Roman domination, Discrete Applied
Mathematics 211 (2016), 23 – 29, DOI: 10.1016/j.dam.2016.03.017.

[4] M. Chellali, T. W. Haynes, S. T. Hedetniemi and A. A. McRae, Roman {2}-domination, Discrete
Applied Mathematics 204 (2016), 22 – 28, DOI: 10.1016/j.dam.2015.11.013.

[5] E. J. Cockayne, P. A. Dreyer Jr., S. M. Hedetniemi and S. T. Hedetniemi, Roman domination in
graphs, Discrete Mathematics 278(1-3) (2004), 11 – 12, DOI: 10.1016/j.disc.2003.06.004.

[6] M. A. Henning and S. T. Hedetniemi, Defending the Roman empire — A new strategy, Discrete
Mathematics 266(1-3) (2003), 239 – 251, DOI: 10.1016/S0012-365X(02)00811-7.

[7] U. V. Kumar and R. Murali, Edge domination in shadow distance graphs, International Journal of
Mathematics and its Applications 4(2D) (2016), 125 – 130, URL: http://ijmaa.in/index.php/ijmaa/
article/view/1075/1059.

[8] U. V. Kumar and R. Murali, s-Path domination in shadow distance graphs, Journal of Harmonized
Research in Applied Sciences 6(3) (2018), 194 – 199.

[9] A. Mekala, U. V. C. Kumar and R. Murali, Bi-domination in brick product graphs, Journal of
Algebraic Statistics 13(2) (2022), 1954 – 1960, URL: https://publishoa.com/index.php/journal/
article/view/376/347.

Communications in Mathematics and Applications, Vol. 14, No. 4, pp. 1463–1468, 2023

http://doi.org/10.1007/s40840-015-0141-1
http://doi.org/10.1016/j.dam.2016.03.017
http://doi.org/10.1016/j.dam.2015.11.013
http://doi.org/10.1016/j.disc.2003.06.004
http://doi.org/10.1016/S0012-365X(02)00811-7
http://ijmaa.in/index.php/ijmaa/article/view/1075/1059
http://ijmaa.in/index.php/ijmaa/article/view/1075/1059
https://publishoa.com/index.php/journal/article/view/376/347
https://publishoa.com/index.php/journal/article/view/376/347


1468 Roman Domination in the Shadow Distance Graphs: K. Kallesh et al.

[10] C. S. ReVelle and K. E. Rosing, Defendens imperium Romanum: A classical problem
in military strategy, The American Mathematical Monthly 107(7) (2000), 585 – 595,
DOI: 10.1080/00029890.2000.12005243.

[11] I. Stewart, Defend the Roman empire!, Scientific American 281(6) (1999), 136 – 138, URL: https:
//www.jstor.org/stable/26058532.

Communications in Mathematics and Applications, Vol. 14, No. 4, pp. 1463–1468, 2023

http://doi.org/10.1080/00029890.2000.12005243
https://www.jstor.org/stable/26058532
https://www.jstor.org/stable/26058532

	Introduction
	Main Results
	References

