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Abstract. The dominating set D of the graph K = (V,E) is the independent dominating set (Ids),
the independent domination number i(K) of the graph K is the minimum cardinality of id. In this
article, we introduce the new independent degree domination (idd) of each vertices s € V(K), denoted
by d;4(s) and compute the Adriatic (a,b)-KA index for book graphs, cycle middle graphs and windmill
graphs.
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1. Introduction
Let K be a simple graph with vertex set V(K) and edge set E(K). The degree of independence

of d;q(s) of vertex s is the number of edges contained in s. The Ids of K are the dominating
and independent set in K. The independent domination number of K denoted by i(K) is
the minimum id size, and a(K) is the maximum id size of k.

For any vertex s € V(K), the independent domination degree (idd) ([4], [5], [[7], [13]]) denoted
by d;4(s) and defined as the number of minimal dominating sets of K which contain s. The degree
of an independent domination, both minimum and maximum are denoted 6;7(K) = §;4 and
N;g(K) = Ajq, respectively, where 6,5 = min{d;;(s) : s € V(K)} and A;g = max{d;;(s) : s € V(K)}.

The misbalance independent degree index [1]] of K is defined as

arK)= Y |dig(r)—dig(s)l.
rseE(K)

Minus F-index or nonzero Zagreb index [9] and Jahabani et al. in [8], is

MFEK)= Y, |dia(r)?—di(s)?|.
rseE(K)

The o index [6] of a graph K,
o®)= Y. [dia(r)—dias).

rseE(K)
The misbalance independent indeg index [14] of K defined as
1 1
a_1(K) = - _
rscBE) | did(r)  dig(s)

The misbalance independent irdeg index of K is defined as

« +(K) 1 1
1K) = -
2 rseB&K) | Vdia)  \/diq(s)

The misbalance independent rodeg index of K is
a1B)= ) Vdia(r) =V dias)l.
2 rseE(K)
The general independent minus index [10] of a graph K is defined as
M{(K)= Z [Id;iq(r) —diqa(s)I1°,
rseE(K)
where a is a real number.

The misbalance independent sdeg index [11] of a graph K is
1 1

s | diar?  dig(s)?|
The general independent misbalance deg index [12] of a graph K is
aK)= ) [dig(r)* —diqg(s)"1],
rseE(K)
where a = {-1,2,-1,1}.

a_o(K)=
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In [3], the Randic index, is

2
1 1
IRAK)= ) ( - ) :
rseBE)\ Vdia)  Vdia(s)
In [2], the IRB index of graph K is
IRBG)= Y (Vdig(r)—/dia(s)?.
rseE(K)
The Adriatic (a,b)-KA index and coindex of a graph K as

MEA, ,(K)= Y [dig(r)* —dia(s)*/1,
rseE(K)

MKAi,b(K): Y dig()® = dials)*11P.
rs¢E(K)

We easily see that
(i) a1(K)=MKA7(K),

(i) MF(K)=MEKA;j(K),
(iii) o(K)=MKA] ,(K),
(iv) a_1(K)=MKA!, (K),
V) a_y (&) :MKA{%J(K),
(v) ay(K)=MEA, |(K),

(vii) M{(K)=MKA] (K),

(viii) a_o(K)=MEKAL, (K),
(ix) aq(K)=MKA],(K),
(x) IRA(K) = MKAi%,Q(K),

(xi) IRB(K) = MKA? (K).
2

2. Main Results
We compute the (a,b)-KA index of book graph, cycle middle graph and windmill graph.

2.1 Book Graph

Let K = By is a book graph, there are two kinds of edges based on the idd of the end vertices of
each edges, as shown in Table

B, B,

Figure 1. Book graph of Bs, B4
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B, B,

5

Figure 2. Book graph of Bs, Bg

Table 1. Edge partition of book graph

diq(r), dig(s)rse E(G) | (f+1,1) | (f+1,f+1)
Number of edges 2f f

Theorem 2.1. Let K = B¢ be a book graph, then
MEKAL ,(K)=((f +1)* - 1*")2f .

Proof. Using definition and Table [1, we deduce

MEAL,(K)= Y [ldig(")* - digls)11°
rseE(K)

= ((f + D = 1) E1| + ((f + D* = (f + D*°) | Eo|
=((f+D*=19O2f +((F + D* = (fF + D) f
=((f+ D -19")2f . O
From Theorem Note the following results.
Result 2.1. (i) a1(K)=MKA](K)=2f7,

(i) MF(K)=MKA;j (K)=2f3+4f?,

(i) o(K)=MKA],(K)=2f>,

(iv) @ 1(K) = MEAL |, (K) = (7 -1)2f,

_ 1 N
(v) ()é_%(K)—MKA_%,l(K)—(\/m 1)2f,

(vi) ay(K)= MKA;I(K) =(/f+1-1)2f,
(vii) M3(K)=MKA} (K)=f°2f,
(viii) @ 5(K) = MKAL, | (K) = (5 - 1)2f,
(ix) aq(K)= MKA;,I(K) =((f + D% - 1)2f,

2
_ 1 N O
(%) IRA(K)—MKA_%’z(K)—(\/m 1) 2f,

(xi) IRB(K)=MKA] LK) = G/ +1-1)22f.
92
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2.2 Middle Cycle Graph

Let K = M(Cr) be a middle cycle graph, there are 3 types of edge based on idd of end vertices of
each edges as given in Table

Figure 3. Middle cycle graph

Table 2. Edge partition of middle cycle graph

diq(r), dig(s)rs e E(K) | (f=2,f=2) | (f=2,f-1) | (f -1,f-2)

Number of edges 2f 2f 2f

Theorem 2.2. Let K = M(Cy) be a middle cycle graph, then
MEKA, ,(K) = ((f =2)" = (f = D*I")2f +((f =D = (f ~2)*")2f .

Proof. Using definition and Table |2, we deduce

MEAL,(K)= Y [ldig(r)* —da(s)*[1°
rseE(K)

=((f =2)% = (f =2*1D)E1| + ((f =2 = (f = DY) |Eal + (I(f = 1)* = (f —2)*°)|E3]

=((f =20 = (f =21 2f + (I(f = 2)% = (f = D) 2f + (I(f = 1)* = (f —2)*°)2f

=((F = 2" = (f = DYO)2f +((f - D~ (f —=2)*°)2f . O
From Theorem We establish the following results.

Remark 2.1.
(i) a1(K)=MKA{,(K)=4f,
(i) MF(K)=MKA} (K)=|-2f +3|2f +12f —3|12f,
(i) o(K)=MKA],(K)=4f,

. _ 1 _ 4f
(iv) a 1K) = MKA!| |(K) = =7
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™) a_1(K)=MKA', (K)=
2 -3,1

- |+ | - en.
vi) ay(K)= MKAé’l(K) =IWFf-2-Vf-1UECH+IVF-1-/f-11@2f),
(vii) M{(K)=MEKA: (K)=4f,
(viil) a(K) = MKAL, ,(K) = | =253(f - 22| (4f),
(i) aq(K)=MKA] |(K)=|(f -2)* = (f = DU +I(f - D* = (f = 2)*(2[),
(x) IRA(K):MKA{lz(K)z(’ L -1 2)(2;f)+( - — 2)(2f),
27 (f-2)z  (f-12 (f-1D2z  (f-2)2

(xi) IRB(K) = MKA? (K)=(I(f -2 = (f =D +((F — D2 = (f -2 (2.
2

1 1

2.3 Windmill Graph

Let K = W];g be a windmill graph. By calculation, we find that K has (g —1)f +1 vertices and

% edges. In a windmill graph there are two types of edge based on independent degree (id)
of end vertices of each edges as given in Table

2

=1 O

Figure 4. Windmill graph of W2, W2

W;l W/35

Figure 5. Windmill graph of Wy, W2

Table 3. Edge partition of Windmill graph

diq(r), dig(s)/rse E(K) | (g-1,8-1) | (g-1,(g-1f)
(g—l)(zg—2)f

Number of edges (g—1)q

Theorem 2.3. Let K =W¢ be a windmill graph, then
MEKA; ,(K)=(I(g - D" - (g - D)) (g - f .
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Proof. Using definition and Table |3} we deduce

MKAi,b(K): Y [ldiq(r)® — dig(s)*(1°
rseE(K)

=(g-1D*—(g-DPIE11+((g - 1D = (g = D)?P) |E]

-1 -2
=(g-1)"—(g— 1)“@)% +(g- 1= (g - DA PP)g - Df
=((g- D"~ (g - D) °Ng-Df . 0

From Theorem We establish the following results.

Result 2.2. (i) a1(K)=MKA} (K)=((g-D-(g-Dg-Df,
(i) MF(K)=MKA;,(K)=((g-1"-(g-Dg?Ng-1f,
(i) o(K)=MKA],(K)=((g-1)~(g~-DI*g~-Df,
(iv) a1 (K)=MKA! (K)=(g-D'-(g- D) Ng-Df,
W) @ () =MEAL, (K)=(g-D7 (g~ D7 Ng-DF,
Vi) ay(K)=MKA} (K)=((g~D: - (g~ DN~ 1f,
(vii) M§(K) = MKAL (K)=(I(g - D~ (g~ D)I")g - DF,
(vili) @-2(K)= MKAL, (K)=((g— D2 -(g- D) 2NV,
(%) aq(K)= MKAL,(K)=(I(g - D%~ (g~ D)*I)(g - DF,
(0 TRAGK) =MKA!, (K)=(I(g= D7 (g~ Df)? Mg~ Df,

(xi) IRB(K)= MKA? (K)=(I(g— D% - (g - D)2 P)g - Df.
27

3. Conclusion

In this paper, the precise values for the independent degree domination indices number of book
graphs, middle graph of cycles and windmill graphs are computed.
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