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1. Introduction

Functional equations, such as integral and integro-differential equations (IDEs), partial
differential equations (PDEs), stochastic equations, and others are typically produced when
real-world issues are mathematically modeled. The IDEs have piqued the interest of physicists
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and mathematicians more than other types of equations because they are effective at describing
a variety of real-world dynamical phenomena that arise in scientific and engineering fields
like biology, physics, electrochemistry, economy, chemistry, control theory, electromagnetic,
viscoelasticity, and chemical kinetics (Alkan and Hatipoglu [3], Hamoud and Ghadle [11]], and
Saha et al. [16]]). Since it is frequently challenging to solve integro-differential equations
analytically, it is necessary to find an effective approximation.

The Chebyshev collocation method, BEM with piecewise linear approximation, Runge-Kutta
method, Galerkin method, Taylor collection method, Galerkin methods with hybrid functions,
rationalised Haar functions method, and ADM can all be used to solve IEs and IDEs (Bakodah
et al. [5], and Hamoud and Ghadle [[10]]) with some basic functions. Khuri [13] employed the
Laplace transform numerical scheme in addition to these numerical methods. Additionally,
several authors have explored the characteristics of the IDEs.

The ADM and LADM methods have a variety of applications, including solving differential
equations(DEs), PDEs, IEs, and IDEs (Dawood et al. [6]], Daoud and Khidir [7]], and Sarkar and
Sen [17]).

The LMADM is renowned for its quick convergence of solutions and for using few iterations,
as effectively demonstrated. The MADM and LMADM methods are used to solve DEs [4], [12],
PDEs, IEs, and IDEs, nonlinear boundary value problems (Abbasbandy [1], Ahmed et al. [2],
Daoud and Khidir [7], Duan et al. [8], Kumar and Singh [[14]], and Ramana and Prasad [15])).

It appears that there is always room for improvement in the LMADM approach, particularly
in discretizing the MADM.

The goal of this study is to extend the LMADM approach for solving nonlinear higher-order
VFIDEs by discretizing the MADM first, then connecting various numerical integration schemes
or quadrature rules. This paper will focus on the higher-order nonlinear VFIDE of second kind
of the form:

v™M(x) = gx)+ .[0 Q1(x, L1 (v(2)+ N1(v(t)]dt + .[0 Qalx,t)[La(v(t)) + Nao(v(t)ldt, (1.1)
with the initial conditions:
v®0)=ap, forO<k<(n-1), (1.2)

where L1,L9 are the linear functions of v(#) and N1, N9 are nonlinear functions of v().

2. Preliminaries

2.1 Definition [9]
The Laplace transform of a function v(¢) is denoted by L{v(#)} or V(s) and it is defined by the
integral

V(s)=L{v) = f ooe_Stv(t)dt, (2.1)
0

for those s where the integral converges. Here s is allowed to take complex values.
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2.2 Adomian Decomposition Method (ADM) [8]
We provide some basic information regarding the Adomian decomposition method in this section.
Consider the DEs of the form:

LV +RV +NV =h(x), (2.2)

where L is the highest order derivative of the linear operator, R is the remainder of the linear
operator, which includes derivatives of lower order than L, and NV denotes the non-linear
terms and 4 is the source term. Equation (2.2) can be rewritten as:

LV =h(x)-RV -NV. (2.3)

Using the above conditions and the inverse operator L™! on both sides of equation (2.3), we
obtain

V=L Nrx)}-L YRV)-LYNV). (2.4)

A function g(x) is defined in the equation after integrating the source term and adding it to the
terms resulting from the problem’s stated conditions

V=g(x)-L Y RV)-LI(NV). (2.5)

For linear part of V, we put
o0
V()= ) vi(x). (2.6)
k=0

An infinite series of Adomian polynomials created specifically for the given non linearity serve
as the representation for the nonlinear operator F'V = NV, assuming NV is analytic

F(v)=) A, 2.7)
k=0

where A}’s are given by:
Ag =F(vo),
A1 = UlF/(vo),

1
Ay =voF (vo) + 5v%F”wo),

1
As =v3F'(vo) +v1v2F " (vo) + §U§F"'(Uo),

1 1 1 .
Ag=v4F'(vo) + (Evg + vlvg)F"(vo) + Ev%ng'"(vo) + EU%F(LU)(U()),

The following approach generates the polynomial A;’s for all types of non-linearity so that they
only depend on v to v}’s:

1 k k .
2 d F( A‘vi)] . (2.8)
=0 1=0

T RldAF
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3. Results
Integrating n-times of eqn. (1.1) in the interval [0,x] with respect to x we obtain,
n-1,r x
0@ =D"lgw+ Y. Za,+D7H | Qi HIL1 1)+ Nywe)ldt
r:0 r- 0
a
+D7 [ Qe OILa(0(e) + Na(wienldr, 3.1)
0
where D! is the multiple integration operator given as follows:
X X X X
D7) :f f f f (Ydxdxdx --- dx(n-times). 3.2)
0o Jo Jo 0
-1 ,
Let w(x) =D 1g(x)+ nz “7ar, thus eqn. (8.1) becomes
r=0 "~
X a
v(x):i//(x)+D_1f0 Qq(x, )[L1(v(@)) + N1(v(t)]dt +D_1f0 Qa(x, )[La(v(8)) + Na(v(t))]d¢,
(3.3)
where

n!

D_lfo (21(96,1,‘)[141(v(t))+N1(v(if))]difZf0 Qa(x, L1 (v(@) + N1(v(d)]d¢. (3.4)

To establish the result for the existence of unique solution to the considered type problem we

are using the following assumptions:

(A1) There exists four constants f1, 82, 8,7,Y1 and yg such that for any vy,vq € C([0,a],R)
IL1(v1) — L1(ve)l < B1lvy —val, IN1(v1)—N1(ve)l < B2lvy —val,
|L2(v1) — Lo(v)l < y1lvi —v2l, [N2(v1)—Na(v2)l <7yelvy—v2l

and f=p1+ P2, ¥ =71+72.
(A2) Suppose for all x €[0,a]
(x—1)"
n!

Qq(x,t)| <07 and D 1Qu(x, )| < 0s.

(A3) w(x) is bounded function for all x € [0,a].

Theorem 3.1. Suppose that assumptions hold. If
/1:(91,6+02)/)a< 1, (35)
then there exists a unique solution v(x) € C([0,a]) to the IVP (1.1) and (1.2).

Proof. Let v1 and vy be two different solutions of the IVP (1.1) and (1.2), then

lv1 —va| =

x A
fo (xn') Q1 (x, L 1(v1() — L1(02(8) + N1(v1(1)) — N1(va(¢)]dt

+D7! fo Qa(x, ) L2(v1(2)) — La(va(t)) + No(v1(2)) - NZ(UZ(t))]dt'

X
<f
0
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+f0 1D~ Q9 (x, )I[|1Lo(v1(2)) — La(wa())] + INo(v1()) — No(va(t))1d

< [01(B1 + P2)x + O2(y1 +y2)allv: —val
<[01(B1 + B2) +02(y1 +y2)lalvy —vg|
<(018+062y)alv —val.
This implies,
(1-A)|vy—vel=0. (3.6)

Since 1 -1 >0, so vy —vg| = 0. Therefore, v1 = vy and this completes the proof. O

4. Description of the Method

The development of more advanced and effective approaches for Higher-order nonlinear VFIDE,
such as the LDMADM, has received significant attention. In this part, we will explain this
technique.

4.1 Laplace Discrete Modified Adomian Decomposition Method
We know,

L{v'(x)} = sL{v(x)} - v(0), (4.1)
more generally,

L™ @)} = 5" L{vx)} — s 1v(0) - s"20"(0) - - - — v 1(0). (4.2)
Write g(x) as a sum of two functions, say g1(x) and go(x). Then, the eqns. and becomes

v™(x) =g1(x)+g2(x)+f0 Q1 (x, L1 (v(#) + N1(v(@))]d¢ +f0 Qa(x, )[L2(v(?)) + Na(v(#))1dt,

(4.3)
with the initial conditions:
vP(0)=az, for 0<sk<(n-1). (4.4)
Thus, on applying the Laplace transform to both sides of eqn. (4.3), we obtain
£ @) = g1 + g2+ [ O DIL1w(e) + Ny oo
+ foa Qo(x, )[La(v(2)) +N2(v(t))]dt}. (4.5)
Using (4.2), we have
" L) —s"10(0) - 5" 20(0) - - = v 7 P(0) = L{g1 ()} + L{ga(x)

+L{j(; Qq(x, L1 (@) + N1(v(@))]d¢

+ fo Qo(x,)[Lo(v(E)) +Nz(v(t))]dt}
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a_;_a_§+...+an_f En—
S S s—

1 1
— L@ = ? + Ly L1} + — Llga()

1 X
+s—nL{ fo Q1x, DL (0(D) + N1 (u(e)]dt

a

+f0 Qa(x, ) La(v(2)) +N2(v(t))]dt}. (4.6)

In the decomposition approach, the solution v(x) is represented as a series of the form:

[e.®]
v(@) =) vp), (4.7)
m=0
and the nonlinear term N1(v(¢)) and No(v(¢)) are decomposed into an infinite series of the form
Ni1(w(®) = ZAi(t) and Na(v(t)) = ZBi(t), (4.8)
i1=0 i=0

where A; and B; are the Adomian polynomials of vg,v1,v9,...,v;, given by the formula

A L d* N(Z/lv) and B L d* N(ZA‘ ) (4.9)
ko deAk ' =0 A=0 H k'd/lk 2 =0 A=0 .
By using eqns. (4.7), (4.8) and (4.9) in eqn. (4.6), we get
o Qg as An-2 Ap-1 1 1
L{ mzzovm(x)} . 3_2 —Et Tt T T S—nﬁ{gl(x)} + S—nL{gz(x)}
X o0 o0
+—nL{f Qi(x,t) Ll( Y vm(t))+ZAi(t) dt
S 0 m=0 i=0
a o0 (e ¢]
+f Qol(x,t) Lz( Y vm(t)) +Y Bi(t) dt}. (4.10)
0 m=0 i=0
On comparing between the right and left hand sides of the eqn. (4.10) we thus obtain:
ay a1 « Ap- an
L{og(o)h = =+ — = —2 4o L —L{gl(x)} (4.11)
s 8% s s
1 1 x
Liv1(x)} = S—nﬁ{gz(x)} + s—nﬁ{fo Q1 (x, IL1(vo(?)) +A0(t)]dt}
1 a
+S—nﬁ{f0 Qz(x,t)[Lz(Uo(t))+Bo(t)]dt}, (4.12)

and for m =1,

X a
Livm+1(x)} = sinﬁ{fo Q1(x, L1 (v (1)) + A (B)1dE +f0 Qo (x, ) Lo(v (1)) +Bm(t)]dt}-
(4.13)
By using the inverse laplace transform of eqn. (4.11) we may obtain v¢(x), and consequently A,
By will be obtained. Also, using Ay, By we can evaluate vi(x). The obtained values of v¢(x) and
v1(x) will helps to determine of A1, B; that will allow to find vo(x), and so on. The recursive
relation is defined by

vo(x) = L_l{@ +
s

@@, Gz G

s2 s sn—1 s"

1
}+L { nL{gl(x)}}, (4.14)
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1 1 x
v1(x)=£_1{s—n£{g2(x)}}+£_1{s—n£{ fo Ql<x,t>[L1<vo<t»+Ao(t)]dt}}

+ £_1{ sinﬁ { j(;a Qa(x,t)[La(vo(t)) +Bo(t)]dt} }, (4.15)

and for m =1,

vm+1(x)=£_1{sin£{f Qa(x, OIL1(vm (D) + A (D)]dE
0

[ Qe DILoom ) + Bt} (4.16)
0
Hence the solution of the given problem is

v(x)=volx) +v1(x)+vo(x)+ -+ v (x)+---. 4.17)

5. Numerical Examples

In this section, we discussed some numerical example based on the ADM and LDMADM.

Example 5.1. Consider the VFIDE,

x 1
@ (x) = xe ™ — 2coshx —f e v()dt +f e*3t3(t)dt, (5.1)
0 0
with the initial conditions:
v(0)=1,0"(0)=-1, v"(0)=1, v"(0)=-1 and v%(0)=1. (5.2)

where v(x) = e™ is the exact solution.
Here, g(x) = xe ™ —2coshx, Qq(x,t) = —e!™, Qalx,t) = e3¢, L1(v(?)) = v(t), Lo(v(t)) = 0,
N1(w(#) =0 and Na(v(t)) = v3(¢). So, g(x) =xe *—2coshx =xe *—e*—e* = —e ¥ +xe ¥ —e*.
Choose, g1(x) =xe ™™ and go(x) = —2cosh(x) = —e* —e™* = —(e* +e7%).
Applying Laplace transform of equation (5.1)),

x 1
L{v(v)(x)}:L{xe_x}—L{ex+e_x}—L{f et_xv(t)dt}+L{f ex+3tv3(t)dt}
0 0

_ L) 1 N 1 1 N 1 N 1 1 1
v =—-—-5+—5—-—+—= - -
s s2 s3 st 5 $B(s+1)2 s$5(s—-1) s%(s+1)
1 x 1 1
- —5L{f et_xv(t)dt} + —5L{f ex+3tv3(t)dt}. (5.3)
S 0 s 0
Now applying Modified Adomian decomposition on (5.3), we get

L{OZO:v (x)}—l—i+i—i+i+ 1 ! !
0 T s 82 83 st 85 s5(s+1)2 sP(s—1) sS(s+1)

x 00 1 00
—iL{f ey vm(t)dt}+si5£{f ety Bm(t)dt}, (5.4)
0 0

5B
m=0 m=0
where
00 1 d* k.
v(x):’;()vm(x) and Bk:EW[NQ(;)A‘vi) ,1:0' (5.5)
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Taking inverse Laplace transform of equation (5.4), we obtain

On comparing both sides of equation (5.6), we get
1 1 1 i
ER —5} e {

3 4

and

S o= L—l{
m=0

v1(x) = —L—l{

1
s

+L'1{—

[

5

S

1 1

vo(x) = L‘l{— -+

s s

:6—5x+2x2—x—+——5e_x—xe_x

1

s%(s+1)

s2 g3 st §°

m=0

x
24

-1 ;}_
} “ {35(3—1)

1
+L—1{Si5z{j0 ex+3tBo(t)dt}}

I G ¥ B O _1{

+ + }+L {35(s+1)2} L

_5_1{#}_5_1{iﬁ{f‘xet—xiv (t)dt}}
s5(s+1) s Jo ="

e* 3t f Bm(t)dt}}.

o)
s9(s+1)2

L_l{%[,{fxet_xvo(t)dt}}
S 0

ol
s%(s—1)

(5.6)

(5.7)

(5.8)

x 1
Um+1(x) = —L_l{%ﬁ{f et_xvm(t)dt}} +L_1{i5£{f ex+3th(t)dt}}, form=1.
S 0 S 0

(5.9)
The numerical results are given in Table
Table 1. Numerical results of Example

Value | Exact value ADM LDMADM error error

of x of v(x) (ADM) (LDMADM)
0 1.0000000000000 0.999998999980947 | 0.999999999984941 | 1.00x 1075 | 1.50 x 10711
0.1 0.904837418035960 | 0.904837518017604 | 0.904837418020688 | 9.99x 1078 | 1.52x 1011
0.2 0.818730753077982 | 0.818731753069754 | 0.818730753062487 | 9.99x 1077 | 1.54x 10~
0.3 0.740818220681718 | 0.740815220650577 | 0.740818220665667 | 3 x 1076 1.60 x 10711
0.4 0.670320046035639 | 0.670311046101893 | 0.670320046017837 | 8.99x 1076 | 1.78 x 1011
0.5 0.606530659712633 | 0.606532759643347 | 0.606530659690178 | 2.09x 1076 | 2.24 x 10711
0.6 0.548811636094026 | 0.548811605943781 | 0.548811636061119 | 3.08 x 1078 | 3.29 x 10~ 11
0.7 0.496585303791410 | 0.496586313480114 | 0.496585303737787 | 1x 1076 5.36x 10711
0.8 0.449328964117222 | 0.449325963554682 | 0.449328964026174 | 3 x 1076 9.10x 10711
0.9 0.406569659740599 | 0.406569858637504 | 0.406569659586523 | 1.98 x 107 | 1.54 x 10710
1 0.367879441171442 | 0.367875419296401 | 0.367879440916897 | 4.02x 1075 | 2.54 x 10710
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Exact
LDMADM

Figure 1. Numerical results of Example

But, if we choose g1(x) = —e™ and gao(x) = xe ™ —e*, then from equation (5.6) formula for
the recursive relationship is

UO(x):L_l{l_i_Fi_i_,_i}_L—l{ 1 }:e—x’

s s2 g3 ¢t §b

Bl Frrs R e G P RO S
vi(x)=L {85(8+1)2 L FG6-1) L 35L Oe vo(t)dt
1
+L—1{si5L{ fo ex+3tBO(t)dt}}
ol <l <ol
=4 {35(s+1)2 . s%(s—1) . s%(s+1)2 L s%(s—1)

=0 (5.10)

X 1
um+1(x)=—5—1{i5L{f et_xvm(t)dt}}+ﬁ_1{i5£){f ex+3th(t)dt}}
S 0 S 0

=0 form=1. (Since vi =0 implies B; =0 and consequently so on.) (5.11)

and

Hence the solution is
v(x)=vox)+v1(x) +va(x)+...=e7*

K

which is the exact solution.
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Example 5.2. Consider the VFIDE:
. X 1
() =1+e* —xe* + f e 2tu(t) + v2()ldt - f e 3t3(t)dt (5.12)
0 0

with the initial conditions: v(0) =v'(0) = v”(0) = v""(0) = 1, where v(x) = e is the exact solution.
Here, g(x) = 1+e* —xe®, Qi(x,t) = 2 Qq(x,t) = —e*3, L1(v(t)) = v(t), La(v(t)) = 0,
N1(v(t)) = v2(#) and Na(v(t)) = v3(#).
Choose, g1(x) =1+¢”* and ga(x) = —xe*
Applying Laplace transform on (5.12), we get

. x 1
L{v(”’)(x)}:L{1+ex}—L{xex}+L{ f ex—2t[v(t)+v2(t)]dt}—5{ f ex—3tv3<t)dt}
0 0

11 1 1 1 1 1
== Lo =-+S5+35+
s S

+—=+ -
s2 st s% st(s—-1) st(s—1)2
1 Y ox-ot 2 1 b oat 3
+—=L [ e @) +vi@)dty — =L f e tvl(t)dt . (5.13)
st 0 st 0
Now applying MADM, we get
& 1 1 1 1 1 1 1
L =—+=+—=+— -
{néovm(x)} s+32+s3+s4+s5+ st(s—1) st(s—1)2
1 x 00 1
+—4£{/ e Y vm(x)+Am(t)]dt}——L{f ex_?’th(t)dt}, (5.14)
S 0 m=0 0
where
A 1dek/1i dB—ldekA
v(x) = Z Um(x), Ap= =y | N1 ;O vil| and Be= e | Ve lZO vil|
(5.15)
Applying inverse laplace transform on (5.14)), we get
1 1 1 1 1 1
m(x) = ot +£‘1{ +—}—L‘1{ }
Z Um () = { s2 3 st } s st(s—-1) st(s —1)2
1 X o0 o0
+L” { 4L{f th( Y o)+ Y Am(t))dt}}
S 0 m=0 m=0
1 1 0o
-L” { £{f e 3y Bm(t)dt}}. (5.16)
34 0 m=0
On comparing both sides of eqn. (5.16), formula for the recursive relationship is
1 1 1 1 1 1 x*
—r-1 -1 —
vo(x)—L {;+s_2+s_3+3_4}+£ {s—5+m}—€x+ﬂ, (517)

_ 1 (1 v
v1(x) =L 1{m}+5 1{8—4L{f0 e 2t(v0(t)+A0(t))dt}}

1
—L‘l{%ﬁ{ f ex—3tBO(t)dt}}, (5.18)
S 0
and for m =1,
x 1
um+1(x)=L—1{iL{ f ex—2t(um(x)+Am(t))dt}}—L—l{iﬁ{ f ex_3th(t)dt}}. (5.19)
st 0 st 0
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The numerical results are given in Table

Table 2. Numerical results of Example

Value | Exact value ADM LDMADM error error

of x (ADM) (LDMADM)
0 1.00000000000 | 1.002173330213613 | 1.000012814118250 | 2.17x 1073 | 1.28 x 1075
0.1 1.10517091808 | 1.103461661744839 | 1.105183946973069 | 1.7x1073 | 1.30x 1075
0.2 1.22140275816 | 1.211789414102073 | 1.221416004951750 | 9.6 x 1073 | 1.32x 1075
0.3 1.34985880758 | 1.359321204686033 | 1.349872275474366 | 9.4x 1073 | 1.834x 1075
0.4 1.49182469764 | 1.493344121624684 | 1.491838389997030 | 1.5x1072 | 1.37x1075
0.5 1.64872127070 | 1.659280542839274 | 1.648735190965107 | 1.05x 1072 | 1.39x 1075
0.6 1.82211880039 | 1.832702316188225 | 1.822132952067463 | 1.06 x 1072 | 1.41x 1075
0.7 2.01375270747 | 2.016346442231609 | 2.013767094086068 | 2.6 x 1073 | 1.43x107°
0.8 2.22554092849 | 2.228132416143231 | 2.225555553613046 | 2.6 x 1073 | 1.46x107°
0.9 2.45960311116 | 2.450181401869930 | 2.459617978455912 | 9.4x 103 | 1.48x 107>
1 2.71828182846 | 2.738837429959827 | 2.718296941837674 | 2.06 x 1072 | 1.51x107°

2.8

2.6 [

Exact
LDMADM

Figure 2. Numerical results of Example
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But, if we choose g1(x) = e* and ga(x) = 1 —xe*, then from eqn. (5.16) we get

41 1 1 1 _ 1
vo(x):L 1{;+s—2+s—3+s—4}+£~ l{m}zex, (520)

v1(x) = L-l{i ;} +L-1{i4z{f0x ex'zt(vo(t)ﬂ-Ao(t))dt}}

5 sh(s—1)2 S

-1 1 . x—3t
iy {S—4L{f0e Bo(t)dt}}

S R
=L {35 st(s—1)2 L st s—1+(s—1)2 s ~ st(s—=1)

=0, (5.21)

and for m =1,

x 1
vm+1(x):5—1{i4z{ f ex_Zt(vm(x)+Am(t))dt}}—L‘l{%ﬁ{ f ex_3th(t)dt}}
S 0 S 0

=0. (Since v; =0 implies A; =B1 =0 and consequently so on.) (5.22)

Hence,

v(x) =vo(x)+v1(x) +vo(x)+... =€,

which is the exact solution.

6. Conclusion

In this study, we introduce a new modification to the MADM method based on the discretization
property. We propose a Laplace Discrete Modified Adomian decomposition method (LDMADM)
that can effectively solve nonlinear higher-order VFIDEs. The LDMADM method is shown to
outperform the ADM method by providing approximate solutions with fewer computational
steps, as demonstrated in Table [T, Table [2 Figure [I, and Figure [2] The results indicate that
the LDMADM approach is both user-friendly and efficient. The existence of unique solutions
guarantees that the solutions obtained are definitive and unambiguous.
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