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Abstract. In this manuscript, we introduce a quadratic functional equation of finite variable:

Z(,b(Zvi— Z vj):(m—7) Z (,b(vi+vj)+(,b(Zvi)—(m2—9m+5)z¢(vi)
i=1 1<i#j 1si<j=m i=1 i=1

and examine its Hyers-Ulam stability of this functional equation in Banach space using direct and
fixed point method.
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1. Introduction

Functional equations play an important part in the study of stability. In 1940, the stability
problems of functional equations about group homomorphisms was introduced by Ulam [13]].
In 1941, Hyers [7] gave a affirmative answer to Ulam’s question for additive groups (under
the assumption that groups are Banach spaces). Hyers theorem was generalized by Aoki [2]
for additive mappings and by Rassias [[12] for linear mappings by considering an unbounded
Cauchy difference [|¢p(v+y)—p©)—p(Y)Il < e(llv [P+ |lylI?), for all € >0 and p €[0,1). Also, Rassias
generalization theorem was delivered by Gavruta [6] who replaced e(||v||? + || y¥[”) by a control
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function ¢(v,y). The paper of Rassias has significantly influenced the development of what we
now call the Hyers-Ulam-Rassias stability of functional equations. In 1982, Rassias followed
the modern approach of the Rassias theorem [12] in which he replaced the factor product of
norms instead of sum of norms. Hyer’s theorem has been expanded in a number of ways over
the past few decades; for a list see Alessa et al. [1]], Czerwik [3]], Dominguez-Benavides et al. [4],
Gajda [5], Hyers [8]], Jin and Lee [9], Jun and Lee [10], and Jung and Sahoo [[11]. The present
work introduces finite variable quadratic function as:

Z(p(2vi— Z vj):(m—7) Z (,b(vi+vj)+(,b(2vi)—(m2—9m+5)z¢)(vi), (1.1)
i=1 1<i#j 1<i<jsm i=1 i=1

where m =5, and derive its solution. Also, obtains Hyer-Ulam-Rassias stability in Banach space.

2. General Solution
Theorem 2.1. If a mapping ¢ : E — F satisfying the functional eq. (1.1), then the mapping
¢ :E — F is quadratic.

Proof. Assume that the mapping ¢ : E — F satisfying the eq. (1.1).
Replacing (v1,v9e,vs,...,Un) by (0,0,0,...,0), we get

¢(0)=0.
Also, replacing (v1,v9,vs,...,Un) by (v,0,0,...,0), we get

¢(2v) = (m + 3)Pp(v) — (m — 1)p(—v) (2.1)
replacing v by —v in eq. (2.1), we obtain

¢(—2v) = (m + 3)p(—v) — (m — D)p(v). (2.2)
When we replace (v1,v2,03,...,Un) by (v,0,0,0,0,...,0) in eq. (1.1), then we obtain

(m = 2)p(—2v) — (m — 6)p(2v) = 16¢(v). (2.3)
Using eq. and in eq. (2.3), we get

¢d(—v) = P(v), (2.4)
forallveE.
Therefore, ¢ is an even function. From eq. (2.3)), for each m € Z*, we have

P(2v) = 22¢p(v), (2.5)

for each v e E.
Replacing v by 2v in eq. (2.5), we obtain

$(2%0) = 2*p(v), (2.6)

foreach ve E.
Replacing v by 2v in eq. (2.6), we obtain

$(23v) = 2%¢(v), 2.7)

foreachveE.
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Similarly, for all positive integer m, we can say
P2 v) = 22" (o), (2.8)

for eachveE.
Again, when we replace (v1,ve,vs,...,0,) by (v,v,v,0,0,0,...,0) in eq. (1.1), then we obtain

(n —3)p(=3v) — Pp(3v) = 9(n — 4)p(v). (2.9)
Replacing v by —v in eq. (2.9), we get

(n —3)¢p(3v) — p(—=3v) = 9(n —4)p(—-v), (2.10)

P(=3v) = (n - 3)p(3v) — 9(n — 4)p(-v). (2.11)

Using eq. in eq. (2.9), we get
(n=3)(n —3)p(3v) —9(n — 4)Pp(—v)] — Pp(3v) = 9(n —4)p(v),
(n?2—6n+9—-1)P(3x) —9(n? - Tn +12)pw) = 9n — 4)p(v),
(n% —6n +8)P(3v) = (9n? —54n + 72)Pp(v),
(n% —6n+8)P(3v) = 9(n? —6n +8)P(v),
$(3v) = 3%¢(v),

v

(2.12)

for eachveE.
Replacing v by 3v in eq. (2.12), we obtain

$(3%v) = 34p(v), (2.13)

for each ve E.
Replacing v by 3v in eq. (2.13), we obtain

$(3%v) = 35p(v), (2.14)

for eachveE.
Similarly, for all positive integer n, we can say

H(3"v) = 3% p(v), (2.15)

for each v € E. Hence ¢ is a quadratic function.

3. Stability of Quadratic Functional Equation
For a given mapping ¢p: V — W, we define

D¢(01,U2,U3,...,Um):Z(/)(zvi— Z Uj)_(m_7) Z (;b(vi"‘vj)
i=1 1<i#j 1<i<jsm
—¢(ivi)+(m2—9m+5)i(/)(vi), (3.1)
i=1 i=1

for each vq,v9,vs,...,v, €V.

Theorem 3.1. Assume that V and W are Banach spaces. If a function ¢ : V — W satisfies
the inequality

I1DP(v1,v2,...,vm)ll <&, (3.2)
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for some € >0, for all v1,vs,...,U, €V, then the limit

i 2™y
Qa(v) = lim ¢(22m i (3.3)
exists for each v €V and Q2 :V — W is unique quadratic function such that
€
— — 3.4
lp(w) — Q2 < 19’ (3.4)

foranyveV.

Proof. Replace (v1,ve,...,v,) by (v,0,0,...,0) in (3.2), we have

14p(2v) — 16¢()|l <&, (3.5)
(2v)
(P — )” (3.6)
Replace v by 2! in (3.6), we have
¢(2t+1v) ; €
92 _¢(2 U) < 1_6 ’ 3.7
(2v)  ¢(20) €
92(t+1) 92t 4.92(t+1)° (3.8)
for all v e V and all € > 0. Since
¢(2"v) _nE 927 ) (27)
gam —P)= LZ 926+ 92i |’ (3.9)
So,
P(2™v) (P(2L+1 ) (P(2iv)
' 92m ~¢) P o 92(i+1) 92i (3.10)
€ 1
< Z 22(l+1) 12 1_22_m . (311)
Replace v by 2"v, we get
G2 Mmy)  Pp(2Mv) e (1 1
o2mrm) o2m || S 12 |22m  92mem) |’ (3.12)

forallveV and all e >0. RH.S — 0 as m — oo then {q)(zmv)} is a Cauchy sequence in W, Since

92n
$(2™v)
92m

W is Banach space, thus sequence { } converges to some Qo(v)e W.ForveV,

2’" 2m
1Q2) - 91 = @2~ P+ PZV g, )" (3.13)
2’” 2m
< |Q2(v) - ¢(22mv) ' ¢(22mv) —(,b(v)“ (3.14)
([)(2’"0) € 1
< Q2( ) 22m E(l—zz—m) (3.15)
for all v € V and all € > 0. Taking the limit m — co, we get
1Q20) = ¢l < 7. (3.16)
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Replacing (v1,v9,...,v,) by (2™v1,2™vg,...,2™v,,) in (3.2), we have
IDPpR2™v1,2Mvg,...,2M" vyl <E,
2Mv1 2™Mvg 2™Um

D¢( 92m ’ 92m ’*"7’ 92m )
Applying m — oo, show that @9 satisfies the functional eq. (1.1).

To prove the uniqueness of quadratic mapping @2. Assume that there exists another quadratic
mapping @), which satisfies inequality (3.4). Fix v € V. Clearly, Q2(2'v) = 22’@5(v) and
Q’2(2tv) = 22tQ'2(v), for all v € V, from (3.4), we have

Q2(2™p _¢*"v  p2"v) Qy(2™0)

&
< Som-

(3.17)

1Q2(v) ~ Q) =

22m 22m 22m 22m
1 £
<o (3.18)
Taking m — oo, we have Q2(v) = Q4(v). O

Theorem 3.2. Assume that V and W are Banach spaces. If a function ¢ : V — W satisfies
the inequality

m

1Dp(v1,vs,...,vm)lIl <6 Z v 17, (3.19)
i=1
For some p <2, for all vi,ve,..., vy €V, then the limit
L p@m)
Qo(v) = lim —o (3.20)
exists for each v eV and Q2 :V — W is unique quadratic function such that

Ollvl?
lp() — Q) < @2 _op)’
foranyveV.

(3.21)

Proof. Replace (vy,v9,...,0,) by (v,0,0,...,0) in (3.19), we have
P(2v)

14¢(2v) — 16¢)Il < Ollv” 22

- p(v)

Olvll?
<
<3
Replace v by 2!v in (3.22), we have
2 1) ; 0112%v||?
BT b

G2t 1y) B $(2'v) - Ollvll?
92t+1) 92t ~ 92(¢+D)-tp ’

(3.22)

<

(3.23)

for all v € V. Since

(p(zmv) m-1 ¢(2i+ll}) (P(ziv)
22m _(p(v):i;() 22(i+1) - 22i )

(3.24)

gm m-1
¢(22mv) _<p(v)H =L

i=0

¢(2i+1v) ¢(2iv)
92(i+1)  92i

So,
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ml oGP
Olv|? 1
= 22=2p) ( - zm(z—p))' (3.25)
Replace v by 2"v, we get
m+m 2m olvl|? 1 1
o( v) B $(2™v) - vl _ , (3.96)
22(m+m) 22m (22—p _ 1) 22m 22(m+m)—mp
forallveV.R.H.S — 0 as m — co then {¢(222r:10)} is a Cauchy sequence in W. Since W is Banach
space, thus sequence {¢(222";v)} converges to some Q2(v) e W. ForveV,
2™v)  ¢(2™v)
1Q20) - 90l = |Qat0) - £+ £ —cp(v)"
(2™v) (2™v)
o ‘ e —¢><v>0
H(2™v) Ollvl”? 1
< ||Q2(v) - oom 22 _92p) 1—m ) (3.27)
for all v € V. Taking the limit m — oo,
1Q2(v) — p(v)| = M (3.28)
(22 -2p)
Replacing (vq,ve,...,v,) by (2"v1,2™vs,...,2™v,,) in (3.19), we have
m
IDP2™v1,2vs,...,2" vp) < 0 Z 12" v; 117, (3.29)
1=1
2Mpy1 2™Mvg 2™ m ‘ 0 m
D</>( : ) = ——> [v7]. (3.30)
92m > 92m 922m 92m-mp = l

Applying m — oo, show that @9 satisfies the functional eq. (1.1).

To prove the uniqueness of quadratic mapping @9. Assume that there exists another quadratic
mapping @), which satisfies inequality :2I). Fix v € V. Clearly, @2(2'v) = 2%@5(v) and
Q4(2'v) = 22Q(v), for all v € V. We have

Q@2(2™v)  $(2™v) N Pp2"v) Q5(2™v)

1Q2() - Q) =

22m 922m 92m 22m
OllvllP
S 1T o) (3.31)
Taking m — oo, we have Q2(v) = Q'2(v). O

Theorem 3.3. Assume that V and W are Banach spaces. Let ¢ : V™ — R* be a function such

o0 i i i i
that Y, 927v,20,0,...,0) 92702000 _ o Also, if a function ¢ :V — W satisfies

converges and lim

. 92i B 921
1=0 1—00
the inequality
IDp(vy,va,..., vl < @v1,v2,...,0m), (3.32)
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for all vi,ve,...,uy €V, then the limit Q2(v) = lim ¢(22mv), exists foreach veV and Qo:V - W
2
m—o0
is unique quadratic function such that

IS i i
¢2'v,2'0,0,...,0)
lp() - Q) < > 4.926+1D) ’

=0

(3.33)
forany veV.

Proof. Replace (v1,ve,...,v,) by (v,0,0,...,0) in (3.32), we have
14¢p(2v) — 24p)| < @(v,v,0,...,0),

2 0,...,0 (3.34)
qb( v) o )0 ¢(v,v, > ).

Replace v by 2tv in (3.34), we have

Pp2"1v) p(2'v,2%,0,...,0)
22 24 ’

P2 y)  p2tv) ' - p(2'v,2!v,0,...,0)

-2t )‘
(3.35)

92(t+1) 92t 4.92(t+1) ’
for all v € V. Since

om
¢(22mv) - (I)(U) =

(3.36)

m-1 i+1 i
(2" v)  Pp(2'v)
2 92i+1)  92i )

So,

¢(2L+1 ) ¢(2lv)
922(i+1) 9221

@"v)
|5 el =%

=0
5

1=0

Replacing v by 2™v in (3.37), we get

HER™MY)  p(2mv) <m+m—1<p(2iu,2iu,o,. m-1p(2'v,2'v,0,...,0)
92(m+m)  92m 4 .92(2+1) Z 4,22(z+1)

l:

p(2'v,2'00,...,0)
4,22(t+1)

(3.37)

=0
- mim-1 2y, 2%p,0,...,0)
- 4,22(i+1)

) (3.38)

forallveV.
Taking the limit m — oo, we have

® p(2iv,2'v,0,...,0)
1Q2)—p)l < ) 2 22D

=0
Replacing (v1,ve,...,v,) by (2™v1,2™vs,...,2™v,,) in (3.32), we have
IDH(2™v1,2Mvg,..., 2" vl < (2™ V1,209, ..., 2 Vy,),

D 2"vy 2"y 20, P(2Mv1,2Mvg,...,2Mvy) (3.40)
¢ 92m ’ 92m "7 2Zm 22m :

(3.39)

Applying m — oo, show that @9 satisfies the functional eq. (1.1).
To prove the uniqueness of quadratic mapping @2. Assume that there exists another quadratic
mapping @), which satisfies inequality (3.33). Fix v € V. Clearly, Q2(2'v) = 2%Q5(v) and
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Q4(2'v) =22/Q)(v) for all v € V. We have
Q2(2"v) ¢2"v)  $2™v) Q5(2™)

/ _
1Q2(v) — Qo) = ‘ ozm  gom oom o2m
00 i ol 00 i oi
¢2'v,2'0,0,...,0) p(2'v,2'v,0,...,0)
= :Zm 4.92(+1) +i;m 4.922G+1) ) (3.41)
Taking m — oo, we have Q2(v) = Q4(v). O

4. Counter Example

We provide a counter example for the non-stability to the functional eq. (1.1) in Banach space
as:

Example 4.1. Let a mapping ¢ : R — R be defined as

x g(2')
PL)= ) 5 (4.1)
=0
0v?, vl <1, , . . :
where g(v) = 0 1 then the mapping ¢ : R — R satisfies the inequality
, else,
16(3n3 —13n2 +6n +6)
”D(/)(Ul,UQ,"',Un)” = 3 QZ|U | (42)
for all vq,ve,---,v, € R,n =8, but there does not ex1st a quadratic mapping @2 : R — R satisfies
p(w) - Q2(v)] < £lv?, (4.3)
forallveR.
[eo) n o)
Proof. Now |¢p(v)| < ¥ )g(in”) =y 4 =%y
n=0 2 n=0 2 3

Thus ¢ is bounded. Now we will prove that ¢ satisfies (4.2). If v; =0 for i =1,2,...,n then (4.2)
n
is obvious. If ¥ |v;12 = 2% then L.H.S of (4.2) is less than (3n3 — 13n% + 6n + 6) %9. Now suppose,

=1

n
_Zl lv;l? < 22 , then there exists a positive integer m such that

Thus

92Dy 2 < L

1
55 220 Do, [P < o

1
22m=D 012 < — >

22
and
2™ v11<1,2™vel <1,...,2M v, < 1.

So, consequently

Z 2™ty — Y 2™, Y 2™(v; +v)), szu,e( 1,1).

n
J=Li#j 1<i<j<n
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Therefore, for each t =0,1,2,...,m — 1, we have

n n

Yo [-2 v+ Y 2tvj), Y 2N +u), szle( 1,1).

=1 J=1i#j 1<i<j<n
Andso,Dg(2tvl,2tvg,...,2tvn):0,fort:0,1,2,...,m—1.

Now,

© 1
IDP(v1,vg,...,v,)| < ) =5 IDg(2'v1,2"vs,...,20,)|

= 2%

sl

= 22t
g

0
92t

n
(2t+1 Z 2tUJ')
J=

1Li#j

+(n-7 Y 1g@v;+2'))

1<i<j<n

+(n?-9n+5) ) g2
=1

+

[(RZ+n+2n+(n-72n(n-1D+"RZ2—n+1)+"nZ2-9n+5)]

\V)

0

5-[3n° —13n% + 61 + 6]

: e ;'“M8

[\

=[3n% - 13n* +6n+6]z o

40
2m.3
_ 16(3n®-13n2+6n+6) 1
= 3 " 52(m+1)
16(3n ~13n2+6n+6)
< 0 Z vil?.
3
Thus ¢ satisfies (4.3). If possible, we assume that there exists a quadratic solution @2 : R — R
satisfies (4.3). For every v € R, since ¢ is a continuously bounded function, @2 is bounded on
every open interval containing the origin and continuous at the origin. @2 must be of the form
Qa2(v) = cv? for all ve R. So, o) < (e + leDIv|?, for all v € R. We can find s > 0 with s6 > ¢ +|c|.
If v € (0,557), then 2fv € (0,1), for all £=0,1,2,...,s — 1, we have

2t 19 2t 2
o(v) = tgog(zmv) > ;) (2;) = s0v2 > (e+ |c|)v2,

lp(v) — Q2 (v)| > elv|?.

which is contradiction. O

5. Stability of Functional eq. using Fixed Point Method

Theorem C (Banach Contraction Principle). Let (V,d) be a complete metric spaces consider a
mapping T :V — V which is strictly contractive mapping, that is

(C1): d(Tv,Ty)<d(v,y), for some (Lipschitz constant) L <1, then,
(i) The mapping T only has one fixed point, which is T(v*)=v"*.
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(i) Each given element’s fixed point, v*, is universally contractive, that is
(Cg): lim T™v =v" for any starting point veV.
m—00

(i1i) One has the following estimation inequalities,

(C3): d(T™v,v*) < d(T™v, T™ ), forallm=0,veV,

1-L
1
(Cy): d(v,v*):ﬁd(v,v*), forallveV.

Theorem D (Alternative Fixed Point). If a generalized metric space (V,d) is complete and a
strictly contractive mapping T :V —V has a Lipschitz constant L, then for any given element,
v eV either,

(D1): d(T™v, T™1v) = o0, for all m = 0.

(D9): There exists a natural number such that,

G) d(T™v, T™*1v) < oo, for all m = 0.

(i) The sequence {T™v} is convergent to a fixed point y* of T.
(ii1) y* is the unique fixed point of T in the set W ={y € W;d(T™°v,y) < oo}.
(iv) d(y*,y) < ﬁd(y,Ty), forall ye W.

Theorem 5.1. Let ¢ : A — B be an even mapping for which there exists a function ¢ : A™ — [0,00)
with the condition
y P& 1,87 09,8 vs ., 6 Um)
m =

m—oo f:ﬂ

0, (5.1)

2, 1=1, . . .
where &; = { — 0 such that the functional inequality

%7 l = b

IDp(v1,v2,03..., )l < @(v1,02,V3...,0m), (5.2)

for all vi,ve,vs...,u;,m € V. If there exists L = L(i) such that the function
v v

u—»ﬁ(v):<p(§,§,o...,o) (5.3)
has the property,

1

Eﬁ(fiv) = Lp(v), (5.4)

for each v € A. Then there exists a unique quadratic mapping Q9 : A — B satisfying the functional
eq. (L.1) and

lp(v) — Q2| <
holds for all ve A.

1-i

1-L

Bv) (5.5)

Proof. Introduce the generalized metric to the set V ={P;P : A — B,P(0) =0} and then have a
look at the set V. d(p,q) =inf{K € (0,00) : | p(v) — q)|| < KB(v),v € A}. It is clear that (V,d) is
complete metric space. Define T:V —V by

1
Tp(v)= gp(fiv), (5.6)
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Stability of the Functional Equation Deriving From Quadratic Function in Banach Space: Amrit et al. 567

forallve A. Now p,q eV,

d(p,q) <K,
IIP(U)—Q(U)II <K,3(v) vEA,
gip(fiv) 2 —q(&;v) E:I(ﬁ(é,v) vVEA,

I1Tp(w)—-Tq)| <LKp(), vVEA,
d(Tp,Tq)<LK.

This means that d(T'p,Tq) < Ld(p,q), for each p,q € V. T is strictly contractive mapping on V
with Lipschtiz constant L. It follows from (5.2) that

14(2v) — 2% )| < (v, v,0,...,0), (5.7)
for each v € A. It follows from (5.7) that
(/)(20) (p(v,v,O,...,O)
—— —p)| = e vE— (5.8)
for each v € A From (5.4), for the case i = 1, it reduces to
(2v) 1
(P — )| = —ﬁ(v), (5.9)

foreachveA,i.e., d(p,Tp) < 16 =>d(p,TP) < 55 16 =L =L’ <oo. Again replace v = § in (5.7), we
obtain

“44)(1})—16(/)( )H ( 0,...,0), (5.10)
for each v € A. Using (5.4) for i = 0 it reduces to,
2% ( | - 46| = 0B, (5.11)
for each v € A, (i.e.,) d(¢p, Tp) <1=d(¢p,T$p)<1=L° < oco. In the above case we reached
d(p, Tp) <L (5.12)
Therefore, Co(i) hold. Using Co(ii), it follows that exists a fixed point @2 of T in A, such that
$a(&] )

®Q2(v) = lim forallveA. (5.13)
m—00

e
l
To prove that @2 : A — B is quadratic. Using (¢7"v1,¢]"vg,...,¢;"Um) at place of (v1,vs,...,vy) in
and dividing by ¢", it follows from and (5.13), we see that @2 satisfies for all
v1,V2,U3,...,U;m € V. Hence @2 satisfies the functional eq. (1.1).

By using Ca(iii), Q2 is the unique fixed point of 7" in the set, W ={¢p € V : d(T'¢,Q2) < oo}.
Using fixed point alternative result, @2 is the unique function such that

p(v) — Q2(W) < K B(v), (5.14)

forallve A and & > 0.
Finally, by D4(iv), we obtain

1
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as d(¢,Q2) < % Hence, we conclude that

1-i
lp(v) — Q2| < 1 _L,B(v), (5.16)
foreachveA.
This completes the proof. O

6. Conclusion

A quadratic functional equation including finite number of variables is invented. Hyers-Ulam-

Rassias stability of this functional equation is proved in Banach space. Also provide an example

which indicate the non-stability of the functional equation.
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