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1. Introduction

Fixed point theory is an significant tool in study of nonlinear analysis. It is considered to
be the key association between pure and applied mathematics. It is also widely applied in
different fields of study such as Economics, Chemistry, Physics and almost all Engineering areas.
The contraction mapping principle, introduced by Banach [6] has wide scope of applications
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in fixed point theory. The Banach contraction principle has been extended and generalized
in distinct way by different researchers (see [5-22]). In 2014, Lin et al. [19] introduced the
concept of rectangular quasi metric space and proved fixed point theorem for the Meir-Keeler
contractive mappings. Also, Karapinar and Lakzian [15] acquaint (a,y)-contractive mapping
in rectangular quasi metric space and proved fixed point theorems for the maps introduced.
In 2015, George et al. [|12] declared the notion of rectangular b-metric space as a generalization
of b-metric space and rectangular metric space.

Recently, Alharbi et al. [3] defined (a)-contractive mapping and proved fixed point theorems
in rectangular b-metric space. Afterward, several research papers were published on the
existence of fixed point results for single valued and multi valued mappings in the setting of
rectangular quasi metric spaces. Very recently, Khuangsatung et al. [16] introduced the notion
() contraction mappings in complete rectangular quasi metric spaces and proved the existence
and uniqueness of fixed points.

2. Preliminaries

We present some definitions which will be useful in the sequel.

Definition 2.1 ([9]]). Let (X,d) be a b-metric space with coefficient s = 1 be a given real number.
A function d: X x X — R* is a b-metric space if and only if for all x,y,z € X, the following
conditions are satisfied:
(I) d(x,y)=0 if and only if x = y;
(II) d(x,y)=d(y,x);
(III) d(x,z) <sld(x,y)+d(y,2)].

The pair (X,d) is called a b-metric space.

Definition 2.2 ([8]]). Let X be a non empty set and d : X x X — R™ be a function satisfying the
following conditions:

(I) d(x,y)=0if and only if x = y;
(ID d(x,y)=d(y,x);
(IID) d(x,y)<d(x,u)+d(u,v)+d(v,y). for all x,y € X and all distinct point u,v € X/{x, y}.

Then d is called rectangular metric on X, and the pair (X,d) is called rectangular metric space.

Definition 2.3 ([12]). Let X be a non empty set, s > 1 be a given real number and d : X xX — R™
be a function satisfying the following conditions:

(I d(x,y)=0 if and only if x = y;
(ID) d(x,y)=d(y,x);
(I1I) d(x,y) <sld(x,u)+d(u,v)+d(v,y)], for all x,y € X and all distinct point u,v € X/{x, y}.
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Then d is called rectangular b-metric on X, and the pair (X,d) is called rectangular b-metric
space.

Inspired and motivated by the works of Karapinar and Lakzian [15]], Alharbi et al. [3] and
Khuangsatung et al. [16]], the main purpose of this paper is to introduce (a,y) contraction
mapping of quadratic type and establish fixed point results in the setting of rectangular quasi
b-metric spaces. Further, an application of our result is furnished.

3. Main Result

We introduce the following:

Definition 3.1. Let (X,d) be a rectangular quasi b-metric space and 7 : X — X be a given
mapping. We say that T is a generalized (a,¥)-contraction mapping of quadratic type if there
exist two functions a: X x X — R* and v € ¥ such that

a(x,y)d(Tx,Ty)<y(M(x,y)), forallx,yeX, (3.1)

where M(x,y) = max{d2(x,y),d(x, Tx)-d(y, Ty),d(x,Tx) - d(x,Ty)}.
Now, we state and prove the following fixed point theorem.

Theorem 3.2. Let (X,d) be a complete rectangular quasi b-metric space and T : X — X be
generalized (a,w)-contraction of quadratic type mapping. Suppose that

(I) T is an a admissible mapping;
(I1) there exists xo€X such that a(xg, Txo)=1, a(Txg,x0)=1, alxe, T?x0)=1and a(T?xq,x0)=1;

(ITI) T is continuous.
Then T has a fixed point.

Proof. By (ii) above, there exists xg € X such that a(xg,Txg) =1 and a(Txy,x0) = 1. Now, we

produce sequence {x,} in X by x,41 = Tx, = T""!

x0, for all n = 0. Suppose that x,, = x,,,, for
some ng = 0. Since T'x,, = xp,+1, the point u = x,,, forms a fixed point of 7. That completes the
proof. We assume that x, # x,+1 for all n = 0.

Since T is a a-admissible, we have a(xg,x1) = alxg, Txo) =1 = a(Txog,Tx1) = alx1,x2) = 1.

Applying the expression above, we obtain that

alx,,xn+1)=1, foralln=0,1,2,... (3.2)
and

a(x1,x0) = a(Txg,x0) = 1 implies a(Tx1,Txg) = alxg,x1) = 1.
We obtain

alxp+1,%,)=1, foralln=0,1,2,.... (3.3)
Likewise, we derive that

alxg,x2) = a(xo,T2x0) =1 implies a(Txg, Tx2) = a(x1,x3) = 1.
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Recursively, we get
a(xy,xni9)=1m foralln=0,1,2,.... (3.4)
Similarly, we can easily derive that
a(xpi9,%,)=1, foralln=0,1,2. (3.5)
Step 1: We show that
gllglod(xn,xn+1) =0= r}i_%lod(xn+1,xn)
and
r}il{}od(xn,xn+2) =0= r}I—»I& d(xn+2,%n).
from (3.1I), we have
d(xn,xn+1) = d(Txp-1,%n)
< alxp,,x,)d(Txy,, Txp)
<y (M(xy,,x,)), foralln=1, (3.6)
where
M(x,y)= max{d2(x,y),d(x, Tx)-d(y,Ty),d(x,Tx)-d(x,Ty)},
M(x-1, %) = max{d*(tp_1,%n),d(n-1, Txp-1) dCtn, T),d(@n-1, Ton-1) - d(xn—1, Ttn-1)}
= max{d*(xp-1,%n), d(Xn-1,%n) - AXn, X +1), d(Xn-1,%n) - A (X -1,%n)}
= max{d*(xp-1,%n), d(Xn-1,%n) - A(%n, X 41),d(Xn-1,%n) - A (X1, %5)
= max{d*(¥n—1,%n),%n), d(Xp—1,%n) - d(Xp, Xn+1)}
= max{d2(xn_1,xn),dz(xn,xn+1)}.
If M(x,,—1,%n) = d?(xp,%n+1), then from (3.6), we get
d*(n, %n+1) < Y(d*(@n, Xn+1))
<s Y(d*(xn,%n+1))
< d* (@, %n+1),
which is a contradiction. Hence, M(x,_1,%,) = d?(xp_1,%n).
We let e, = d?(xn,%n+1),1n = d?(Xn41,%0), 5 = d?(xy,%n+2) and 1} = d?(x,42,%,), for all n > 0.
By using (3.6), we get
en =d*(xn,%n+1)
= d*(Txp-1,Txn)
< Y(d*(%n-1,%n))
= Y(d*(Txp-2, T%p-1))

< p%(d*(xp_2,%n_1))

<™ (d?(xo,x1)) = ¥"(eg) — 0 as n — oo. (3.7)
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Also,
Ly =d*(xns+1,%n)
= d*(Txp, Txn-1)
< &, % -1)d* (T, Tp-1)
<y(M(x,,x,-1)), foralln=1, (3.8)
where
M (xn,%p-1) = max{d”(n, 2n-1), d (%, Txn) - (@1, Txn-1),d(n, Tn) - d(n, Ttn-1)}.
We deal with three different cases as follows:
Case (i): If M(x,,%xp-1) = d%(x,,—1,%5) then using (3.8), we get
d*(n+1,%n) < Y(d*(Xn-1,%5))
<y"™(d*(x0,%1))
=y"(eg) — 0 as n — oo.
Case(ii): If M(x,,,x,_1) =d(xp,Tx,)-d(x,,_1, Tx,_1), then using (3.8), we get
d?(p+1,%n) < YA (X0, %p41))
< y"(d*(x0,%1))
=y"(eg) — 0 as n— oo.
Case(iii) If M(x,,,x,-1) =d(x,,Tx,) - d(x,,Tx,_1) then using we get
Ln = dX(xp+1,%,) = d*(Tx, Txp-1)
< y(d(xp,%,-1)
= Y(d*(Txp-1,Txn —2)
< YHd*(Xn-1,%n-2))

< w"(d®(x1,%0))
=" (ly) — 0 as n — oo.

From Case (i)-Case (iii), we get

I, =d?*(xpi1,%,) — 0 as n — oo. (3.9)
From (3.7) and (3.9), we deduce that
lim d*(xn, %041) = 0= lim d®(en+1,%0)- (3.10)

Now, we show that
lim d%(xp,,%p42) = 0= lim d%(x,+9,%5).
n—oo n—oo

Also,

2
e; =d (2, %n+2)
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= d*(Txn-1,T%n+1)
< a(@n-1,%n41) - d*(Txp-1, Txp 1)
<w(M(xp-1,%n+1)), foralln=1, (3.11)
where
M(xn-1,%n+1) = max{d®(Xn—1,%041), d(xn-1, Tp-1) - d(xn 1, Tp 1),
dxn-1,Txn-1)-dxn+1, Txn+1)}
= max{d*(xp-1,%7+1), A(%n-1,%n) - AXp41,%042), AXp-1,%0) - d(Xn 11, %n+2)}
= max{d®(xn-1,%n+1), d(*n—1,%n) - AXn+1,Xn+2)}.
Again, we deal with three different cases as follows:
Case (i): If M(x,,%p-1) = d2(xXn—1,%n+1), then using (3.11), we get
d*(xn,%n+2) < Y(d*(Xn-1,%n+1))
<" H(d*(x0,%2))
=y" e}) — 0 as n— co.
Case (ii): If M(x,,,x,-1) =d(x,_1,%n) - d(xps1,%n+2) then using (3.11), we get
d? (o, Xn+2) < W(d(n-1,%0) - d(Xp41,%n42))
<" (d(x0,%1))
=y" Yeg) — 0 as n — oco.
Case (iii): If M(x,,_1,%n+1) = d(xpn_1,%,) - d(xXy4+1,%n+2) then by (B.11), we get
d*(xp, Xn+2) < Y(A*(Xn41,2n+2))
< 9" (d(xo,%1))
=" (eg) —~0asn —oo
From Case (i)-Case (iii), we get

e, = d?(xy,%n19) — 0 as n — oo. (3.12)

d*(p+2,%n) = d*(Txp 1, Txn-1)
< (% +1,%0-1)d*(Txn 11, TXn-1)
<vy(M(xp+1,%n-1)), foralln=1, (3.13)
where
M(xn41,%-1) = max{d(xp+1,%n-1), d®n+1, Tn+1) - d (-1, Txn-1),
d(xp11, Txp+1) - d(xpy1, Txp-1)}
= max{d®(¥n+1,%n-1), dXn+1,Xn+2) - d(@Xn-1,%2), d(Xn+1,Xn+2) - d(@n11,%7)}
= max{d®(tp+1,%n-1), d(n+1,Xn+2) - dtn—1, %), d(ns1, Xn+2) A (ns1, X0}

Again, we deal with three different cases as follows:
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Case (i): If M(xy41,%n-1) = d2(%n+1,%n-1) then using (3.13), we get
d®(xn+2, %) < YA (@n11,00-1))
< " H(d(xg,%0))
=y"*(15)— 0 as n — oco.
Case (ii): If M(x,,11,%5-1) = d(Xp4+1,%n+2) - d(x,_1,%,) then using (3.13), we get
d*(xp+2,%0) < Y(d*(Xn41,2n+2))
<" H(d*(x0,%1)
=y" (eg) — 0 as n — co.
Case (iii): If M(x,41,%n-1) = d(xn+1,%Xn42) - d(xn+1,%,) then using (3.13), we get
d*(@p42,%0) < YA (Xn-1,%7))
<" (d®(x0,%1))
=y" L(eg) — 0 as n — 0. (3.14)
From and (3.14), we deduce that

lim d%(xp,,%p42) = 0= lim d%(x,+9,%,).
n—o0o0 n—0o0

Step 2: We shall prove that {x,} is a rectangular quasi b-Cauchy sequence, that is,
lim d*(x, %n4p) = 0= im d*(xpsp,xs), forall peN.
Case (i): Suppose that for some n,m € N with m > n and x, = x,,,, using (3.10),
d*(n, %n+1) = d*(n, Tn)
= d*(m, Txm)
= d”(m, %m+1)
<y (d* (%, %n+1))
< sy(d*(xn, %n+1))
< d*(%n,%n+1),

which is a contradiction.

Case (ii): Suppose that for some n,m € N with m > n, and x, = x,,,, using (3.10),
d*(Xm+1,%m) = A*(T X, %m)
= d*(Txy, %)
= d*(xp+1,%5)
<" (d*@m11,%m))
< sY(d*(Xm+1,%m))
< d*(m+1,%m);

which is a contradiction.
Therefore, from Case (i) and Case (ii), x, # x,, for n # m. The case p =1 and p = 2 is proved.
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Now we take p = 3; arbitrary. We discriminate four different cases as follows:
Case (i): Let p = 2m, where m = 2. By rectangular inequality, we get
A2, Xn49m) < S[A2(Xn, ¥n+2) + 8A2(Xn 49, Xn+3) + 5A2 (%43, Xn+2m)]
< 8d*(xn, Xn+2) + SA*(Xn+2,Xn+3) + SA*(Xn+3, Xns2m)
+ 82[xn+3,xn+4) +d(xn14,%n15) +d(Xn15,Xn12m)
= 5d(xp, Xn+2) + A (Xn+2,%n+3) + °d* (Xn13,%n+4) + 57 A (Xn14,Xn+5)

2 42
+s°d (xn+5axn+2m)

2 3 72 4 72
<sd (xn,xn+2)+3 d (xn+2axn+3)+3 d (xn+3axn+4)

5 42 2 2
+s°d (xn+4axn+5)+3 "d (xn+2m—1>xn+2m)

n+2m-1

= sd®(Xn, %ns2)+ Y. SFTEA2 (g, xp41)
k=n+2
n+2m-1
<sd*(n,xns2)+ Y. s'yteo)
k=n+2
2 ko k
=sd“(xp,%n+2)+ Z s“y”(ep).
k=n+2
From (3.14),
lim d*(xp,%n+2) =0
n—oo
and
(o]
Z skwk(eo) —0asn—oo.
k=n+2
Therefore,

lim d?(x,,%,.9) = 0.
n,m—oo

Case (ii): Let p =2m + 1, where m = 1. By rectangular inequality, we get
d*(n, Xnszm+1) < S[A*@n, Xn 1) + 8d* (W41, %n12) + A (X2, Xn42m+1)]
< 5d%(xn, % +1) + 8d%(Xp 41, %n12) + A% (41, Xn+2) + 52> (Xp 49, X0 +3)

2 72 2 72
+5°d“(xXp+3,%n+4) +8°d(Xp+4,Xn+2m+1)]

2 2 32
<sd“(xp,Xn+1) +8°d"(Xp+1,%n+2)

82m+1d2

3 72 4 42
+8°d“(xp42,%n43) +8 d(Xn+3,Xn14) ... + (Xn+2m>Xn+2m+1)

n+2m

— 1 42
= Y P AR, 041
k=n

n+2m

E: sk—n+luﬁ(eo)
k=n
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n+2m

> s*yteo)
k=n

IA

(e,0)
Z skt//k(eo) —0asn—oo.
k=n

Thus, we obtain

dz(xn,xn+2m+1) =0.

Case (iii): Let p =2m, where m = 2. By rectangular inequality, we get
2 2 2 2
d°(Xp+2m,%n) < sld“(Xnt2m, Xnr2m—-2) + A (Xn12m—-2,Xn+2m-3) + 8d°(Xp+2m-3,%5)]
2 2 2 72
<sd (xn+2m,xn+2m—2) +sd (xn+2m—2axn+2m—3) +s°d (xn+2m—3,xn+2m—4)

2 42 2 72
+8°d“(xp+2m—1,Xn+2m-5) + 8 d“(Xp+2m—5,%n)

n+2m—2d2

2
<sd“(Xp+2m,Xn+2m-2) +5 (Xn+2m-2,%n+2m-3)

n+2m—4d2

n+2m-3 32
+s d“(Xp+2m-3,%n+2m-4) +8 (Xn+2m—4,Xn+2m-5). ..

+Sn_1d2(xn—17xn)
9 n+2m-1 b .2
=8d"(Xn+2m>Xn+2m-2) + Z s"d*(xp,xp+1)
k=n-1
n+2m-1

SSdz(xn+2m:-7Cn+2m—2)"‘ Z Skwk(lg)
k=n-1

< 5d%(Xns2m,Xnsom—2)+ Y. sPyrQY).

k=n-1
Since
© k. k
lim  d2(xp42m,%n+2m—2) =0 and Y s*y"(l§)— 0asn— oo,
n,m—oo
k=n-1
we have
lim  d%(xp49m,%n) = 0.
n,m—oo

Case (iv): Let p =2m + 1, where m = 1. By the rectangular inequality, we get
2 2 2 2
d (xn+2m+1axn) <sld (xn+2m+17xn+2m) +sd (xn+2m7xn+2m—1) +sd (xn+2m—1,xn)]
2 2 2 72
< sd*(Xp+2m+1,Xn+2m) + A (Xn12m,Xn+2m-1) + 8 d“(Xp+2m-1,%n+2m—-2)
2 72 2 72
+8°d"(Xnr2m—2,Xn+2m-3) +8 A" (Xn12m—3,%n)
2 2
=sd“(Xn+2m,Xn+2m-2) + A" (Xp19m, Xn+2m—1)
2d2 2d2 2d2
+38 (Xn+2m-1,Xn+2m-2) +5 (Xn+2m-2,%n+2m-3) +5 (Xn+2m-3,%n)

< Sn+2m—1d2 n+2md2

(xn+2maxn+2m—1)
n+2m—2d2

(Xn+2m+1,Xn+2m) +58

+ Sn+2m—1d2

(Xn+2m-1,Xn+2m-2) +8 (Xn+2m-2,Xn+2m-3)...
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+1 42
+8" d (%41, %)

n+2m

k 32
= ) s*d*(xp+1,%0)
k=n+1
n+2m

— Z Sk_n+11[/k(l0)
k=n+1
n+2m

= Y sfvtao

k=n+1

(o0}
< Z skwk(lo) —0asn—oo.
k=n+1
Thus, we obtain

d*(@pr2m+1,%n) = 0.
Finally, from Case (i)—Case (iv), we get

lim dz(xn,xn+p) =0=lim d2(xn+p,xn), for all p = 3.
n—oo n—oo

Thus, {x,} is a rectangular quasi b-sequence in (X, d).
Since X is a complete rectangular quasi b-metric space, there exists u € X such that

lim 2, =, ie, lim d*(x,,u)=0= lim d*(u,x,). (3.15)

Now, we show that u is a fixed point of T'.

Since T is a continuous, from (3.15), we have u = lim x,,,1 = lim Tx, = T(lim x,) = Tu,
n—oo n—oo n—oo

which gives Tu = u. Thus u is fixed point of T'. O

Now, we provide the succeeding fixed point theorem by withdraw the continuity supposition
of T from Theorem

Theorem 3.3. Let (X,d) be a complete rectangular quasi b-metric space and T : X — X be
generalized (a,v)-contraction mapping. Suppose that

(I) T is an a admissible mapping;
(I1) there exists xo € X such that a(xy, Txo) =1, a(Tx,x0) =1, alxo, T?x9) =1 and
a(T%(x0,%0)) = 1;

(I1I) if {x,} is a sequence in X such that a(x;,,x,+1) for all n =0 and x, - x€ X as n — oo, then
a(x,,x)=1, for all n=0. Then, T has a fixed point.

Proof. Succeeding the proof of Theorems we know that the sequence {x,} defined by
Xn+1 = Txy, for all n =0 is a rectangular quasi b-convergence to a point u € X. It is sufficient to
show that T' acknowledge a fixed point. By rectangular inequality property of v, and (iii), we
have

d%(u, Tu) < sd®(u,x,) + $d>(xn, %n4+1) + $d*(xp+1, T0)
= sdz(u,xn) + sdz(xn,xn+1) + sdz(Txn, Tu)

< sdz(u,xn) + sdz(xn,xn+1) +salx,, u)d2(Txn, Tu)
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< sdz(u,xn)+sd2(xn,xn+1)+st(xn,u),
where
M(x,,u) = max{dz(xn,u),d(xn,an)-d(y,Ty),d(x,Tx)-d(x,Ty)}
= max{dQ(xn, u),d(x,,Tx,)-d(y,Ty),d(x,Tx)-d(x,Ty)}
= max{d®(xn, u),d (%, Txy) - d(u, Tu),d (xp, Txs) - (o, Tw)}.
We deal with three different cases as follows:
Case (i): If M(x,,,u) = d?(x,,u), then using (3.16), we get
d%(u,Tu) < sd®(u,x,) + sd?(xp, Xns1) + sW(d2(w, xp))
< sd(u,x,) +sd?(xp, Xni1) + (d2(w, x,)).
Letting n — oo in the above inequality, from and (3.15), we get d*(Tu,u) <O0.
Case (ii): If M(x,,u) =d(x,,xn+1) - d(u,Tu), then by (3.16), we get
d%(u, Tu) < sd®(u,x,) + sd®(xXn, xn+1) + S2W(d (2, X s1))
< sd®(u,xp) + sd (%, %n+1) + (d2 (%0, %011)).
Letting n — oo in the above inequality, from and (3.15), we get d%(u, Tu) <O0.
Case (iii): If M(x,,u) =d(x,,Tx,) d(x,, Tu), then by (3.16), we get
d%(u, Tu) < sd®(u,x,) + sd®(xy, Xn+1) + sw(d2(xp,, Tw))

< sd?(u,x,) + sd?(xp, xp+1) + (d2(xn, TW)).

(3.16)

Letting n — oo in the above inequality, from (3.10) and (3.15), we get 0 <0, which is trivial.

Clearly, d%(u,Tu) = 0, from Case (i)-Case (iii), we obtain
d*(u,Tu) =0.
Also,
d*(Tu,u) < sd*(Tu,x,) +sd* (%, Xns1) +5d>(Xn41,0)
= sdz(Tu,Txn_l)+sd2(xn,xn+1)+sd2(xn+1,u)
< sa(u,xn_l)d2(Tu,Txn_1)+sd2(xn,xn+1)+sd2(xn+1,u)
< sY(M(u,%n-1)) +5d*(Xn, Xn+1) + 5d*(Xp41,1),
where
M(u,x,_1) = max{d2(u,xn_1),d(u,Tu)-d(xn_l,Txn_l),d(u,Tu)-d(u,Txn_l)}
= max{d(u,x,-1),d(w, Tu) - d(xn-1,%,),d(w, Tw) - d(u,x,)}.
Again, we deal with three different cases as follows:
Case (i): If M(u,x,_1) = d?(u,x,—1), then using (3.18), we get
d*(Tu,u) < sy(d*(u,%n-1)) +5d* (%, %n 1) + A (41,1

<d®(u,xp_1)) +5d2 (2, %p 1) + A2 (11, 0).
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Letting n — oo in the above inequality, using from and (3.15), we get d%(u, Tu) <O0.
Case (i): If M(u,x,_1)=du,Tu)-d(x,_1,%,), then by (3.18), we get
d*(Tu,uw) < sy(d(u, Tw)d(xn-1,%,)) + sd(w, Tw) d(xp_1,%,) + sd*(xn, u)
<d(u,Tu) d(xp-1,%n)) +8d(Xn_1,%5) + 5d(xn, u).
Letting n — oo in the above inequality, using and (3.15), we get
d*(u,Tu) <0.

Case (iii): If M(u,x,-1) =d(u,Tu)-d(u,x,), then (3.18), we get
d*(Tu,u) < sy(d(u, Tu)d(u,x,)) +5d>(xp, xn+1) + sd2(Xn 41, 1)
<d(u,Tu)-d(u,x,))+sd(w,x,) +sd?(xp11,1).

Letting n — oo in the above inequality, using (3.10), (3.15) and (3.17), we get 0 < 0 which is
trivial. Clearly, d%(T'u,u) = 0, from Case (i)—Case (iii), we obtain

d*(Tu,u)=0. (3.19)
From (3.17) and (3.19), it follows that d?(u,Tu) = 0 = d?(Tu,u). So that, Tu = u. Thus u has a
fixed point of T'. O

To confirm the uniqueness of fixed point of 7', we will consider the following condition.

Property U. For all x,y € Fix(T), we have a(x,y) =1 and a(y,x) =1, where Fix T denotes the
set of all fixed points of T'.

Theorem 3.4. Adding property U to the hypothesis of Theorem (resp., Theorem one
obtain uniqueness of the fixed point of T.

Proof. From the proofs of Theorem [3.2| and Theorem Fix (T') # ¢. Suppose that u and v are
two distinct fixed points of T'. By property U, a(Tu,Tv) = a(u,v)=1 and a(Tv,Tu) = a(v,u) = 1.
Thus, by a-admissibility of 7' and the above relation, we obtain

d%(u,v) < a(u,v)d?*w,v) = a(Tu, Tv)-d*(u,v) < w(M(u,v)),
where
M(u,v) = max{d2(u,v),d(u,Tu)-d(v,Tv),d(u,Tu)-d(u,Tv)}
= max{d2(u,v),d(u,u)-d(v,v),d(u,u)~d(u,v)}
= max{dz(u,v)}.
Since sy(t) < t, for all £ >0, and the inequality above, we get
d%(u,v) < w(d?(u,v)) < sy(d?(u,v)) < d*(u,v), (3.20)
which is a contradiction. Similarly,

d%(v,u) < a,w)d?w,u) = a(Tv, Tw)-d*(v,u) < y(M(@,un)),

Commaunications in Mathematics and Applications, Vol. 15, No. 1, pp. [445 , 2024



A New Fixed Point Theorem for Generalized (a,w)-Contraction Mapping. .. : R. Tiwari and N. Sharma 457

where
M(v,u)= max{dz(v,u),d(v,Tv)~d(u,Tu),d(u,Tv)'d(u,Tu)}
= max{d?(v,u),-d(,v)-d(u,u),dw,u) -d,u)}
= max{d?((v, u))}.
Since sy(t) < t, for all £ >0, and the inequality above, we get
d%(w,u) < w(d?(v,u)) < sy(d?(v,u)) <d?(v,u), (3.21)

which is a contradiction. From (3:20) and (3.21), we get that d?(u,v) = d?(v,u) = 0. Therefore,
u=uv.
Thus T has a unique fixed point. O

Corollary 3.5. Let (X,d) be a complete rectangular quasi b-metric space and T : X — X be an
(a,y)-contraction quadratic type mapping, that is,

alx,y)dX(Tx, Ty) < ¥(d?(x,y)), forallx,yeX.
Then T has a fixed point.

Remark 3.6. By taking s =1 in Corollary we get similar results of Karapinar [[13] and
Lakzian [18] in quadratic version.

Proof. The results follows by taking M(x, y) = d?(x, y), for all x, y € X in the proof of Theorem
(or Theorem [3.3). O

Remark 3.7. By taking s =1 in Corollary[3.5] we get the works by Khuangsatung et al. [16] in
quadratic form as follows:

Corollary 3.8. Let (X,d) be a complete rectangular quasi b-metric space and T : X — X be a

continuous quadratic type mapping if there exists function v € V¥ such that
dX(Tx,Ty)<¥(d?(x,y)), forallx,yeX.
Then T has a unique fixed point.

Proof. The results follows by taking a(x,y) =1 and M(x, y) = d(x, y), for all x, y € X in the proof
of Theorem 3.2 [

Corollary 3.9. Let (X,d) be a complete rectangular quasi b-metric space and T : X — X be a
continuous quadratic type mapping. Suppose that there exists k €[0,1) such that

d®(Tx,Ty) < k(d?(x,y)), forallx,yeX.
Then T has a unique fixed point.

Proof. The results follows by taking w(t) = kt, where k €[0,1) and ¢ = 0 in Corollary O
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4. Application to Integral Equation

In this section, we provide an existence theorem for a solution of the following integral equation,

1
x(t):f K@, r,x(r)) dr, (4.1)
0

where K :[0,1] x[0,1] x R — R is continuous functions.
Throughout this section, let X = (C[0,1],R) be the set of real continuous functions defined
on [0,1]. Take the rectangular quasi b-metric d : X x X — [0,00) given by

e = W% oo+ lxlZ, ifx#y,
d(x,y) = { Y ) Y
, ifx=y,
where
lulloo = max |u(s)|, forallueX.
rel0,1]

It is know that (X, d) is a complete rectangular quasi b-metric space s = % Now we prove the
following result.

Theorem 4.1. Suppose the following hypotheses hold

(I) there exists k €(0,1) and g: X x X — [0,00) such that for all x,y € X with x(t) < y(t) for all
t €10,1] and for every r €[0,1], we have

0<|K(t,r,x(r)—-K(t,r,y(r)l < gt,r)lx—r|,

and

1
sup f g(t,r)dr==k.
t€[0,11J0

(II) K is a non-decreasing in its third variable;

(ITI) there exists xg € X such that for all t €[0,1], we have
1
xo() < f K(t,r,x0(r)dr
0
and
1 1
x0(t) Sf K(t,r,f K(t,r,xo(r)dr) dr.
0 0

Then (4.1) has a solution in X.

Proof. For all x€ X and ¢ €[0, 1], acquaint the mapping T : X — X by T«x(¢) = folK(t,r,x(r))dr,
and a: X x X —[0,00) by

1, ifx<y,

0, otherwise.

alx,y) = {

Take yw(t) = kt, so y(t) < ﬁ (since s = %). We give x,y € X, x <y if and only if x(¢) < y(¢), for all
t€[0,1]. Let x,y € X such that a(x,y) =1, so x <y, hence x(¢) < y(¢) for all ¢ € [0,1]. Thus, by
condition (i),

1
ITx(t) - Tyt)? < f \K(t,r,x,—K(t,r,y2dr
0
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1
Sfo g(t,r)lx(r)—y(r)lzdr

1
_ fo gt/ (r) — y(r)Yidr
< k= .

Again,
1
Tx(t)? < f K (2,7, %, 12dr
0

1
< f g(t,Plx(r)2dr
0

< k2||x||%..
We deduce that for all x,y € X with x <y,
d*(Tx-Ty) = I Tx(t) - Ty@l 5 + IxlIZ,

<kl - ylls, + £ llxl,

< k2d%(x,y)

= y(d*(x,y))

=yp(M(x,y)).
Since K is non decreasing in its third variable, so for all x,y € X with x < y, we get
T2x(t) < T?y(¢t) for all ¢ € [0,1], that is if a(x,y) = 1, we obtain a(Tx,Ty) = 1. Furthermore
the condition (iii) yields that there exists xg € X such that a(xg,Tx¢) = 1, a(Txg,x0) =1 and

al(xo, T?x¢) = 1 and a(T?x,x0) = 1. Therefore, all conditions of Theorem are confirmed with
§= % and hence T has a fixed point, which is a solution of (4.1) in X. O
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