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1. Introduction

An almost contact manifold is an odd-dimensional manifold M?"*! which carries a field ¢
of endomorphism of the tangent space, a vector field ¢ called characteristic, and a 1-form
n-satisfying:

¢*=-I+ne, n@=1, (1.1)
where I denote the identity mapping of tangent space of each point at M. From (1.1), it follows:
¢&=0, no¢p=0, rank(p)=_2n. (1.2)

An almost contact manifold M2"*1(¢,¢,n) is said to be normal if the tensor field N =
[, Pl +2dn®¢ =0, where [¢, @] denote the Nijenhuis tensor field of ¢. It is well known that any
almost contact manifold M- 2"+1((/>, ¢,n) has a Riemannian metric such that

g(Y1,¢0Y2) = g(Y1,Y2) —n(Y1)n(Y2), (1.3)
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for any vector fields Y1,Ys on M (Carriazo and Martin-Molina [4]). A metric g satisfying these
conditions is termed a compatible metric. When manifold M2"*1, along with the structure
(¢,n,¢,8), possesses this property, it is termed an almost contact metric manifold, denoted
as H2”+1(¢,n,£,g). The 2-form @ of M2”+1(<p,n,£,g) is defined as ®(Y1,Y2) = g(¢Y1,Y2) and is
referred to as the fundamental form of M 2n+tl(p,n,¢&, g). If an almost contact metric manifold
satisfies the conditions where both 1 and ® are closed (i.e., dn = d® = 0), then it is termed a
cosymplectic manifold (Dacko and Olszak [7]).

An almost a-cosymplectic manifold is a manifold defined for any real number a,
characterized by the following properties:

dn=0, d®=2ann®. (1.4)

A normal almost a-cosymplectic manifold is referred to as an a-cosymplectic manifold.
This terminology is used when an almost a-cosymplectic manifold satisfies certain additional
conditions or possesses specific properties that make it fully a-cosymplectic (Hamilton [8]).

On a contact metric manifold M 2’”1((/),6 ,1,8), where the tensor A is defined as 2h = L¢¢,
the following inequalities hold:

Vy, & =—¢pY1—dhY1, hdp+¢ph=0, trh=tr¢ph=0, hé=0, (1.5)
where V is the Levi-Civita connection on M2"*1 (Catino and Mazzieri [5]).
In Hamilton [8], the authors investigated almost a-cosymplectic (x, i, v)-spaces, exploring
various conditions and provided an example within a three-dimensional setting.
Expanding on the concept beyond generalized (x, u)-spaces, in Ye [13], the notion of (x, u,v)-

contact metric manifold was introduced. It is described as follows.
The equation is given as:

R(Y1,Y2)¢ = n(Y)IkI + ph +vdphlY1 — n(YDIKI + uh + vdphlYs, (1.6)

This equation involves the Riemannian curvature tensor R of the manifold M 2n+1 " where Y
and Yy represent vector fields on M2+l Additionally, x,u and v are smooth functions defined
on M2n+1 )

In their research, they established an intrinsic connection between this type of manifold
and the harmonicity of the Reeb vector on contact metric 3-manifolds. Interestingly, certain
studies have explored manifolds satisfying condition without relying on a contact metric
structure. Dacko and Olszak [7]] introduced the concept of almost cosymplectic (x, 1, v)-spaces.
In their framework, an almost cosymplectic manifold is considered to satisfy equation (1.6), yet
with «,u and v functions exclusively varying in the direction of . Subsequent works, in Dacko
and Olszak [6], have presented additional examples that fall within this category of manifold
structures.

Proposition 1.1. Given M 2”“((/),6 ,1,8) an almost a-cosymplectic (x,u,v)-space, then

h? = +a?)?, ph+hdp=0, (1.7
&(x) = 2(k + a®)(v - 2a), (1.8)
R(&,Y1)Y2 = x[g(Y1,Y2)E —n(Y2)Y1]+ ulg (Y1, Y2)é —n(Y2)hY1]

+vIg(phY1,Y2)¢ —n(Y2)phY1], (1.9

Commaunications in Mathematics and Applications, Vol. 15, No. 2, pp. (801 , 2024



Pseudosymmetric Almost a-Cosymplectic (x,u,v)-Spaces Admitting Einstein Solitons: M. Atceken et al. 803

(Vy, Y2 = g(adp¥1 + hY1,Y2)é —n(Ya)@dpY1 +hY1), (1.10)
Vy, & = —a¢®Y; — phY, (1.11)
for all vector fields Y1, Yo on M?"+1 (Carriazo and V. Martin-Molina [4]).

Absolutely, the fixed points of the Yamabe flow represent metrics within a given conformal
class that possess a constant scalar curvature. This flow was initially investigated in the 1980s,
outlined in unpublished notes by Richard Hamilton. He proposed the conjecture that, regardless
of the initial metric chosen, this flow would converge toward a conformal metric showcasing a
constant scalar curvature. The validity of this conjecture in the context of locally conformally
flat cases was confirmed by Ye [13]]. Hamilton originally introduced the concept of the Yamabe
flow as a means to construct Yamabe metrics specifically on compact Riemannian manifolds.

Catino and Mazzieri [5] introduced the Einstein soliton which generates self-similar solutions
to Einstein flow, given by

0 T
—g(t)+2(S - g] =0,
3 tg( ) 2g
where S is Ricci tensor, g is Riemannian metric and 7 is the scalar curvature of a semi-

Riemannian manifold (M, g).
The equation of the Einstein soliton is given by

Ly.g++2S+(2A-1)g =0, (1.12)

where Ly, is the Lie derivative along the vector field Y5, A is a real constant. Also, it is said to
be shrinking, steady or expanding according as 1 <0, A =0 and A > 0, respectively (Blaga [_3]]).

In the rest of this paper, we will denote the Einstein soliton by (M, g,Ys5, ).

A Riemannian manifold is categorized as semi-symmetry type (or Ricci semi-symmetry type)
under specific conditions imposed on the generalized quasi-conformal curvature tensor W and
the Ricci tensor S. For semi-symmetry type, it is expressed as R(Y1,Y2)- W =0, where the
symbolizes R(Y1,Y2) acting on W as a derivation. Conversely, for Ricci semi-symmetry type,
the condition is W(Y1,Y2)-S = 0, indicating that W(Y1,Y2) acts on S in a similar derivative
manner.

({3

A smooth vector field Y5 is called a potential field of the Ricci soliton. A Ricci soliton on a
semi-Riemannian manifold (M, g,Y5, 1) is said to be shrinking, steady or expanding according
to A <0, A=0or A >0, respectively.

Over the past two decades, the study of Ricci solitons has captivated the interest of numerous
mathematicians, especially gaining prominence after Perelman employed Ricci solitons to
resolve the longstanding Poincaré conjecture. In [12], Sharma delved into the investigation of
Ricci solitons within the realm of contact geometry. Since then, the exploration of Ricci solitons
within contact metric manifolds has been a focal point for various mathematicians, leading to
diverse studies and analyses in this field (see references, [1,(9-H11]]).

Motivated by the above studies, in the present paper is to study Ricci pseudosymmetric
a-cosymplectic (x, u,v)-spaces whose metric admit Ricci soliton. We find some results among
valuables a, x, u and v which contribute differential geometry. For a Riemannian manifold
(M",g), invariant of a concircular transformation is the concircular curvature tensor C,
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the W3-curvature, the Weyly projective curvature tensors are, respectively, given by

CH1, Y)Y = R(91, Yo)¥s ~ — (& (¥e, Y)91 ~g(Y1, Y)Y, (1.13)
1

W1(Y1,92)Y3 =R (Y1,Y2) Y3 + E{S(Hz,ys)% -S(Y1,Y3)Y2}, (1.14)

1
P(Y1,Y2)Y3 =R(Y1,Y2)Ys — E{S(Hz,ys)ﬂl -8(Y1,Y3)Y2} (1.15)
and

1

Wa(Y1,Y2)Y3 =R (Y1,Y2) Y3 - —1 {g(Y2,Y3)QY1—g(Y1,Y3)QY2}, (1.16)

for all Y1,Y2,Y3 € I'(TM), where R, @ and 7 denote the Riemannian curvature tensor, Ricci
operator the scalar curvature of M", respectively. Indeed, when a Riemannian manifold
exhibits a vanishing concircular curvature tensor, it signifies a property of constant curvature.
The concircular curvature tensor serves as an indicator, highlighting the extent to which a
Riemannian manifold deviates from possessing a constant curvature. Its absence or vanishing
nature implies that the manifold maintains a constant curvature throughout.

For a (0,k)-type tensor field T', £ = 1 and a (0,2)-type tensor field A on a Riemannian
manifold (M, g), Q(A, T)-tensor field is defined by

QA,T)X1,Xa,...,Xr;Y1,Y2) = -T((Y1 Aa Y2) X1, X2,..., XE)

—---—T(XI,X27---Xk—17(g1/\A%Z)Xk), (1-17)
for all X1,X5,...,X1,Y1,Y2 € I(TM) (Atceken et al. [2]), where A4-endomrphism is given by
(Y1 naY2)d3=A(Y2,Y3)d1 — A(Y1,Y3)Y2. (1.18)

2. Yamabe Solitons on Almost a-Cosymplectic (x, u,v)-Space
Now, let (g,¢,1) be an Einstein soliton on a-cosymplectic (k, i, v)-space. Then, we obtain
(Leg)(Y1,Y2) = g(Vy,&,Y2) + (Y1, Vy, &)
= g(—a®¢Y1— phY1,Y2) + g(Y1,—a’PpYs — phYs)
=2ag(pY1,9Y2) —2g8(dphY1,Y2). 2.1)
From and (1.12), we have
(Leg)Y1,Y2) +28(Y1,Y2) + (2A-1)g(Y1,Y2) =0,
that is,
ag(@Y1,9Y2)— g(@hY1,Y2) + S(1,Y2)+ (1 - ) g¥1,Y2) =0,
for all Y41,Y9 € I'(T'M). Thus, we have

S(Y1,Y2) = g(phY1,Y2)— g1, @Y2) + (5~ VU1, Yo (2.2)
Thus for Yo = ¢, we have

S0 = (5-A)n¥). 2.3)
In view of (1.6), by direct calculations, we can derive for a-cosymplectic (x,u,v) space M 2n+1

S(Y1,¢) =2nxn(Y1). (2.4)
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Hence, from (2.3) and (2.4), we have
A= % - 2nk.
From (1.6) and (1.14), we obtain

C(J1,92)¢ =

T
K — m) {n(d2)d1 —n(d1)da}
+ u{in(Ya)hY1 —n(YhYa} + vin(Y2)phY1 —n(Y1)phYa}

and

n(C(Y1,Y2)Y3) = gm(Y1)Y2 —n(Y2)Y1,Y3)

[~ st m)
on@n+1)

+ugm(YhY2 —n(Y2)hY1,Y93) +ve(n(d1)phYe —n(Y2)phY1,Y3).

(2.5)

(2.6)

(2.7

Let us suppose that the concircular Ricci-pseudosymmetric almost a-cosymplectic (k, i, v) space

admitting Einstein soliton. Then there exists a function L. on M such that

CS :LCQ(g7S)7
that is mean

(C(Y1,Y2)-S)Y4,Y5) =L.Q(g,5)Y4,Y5;Y1,Y2),
for all Y1,Y2,Y4,Y5 € ([(T M), that is,

S(C(J1,92)Y4,Y5) +S(Y4,C(J1,92)¥5) = LAS((Y1 Ag Y2)Y4,Y5) +S(Y4,(U1 Ag Y2)U5)},

which yields to for Y4 =¢,
S(C(Y1,92)§,95) +S(C(Y1,Y2)Ys5,6)
=L AS(n(J2)d1 —n(Y1)d2,d5) + S(&,8(Y2,Y5)d1 — g(Y1,Ys5)d2)}.
By using (2.4), and (2.7), we have

T
" 5]
+vS(n(Y2)ph'Y1 —n(d1)dh,Ys) + 2nxn(C(J1,Y2)ds)
=L AS((Y2)Y1 —n(d1)Y2,95) + 2nxn(g(Yz,Ys)d1 — g(41,Y5)d2)}.
Taking account of (2.2)), we get

L AS(n(Y2)Y1—n(Y1)Y2,Y5) + 2nxg(n(Y1)Y2 —n(Y2)Y1,Y5)}

T
= 2nx (K T on@n+ 1))

T
+2nxvg(n(d1)ph'ds —n(d2)phd1, Us) + (K " 2n@2n+1)

Consequently, taking into account of (1.7) we reach at

T
g(n(J1)Y2 —1(Y2)Y1,Ys5) ((LC T on@n+D

T
+g(M(Y1)Y2 —n(Y2)Y1,phY5) (_Lc K @+ D
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S(n(Y2)d1—n(Y1)d2,Y5) + uS(n(Y2)h'Y1 —n(Y1)hY2,Ys5)

gm¥1)Y2 —nY2)Y1,Y5) + 2nxug(n(¥1)hY2 —n(Y2)hY1,Ys)

)S(U(Hz)‘él -1(Y1)Y2,Y5)
+uS(n(Y2)hY1 —n(Y1hY2,Y5) + vS(n(Ya)phY1 — n(Y1)phYs, Ys).

)(ZnK— A+a)—vix+ az))

—-v(ia—A1+ 2n1<))

(2.8)
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— MY 1)Y2 —n(Y2)Y1,hY5)u2nk — A + @) + g((Y1)Y2 — n(Y2)Y1, pYs)u(k + a®) = 0.
This implies that

e _ _ 2
(LC K+2n(2n+1))(2nK A+a) V(K+a))‘d5

T
+ pk + a®)pYs + | Lo +x — nentD vie— A1+ 2n1<)) PhYs
—u@nk—-A+a)hyYs=0. (2.9)
Both sides of this equation are multiplied by ¢, we have
(LC—K+m)(znx—mq):v(ﬂa%. (2.10)

Then (2.9) reduces
9 T
+ +|-L 4+x———m—
Hlc+ a)pYs ( K o @n +1)
Substituting AY5 for Y5 and using (2.11), we obtain

—v(a—/1+2n1<)) ¢OhYs —u2nk — A+ a)hYs=0. (2.11)

,u(K+a:2)<[)hH5—(K+a2) (—Lc+1<— —v(a—/l+2n1<)) ®Ys

T

2n(2n+1)
— u(k + a?)(2nx — A+ a)¢p?Ys5 = 0. (2.12)

Furthermore, applying A to from left side and by means of (1.7), we reach at

— 1k + a®)PphYs + (x + a?) (—Lc +K— m -via—-1+ 2n1<)) ¢Ys

— p(k + a®)2nx — A+ a)$p?Ys = 0. (2.13)
From and we conclude that

ik +a®)@2nk —A+a)=0. (2.14)

Hence from (2.11) because of « + a® # 0, we have

(—Lc+1<— —v(a—/1+2n1<)) dhYs + ux + a®)pYs = 0. (2.15)

T
2n(2n+1)
In the last equality, substituting 2Y5 for Y5 and making use of (1.7), we have

—(K+a2)(—LC+K— —v(a—/1+2n1<)) dYs + pk + a®)phYs = 0. (2.16)

T
2n(2n+1)
Since x + a2 # 0, from (2.15) and (2.16) we can infer

2
(—Lc+1< —v(a—/l+2n1<)) + 12k +a®) =0

L
2n(2n +1)
and

T T\ 9
(LC—K+m)(2nK+Oﬁ—§)—V(K+Oﬁ )
From (2.15), (2.16) and (2.17), we observe
©w=0 or 4nK+a—%:O and v=0. (2.17)

Ifu=0, H2”+1(¢,£,n,g) an almost a-cosymplectic (x, u,v)-space reduces a-cosymplectic (x,0,v).
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Otherwise, if 4nx + a — % = 0, then we conclude that 41 = 7+ 2a and v = 0. In this case,
M?"* Y, & n,g) an almost a-cosymplectic (k, i, v)-space reduces a-cosymplectic (x, 1, 0).

Thus, we have following the theorem:

Theorem 2.1. The concircular Ricci-pseudosymmetric almost a-cosymplectic (x,L,Vv) space
admits Einstein soliton. Then at least one of the following statements is true:

(1) An almost a-cosymplectic M 2’”1((/),6 ,1,8)-(x, 1, v)-space reduces a-cosymplectic (x, ,0).
(i1) An almost a-cosymplectic HZ”“((/),{,n,g)-(K,u,v)-space reduces a-cosymplectic (x,0,v).

(iii) Almost a-cosymplectic M 2n+t1(p,&,n, g)-space is expanding (resp. shrinking, steady) for
T>-2a (resp. 1< —2a, T=-2a).

Now, we assume that projective Ricci-pseudosymmetric almost a-cosymplectic (x, i, v) space
admits Einstein soliton. Then, we have

(P(Y1,Y2)-S)Y4,Y5) = L,Q(g,S)(Y4,95;Y1,Y2),
for all Y1,Ys,Y4, Y5 € [(TM2"*1). This implies that

S(P(Y1,92)94,95) +S(Y4,P(Y1,Y2)Y5) = L ,{S (Y1 Ag Y2)Y4,Y5) + S(Y4,(Y1 A g Y2)Y5)},
which form for Y4 =¢

S(P(Y1,Y92)¢,Y5) + S, P(Y1,92)Y5)

=L,{S((Y2)91 —n(Y1)Y2,95) +S(,g(Y2,Y5)91 — g(Ys5,91)d2)} (2.18)
On the hand, making use of and (1.16), we have
P(Y1,Y92)¢ = u(n(Y2)h'Y1 —n(Y1)hY2) + vin(d2)phY1 —n(Y1)phYs) (2.19)
and
n(P(Y1,Y2)¥3) = ugm(YhY2 —n(d2)h'Y1,Y3) + ven(Yph'de — n(d2)ph'1, Ys). (2.20)

Thus (2.19) and (2.20) are set in (2.18),
uS(n(Y2)h'd1 —n(Y1hY2,Y5) + 2nxn(P(Y1,Y2)Y5) + vS((Y2)phY1 —n(Y1)phY2,Ys)

=L,{S(n(Y2)Y1 —n(Y1)Y2,95) + 2nxn(g(Y2,Y5)d1 —n(d1,95)Y2)} (2.21)
Taking into account (2.2), we reach at

Lp{gm(yz)yl (Y1) Ys, hYs) — ag(n(Ya)Ys —1(Y1)Ys, oYs)

+ (% - A)g(n(%z)‘dl -n(d1)Y2,95) +2nxg(n(Y1)d2 — 77(92)131’135)}

= ,U{ — g(n(Y2)Y1 - (Y1) Y2, ph%Ys5) — agn(Y2)Y1 — n(Y1)Y2,hYs)

_l_

%—A)g(nwzm —n<91>y2,hy5)}

+v{g<n<y2>y1 YD) Ye, h2Ys) — ag((¥2)Y1 — (Y1) Y2, dhYs)
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+

g—A)gm(yz)Hl —n(lal)yz,q)h%)}

+2nxug(n(¥1)Y2 —n(Y2)Y1,hYs5) + 2nkvg(n(¥Y1)¥2 —n(Y2)Y1,phYs),
that is,

Lp{g(n(%}g)‘dl -n(Y1)Y2,¢hYs5) — agn(d2)pY1 —n(d1)Y2,$Ys)
+ (% - A)g(n(%z)'ﬁl -n(Y1)Y2,Y5) +2nxg(n(Y1)Y2 — 77(92)91,95)}
_ u{m a®)g1(Y2)Y1 — n(Y1)Ya,Ys) — agn(He)¥1 — (Y1) Y2, 2 Ys)

+

—ag(n(¥Y2)Y1 —nY1)Y2,0hYs5) + (% - /1)5’(17(132)'241 - ﬂ(%l)'ziz,ﬁbh%)}

+2nxug(n(Y1)¥2 —n(Y2)Y1,hYs5) + 2nkvg(n(Y1)Y2 —n(Y2)Y1,phYs).
This yields to

gm(Y2)Y1 —-n¥1)Y2,dhYs)

Lp+v(%—)1+a+2n1<)

+8M(Y2)Y1—nY1)Y2,hYs)u

a— z + A+ 2nk
2

— wk + a®)gn(Y2)Y1 — n(Y1)Y2,$Ys)

+8M(Y2)Y1-n(Y1)Y2,Y5)

which implies that

=0,

Lp(—a—ZnK+%—7L)+v(1<+a2)

Phds+ h's

Lp+v(a+%—/l)+2n1<v

T
—=—+A+2
az nk

— plx + a®)pYs + Y5 =0.

Lp(—a+%—)t—2n1<)+v(1<+a2)

By inner product by & both of sides (2.22), we get
Lp(a—%+/l+2m<) = v(k + a?).

Thus reduce

Lp+v(a+£—/1+2m<)

Applying ¢ to and by means of (1.7), we have

Lp+v(a:+%—/1+2m<)

¢OhYs+ 1 a—%+/1+2n1< h95—p(1<+a2)¢135:0,
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. A)g(n(‘éz)‘él —n(lal)yz,h%)} . v{ ~ (+ a)g(m(Ya)Y1 — (Y)Y, Ys)

hYs+u a—§+/1+2n1< dhYs — ulx + a?)p?Ys = 0.

(2.22)

(2.23)

(2.24)

(2.25)
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Furthermore, if ¢Y5 is put instead of Y5 in (2.24) and using the second of (1.7) we have
h'ds—u
From the last two inequalities, we conclude that

ux + a?)p?Ys = 0.
Since x + a? # 0 and c/>21é5 #0,

dhYs — ux + a®)p?Ys = 0. (2.26)

Lp+v(a+£—/1+2n1<)

T
—=—+A+2
(X2 nkK

p=0. (2.27)
Eq. (2.26) tell us

Lp+v(a+%—/l+2n1<)20. (2.28)
Thus, from (2.23) and (2.5) we observe

Lya=v(x+a?) (2.29)
Also, by making use of (2.5) and (2.28)),

Ly+via+1t-21)=0. (2.30)
In view of (2.29) and (2.30), we have

v@2la+x—at)=0. (2.31)

Thus, we have the following theorem.

Theorem 2.2. Let M2”+1(¢,f,n,g) an almost a-cosymplectic (x,u,v) space be projective Ricci-
pseudosymmetric admitting Einstein soliton. Then The ambient manifold M 2’”1((/),5 ,1,8) either
reduces an almost a-cosymplectic (x,0,0)-space or a(2A—1)+x =0.

Now, we assume that Wi-Ricci-pseudosymmetric almost a-cosymplectic (x, i, v) space admits
Einstein soliton. Then we have

(W1(Y1,Y92)-S)(Y4,Y5) = Lw,Q(g,S)Y4,Y5;Y1,Y2),
for all Y1,Ys,Y4,Ys € [(TM?"*1). This implies that
S(W1(Y1,Y2)Y4,Y5) +S(Y4, W1(Y1,Y2)Y5) = Lw, {S((Y1 Ag Y2)Y4,Y5) +S(Y4, (Y1 Ag Y2)Y5)},
which form for Y4 =¢
S(W1(Y1,Y2)¢,Y5) + S, W1(Y1,Y2)Y5)
=Lw {S(M(Y2)Y1 —n(Y1)Y2,Y5) + S(,8(Y2,Y5)91 — (Y5, Y1)Y2)}. (2.32)
On the hand, making use of and (1.14), we have
W1(Y1,Y2)¢ = 2x[n(Y2)d1 —n(Y Y21+ un(d2)h'Y1 —n(d1hY2)
+v(n(Y2)ph'Y1 —n(Y1)phY2) (2.33)
and
n(W1(Y1,Y2)93) = 2xg(n(Y1)d2 —n(Y2)Y1,Y3) + pg(n(Y1)h'92 —n(d2)hY1,Y9s)
+vg(m(d1)phYs —n(Y2)ph'Y1,Y3). (2.34)
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Thus (2.33) and (2.34) are set in (2.32),
2xS(n(Y2)¥1 —n(Y1)d2,Y5) + uS(n(Y2)h'd1 —n(d1)h Y2, Ys)
+vS(n(Y2)ph'd1 —n(d1)dh'd2, Ys5) + 2nxn(W1(Y1,d2)ds)
= Lw,{S(n(Y2)Y1 —n(Y1)Y2,d5) + 2nxn(g(Yz, d5)d1 —n(Y1,Y5)d2)}.
Taking into account (2.2)), we reach at

Ly, {g(n(’éz)‘él —-1n1(Y1)Y2,phYs5) — ag(n(Y2)dpY1 —n(Y1)pY2,dYs)

+ (% - A)g(n(%z)‘zﬂl -n(91)d2,Y5) +2nxg(n(d1)d2 — 77(15’2)151’%5)}

= QK{g(n(Hz)Hl - 77(91)92,4)}195) —ag(n(¥Y2)pY1—n(Y1)pY2,¢Ys)

_l_

% - A)g(n(‘éz)yl - 77(91)132’95)}

+u{ — (Y21 —1(Y1)Ya, $h2Y5) — ag(n(Yo)Y1 — 1(Y1)Ys, hYs)

+

% - A)g(ﬂ(%)‘él - 77(91)‘32,}195)}
+v{g<n<yz>y1 —nYD)Y, h2Y5) — ag(Y2)Y1 — (Y1) Ys, ohYs)

+
2

+2nxugm(Y1)Y2 —n(Y2)Y1,hYs5) + 2nxvg(n(Y1)Y2 —n(Y2)Y1,phYs),

T A)g(n(’éz)% - 17(’31)92@71'555)} +2nx2g(m(Y1)Y2 —1(Y2)Y1,Ys)

that is,

Lwl{gm(laz)yl —nY)Ys, GhYs) — agmU)dYs — n(Y1)Ys, ¢Ys)

.

= 2K{g(n(’zﬂz)la'1 -1(Y1)Y2,phYs5) — agn(Y2)pY1 —n(Y1)Y2,dYs)

- A)g(n%)yl —n(Y1)Ya, Ys) + 2nxg(n(Y1)Ys - n(yzm,ys)}

NI

+

% - A)g(n(‘éz)% - 77(‘31)92,95)}

+ ,u{(K +a®)gnY2)Y1 - n(Y1)Y2,¢Ys5) — agn(Y2)Y1 — n(Y1)Y2,hYs)

+

~ g1 - (Y1) Ya, ohYs) + (g —A)g(n@z)yl —n(%)%@h%)}

+2nx%g(n(Y1)Y2 —n(Y2)Y1,Ys5) + 2nxug(n(Y1)Ys —n(Y2)Y1,hYs)
+2nxvg(n(Y1)Y2 —n(Y2)Y1,phYs).
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This yields to

gm(Y2)d1 —n(d1)Y2,phYs) [Lwl —2Kk+av- V(% - /1) +2nxv

+8M(Y2)Y1—-n(Y1)Y2,~hYs)u — u(x + a®)gm(Y2)Y1 — 1(Y1)Y2,pYs)

a—1+/1+2n1<
2

+8(M(Y2)d1 —n(d1)Y2,Ys) [LW1 (— a—2nk + % - /1)+21<(oc - % + )L)+ vk + a®) +2nk? | =0,

which implies that

[LW1—2K+v(a—%+}L)+2nKV OhYs+pu a—%+/1+2n1< h‘j5—,u(1<+a:2)gb1j5

+LW1

(—a+z—/1—2n1<
2

+2n1<(a—%+/1)+v(1<+a2)+2n1<21j5] =0. (2.36)

By inner product by & both of sides (2.36), we get

Lw, (a - % +A+ 2n1<) = ZnK(a - % + /1) +v(k +a®) + 2nk>, (2.37)
Thus (2.36) reduce

[LW1 -2+ v(a - % + }L) +2nkv|phYs + u hYs— px + a®)¢pYs =0. (2.38)

a:—z+/1+2n1<
2

Applying ¢ to (2.38) and by means of (1.7), we have

LW1—2K+v(a—£+)L)+2nKV hYs+u

a- % + A+ 20k |phYs — px + a®)d?Ys = 0. (2.39)

Furthermore, if ¢pY5 is put instead of Y5 in (2.38) and using the second of (1.7), we have

LW1—2K+v(a—£+]L)+2nKV hYs—pu

- % + A+ 2nK | phYs — px + a®)p?Ys = 0. (2.40)

From the last two inequalities, we conclude that
wx + a?)p?Ys = 0.
Since kx + a? #0 and ¢p?Y5 £ 0,

pn=0. (2.41)
Eq. (2.40) tell us

Lw, —2K+v(a—%+ﬂt) +2nkv =0, (2.42)
Thus from (2.42) and (2.5) we observe

Lw,a= 2K(a—2n1<)+v(1<+a2)+2m<2, (2.43)
and

Lw, —2x+va=0. (2.44)

Also, by making use of (2.43) and (2.44)

v(2a2 +x)= 2nx2.

Thus, we have the following theorem.
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Theorem 2.3. Let M2n+1(¢,f,n,g) an almost a-cosymplectic (x,u,v) space be Wi-Ricci-
pseudosymmetric admitting Einstein soliton. Then, the ambient manifold M*"*1(¢,¢é,n,8)

. 2
reduces an almost a-cosymplectic (x,0, 22(x"2’ik )-space.

Now, we assume that Wy-Ricci-pseudosymmetric almost a-cosymplectic (x, i, v) space admits
Einstein soliton. Then, we have

(WZ(yl,yz)'S)(yébyf)) :LWQQ(gﬂS)(yébyf);yl?yZ),
for all Y1,Y9,Y4, Y5 € I(TM2"*1), this implies that

S(W2a(Y1,Y2)Y4,Y5) + S(Ys, Wa(Y1,Y2)Y5) = Lw, (S (Y1 Ag Y2)Y4,Y5) + S (Y4, (U1 Ag Y2)Y5)},
which form for Y4 =¢,
S(Wa(Y1,Y2)¢,Y5) + S, Wa(Y1,Y2)Y5)
= Lw,{S(M(Y2)Y1 —n(Y1)Y2,Y5) + S(,8(Y2,Y5)91 — g(Y5,Y1)Y2)}. (2.45)
On the hand, making use of and (1.16), we have

Wa(Y1,Y2)¢ =«n(Y2)Y1 —n(Y1)Y2]+ ul(n(Y2)hY1 —n(Y1)h Y2l
1
+vI(n(Y2)phY1 —n(Y1)phlYal - %[n(%)Q% -n(Y1)QYz2] (2.46)

and

n(Wa(Y1,Y2)Y3) = kg(n(Y1)Y2 —n(Y2)Y1,Y3) + ug(n(¥Y1)hY2 —n(Y2)hY1,Y3)

1
+vg(n(d1)phde —n(d2)phY1,Y3) + 58(0(92)91 -1n(Y1)Y2,Y3). (2.47)
Thus (2.46) and (2.47) are set in (2.45)),
kS(n(Y2)Y1 —n(Y1)Y2,Y5) + uSn(Y2)hY1 —n(Y1)hY2,Ys5)

1
+vS(n(Y2)ph'd1 —n(Y1)phY2,Ys) - %S(n(‘éz)Q% -n(Y1RY2,Y5)

1
- (1( - %) gm(Y2)d1 —n(91)¥2,95) + ugn(91)h'd2 —n(d2)h'91,9s5)

+vg(n(J1)phYs —n(d2)ph'd1,Ys)
= Lw,{S(n(Y2)Y1 —n(Y1)Y2,Ys) + 2nxn(g(Y2,Y5)91 —n(Y1,Y5)Y2)}. (2.48)
Taking into account (2.2)), we reach at

Ly, {g(n(‘éz)‘él -nY1)Y2,0hYs5) — ag(n(Y2)Y1 —n(Y1)Y2,Y5)

; (g - A)g(n(yzm —n(Y1)Ys, Ys) — 2nicg(n(Ya)Ys —n<yl>y2,y5>}
= K{g(n(Hz)‘dl —n(Y1)Y2,0phYs5) — ag(n(Y2)dpY1 —n(Y1)pYs2, dYs)

+

% - )L)g(n(‘éz)lél - 77(131)92,95)}

+ /J{(K +a®)gnY2)Y1 —1(Y1)Y2,¢Ys5) — agn(Y2)Y1 — n(Y1)Y2,~Ys)
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%—A)g(n%)yl —n(ylraz,h%)}

+

' v{ ~(k+ ag(Y2)Y1 - n(YD)Ys2, Ys) — ag(n(U2)¥s — (Y1) Ya, phYs)

1
+ % - ﬂ)g(n(‘dz)lél - 17(‘31)132,47}195)} — %{S(ﬂ(‘h)yl -1n(Y1)Y2,9Ys5)

—aS(n(Y2)Y1 -n1(Y1)Y2,Y5) + % - l)g(n(‘éz)yl - 77(91)92,95)}

1
. (K _ %)g(n(‘éz)‘él (YD) Y2,Y5) + pg(n(Y2)Y1 ~ (Y1) Y2, Ys)

—vg(n(91)92 —n(d2)d1,ph'ds).
Taking into account in (2.49), we reach at
T a 1 (7
gm(Y2)Y91 —n(d1)Y2,phYs) [LW2 -K+av-— V(§ - /1) ~ 5 T3 (5 - ﬂt) —v

( T +)L) 1
a_— —_— —
i R on

+8(M(Y2)Y1-n(Y1)Y2,hY5)

1
+g(m(Y2)Y1 —17(91)92,(/595)[ — ulx + a?) + 2., _(E - A)
2n  2n\2

+8(n(Y2)91—-n(Y1)Y2,Y5) [LWQ(— a—2nK + % - /1) + ax —K(% - /l)

2 2

+v(x+a2)+g——g(£—/l)+i(z—/l

1
n n\2 2n\2 2n

which implies that

1
[LWQ—K+av—v(1—A)—i+—(z—ﬂt)—v
2 2n  2n\2

¢hYs

T 1 a 1 (7t
——+A|l——|h - Hy 4+ —[=-2
+ ,u(a 2+ Zn] Ys + u(1<+a)+2n+2n(2 )](p%
T T 9
+ [Lw, —a—2n1<+§—ﬂt +aKk—x E—ﬂt +v(k +a”)

e [ R L Y (e Y
———|=- — (== K—— |- =0.
on nl\2 on |2 on) “H|9

By inner product by ¢ both of sides (2.50), we get

+v(x + az)

T T
Ly,| —a-2nxk+—=—-A|+ak—kx|=—-A
Wz( a nkxK 5 ) axK K(Z

+“—2—E(E—A)+i(f—a)2+(x—i)—uzo.

2n n\2 2n\2 2n
Thus (2.50) reduce
T a 1(7 T 1
[LWQ—K'FCXV—V(g—A)—%'F% Q—A)—V (ph%5+ u(a—§+ﬂt)—%]h%5
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+ —_—
2n 2
Applying ¢ to (2.52), we have

1
LWZ—K+av—v(£—A)—i+—(z—/1)—v
2 2n  2n\2

—u(K+a2)+i+%(T A)]¢H5:O. (2.52)

T 1
- h95+ ,u(a—§+7t)—%]¢hlé5

+

_ 2y, * , L (T_ 2y, _
ux +a )+2n+2n(2 /1)](,[) Y5 =0. (2.53)

Furthermore, if ¢Y5 is put instead of Y5 in (2.53), we have

T a 1(7 T 1
LWQ_K'F(IV—V 5—1)—%4'%(5—&)_‘/ h‘é5— ﬂ(a_§+ﬂ')_%]¢hy5

—+

_ NI Y | pE i
WK+« )+2n+2n(2 /1)](/) Y5 =0. (2.54)

From the last two inequalities, we conclude that
a+2nx

2n
Thus, we have the following theorem.

px +a?) =

Theorem 2.4. Let H2n+1((,b,{,17,g) an almost a-cosymplectic (x,u,v) space be Wsy-Ricci-
pseudosymmetric admitting Einstein soliton. Then, the ambient manifold M 2’”1((/),5,17, g)

reduces an almost a-cosymplectic (K, %Qn'”(,v)-space.

3. Conclusion

This paper attempts to characterize cases of an almost a-cosymplectic (k, 1, v)-space admitting
Einstein sloitons to be concircular Ricci pseudosymmetry, projective Ricci pseudosymmetry,
W1-curvature and the Wy-curvature Ricci pseudo symmetric.
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