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Abstract. For any non-real number a, the significance of the a-analogue Atom-Bond Connectivity
indices lies within the actuality of their particular cases for well-chosen values for the variant a.
In this paper, we obtained some bounds based on the vertex-degree along with the variant a value,
inequalities in other degree-based indices, and characterizations of these novel a-analogue ABC
indices.
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1. Introduction
The graphs G = (V ,E) chosen in this paper are simple with the vertex set V (G) and the edge
set E(G). The numbers p and q denote the cardinality of V (G) and E(G), respectively. The each
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edge eh = viv j ∈ E(G), vi and v j are incident vertices of eh belongs to V (G). Two vertices are said
to be adjacent if it has a common edge between them, a neighborhood of vi is the set of vertices
adjacent to vi . The cardinal number called the degree of the vi , is represented as dG(vi)= xi ,
the minimum value of xi is δ(G), and maximum values of xi is ∆(G). The number of edges
adjacent to the edge eh = viv j is said to be a degree of the edge eh that is dG(eh) = xi + x j −2.
For more graph theoretic definitions, we refer to Harary [14], and Kulli [15].

In 1998, Estrada et al. [10] introduced the ABC index of a graph G and defined as

ABC(G)= ∑
viv j∈E(G)

√
xi + x j −2

xix j
.

This descriptor is a useful predictive index for studying the temperature of alkane formation.
The general ABC index (Zheng [19]), is defined as

ABCα(G)= ∑
viv j∈E(G)

( xi + x j −2
xix j

)α
.

For more information about ABC-related indices and terminologies, we refer to Ahmadi
et al. [1], Alsaadi et al. [2], Chaluvaraju and Shaikh [4], Das [5], Das et al. [6,7], Estrada [9],
Gutman and Furtula [13], Lin et al. [16], Palacios [17], Sarveshkumar et al. [18], and Zhou and
Trinajstić [20].

We are motivated by Zheng [19] and defined the a-Analogue ABC index and coindex as

ABCa(G)= ∑
viv j∈E(G)

(
xa

i + xa
j −2

xa
i xa

j

) 1
2

, (1.1)

ABCa(G)= ∑
viv j∉E(G)

(
xa

i + xa
j −2

xa
i xa

j

) 1
2

, (1.2)

where a ≥ 1, if a < 1, then we get contradiction for the equations (1.1) and (1.2), i.e., if a < 1, for
each member of eh = xix j ∈ E(G), 1≤ xi ≤ x j , =⇒ 0≤ xa

j ≤ xa
i ≤ 1.

If there exists a vertex vi ∈V (G) such that xi > 1, for any a < 1, then xa
i < 1 and xi+x j−2< 0

which contradicts that square root of a negative value does not exist in the real number system.
Therefore, a ≥ 0 is necessary condition.

This paper aims to develop some inequalities based on the variant a using the limit value of
the function, i.e., as a approaches some undefined values like ∞ and finally finds some bounds
based on the values of xi , we refer to Carothers [3], Dimitrov [8], Folland [11], and Gutman [12]
for more information.

2. Main Results
Theorem 2.1. Let f (xi, x j,a) be a function with 3 variables and is defined as

f (xi, x j,a)=
(

xa
i + xa

j −2

xa
i xa

j

) 1
2

, (2.1)

where xi, x j ∈ {1,2,3, . . . , p−1}, a ≥ 1. Then the value of f (xi, x j,a) is 1 and 0.

Proof. Let f (xi, x j,a) be a function with 3 variables xi, x j ∈ {1,2,3, . . . , p−1} and a ≥ 1. We present
a few cases to discuss the maximum value and the minimum value of f (xi, x j,a) by fixing some
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variables present in it.

Case 1: If xi = x j = 1, then degree of each edge is equal to 0. Equation (2.1) attained its minimum
value, that is, f (1,1,a)= 0, for a ≥ 1.

Case 2: If xi = 1 and x j ̸= 1, then by equation (2.1), we have

f (1, x j,a)=
(

xa
j −1

xa
j

) 1
2

. (2.2)

Equation (2.2) is an increasing function, and it attains the minimum value as x j → 2, that is,

lim
x j→2

f (1, x j,a)= lim
x j→2

(
xa

j −1

xa
j

) 1
2

=
(
2a −1

2a

) 1
2

,

it reaches the minimum value at x j = 2 for all a ≥ 1.
The maximum value of equation (2.2) attained as x j → (p−1), i.e.,

lim
x j→(p−1)

f (1, x j,a)= lim
x j→(p−1)

(
xa

j −1

xa
j

) 1
2

=
(
(p−1)a −1

(p−1)a

) 1
2

,

it reaches the maximum value at x j = p−1 for all a ≥ 1.
We have another variant a ≥ 1, which plays an important role on the function f (1, x j,a) to

attains its maximum value, that is

lim
a→∞ f (1, x j,a)= lim

a→∞

(
xa

j −1

xa
j

) 1
2

≈ 1 , (2.3)

if xi < x j , then lim
a→∞ f (1, xi,a)< lim

a→∞ f (1, x j,a), that is as x j → (p−1), lim
a→∞ f (1, x j,a)≊ 1.

Case 3: If xi ̸= 1 and x j ̸= 1, then the functional f (xi, x j,a) value always lies between 0 and 1.
If xi = x j , then equation (2.1) becomes

f (xi, xi,a)=
(

2xa
i −2

x2a
i

) 1
2

=
2

(
1− 1

xa
i

)
xa

i

 1
2

, (2.4)

the functional value will decrease as the value of xi approaches its supremum, i.e.,

lim
(xi ,a)→(p−1,∞)

f (xi, xi,a)= lim
a→∞

2
(
1− 1

(p−1)a
i

)
(p−1)a

i

 1
2

≈ 0 .

The variant a plays the most important role, as it tends to ∞ the functional value of
f (xi, x j,a) approaches to 0 or 1. The value a must be a finite to characterize the invariants of
the graphs.

Further, for xi < x j , then

f (x j, x j,a)< f (xi, x j,a)< f (xi, xi,a), for all eh ∈ E(G). (2.5)

By Theorem 2.1, we have the following observation.

Observation 2.1. In general, for 1≤ x1 ≤ x2 ≤ ·· · ≤ xp ≤ p−1:
(i) by equation (2.2), f (1, x1,a)≤ f (1, x2,a)≤ ·· · ≤ f (1, xp,a).

(ii) by equation (2.4), f (x1, x1,a)≥ f (x2, x2,a)≥ ·· · ≥ f (xp, xp,a), if x1 > 1.
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(iii) by equation (2.4) and equation (2.5),

f (x1, x1,a)≥ f (x1, x2,a)≥ f (x2, x2,a)≥ f (x2, x3,a)
...

≥ f (xp−1, xp−1,a)≥ f (xp−1, xp,a)≥ f (xp, xp,a).

Further, the equality is satisfied if and only if x1 = x2 = ·· · = xp .

Theorem 2.2. Let G be an acyclic graph with p-vertices and q-edges. Then

0≤ABCa(G)≤ q
(

qa −1
qa

) 1
2

.

Further, if there is a unique path between vi and v j for all x j, x j ≥ 1, then

(q−2)
(
2(2a −1)

22a

) 1
2 +

(
2a −1
2a−1

) 1
2 ≤ABCa(G)≤ q

(
qa −1

qa

) 1
2

.

Proof. Let G be acyclic graph with p-vertices and q-edges.
If xi = x j = 1 for all eh = viv j ∈ E(G), then using equation (2.1),

( xi+x j−2
xi x j

) 1
2 = 0 for each eh ∈ E(G),

here we get the minimum value and using equation (2.3), the maximum value of
( xi+x j−2

xi x j

) 1
2

attains for each eh ∈ E(G), xi = 1, x j = q, that is
( xi+x j−2

xi x j

) 1
2 = ( qa−1

qa

) 1
2 , so we conclude that for

each edge eh ∈ E(G),

0≤
( xi + x j −2

xix j

) 1
2 ≤ ( qa −1

qa

) 1
2 . (2.6)

Taking the sum of each eh ∈ E(G), we have

0≤ABCa(G)≤ q
(

qa −1
qa

) 1
2

.

Further, unique path between vi and v j for all x j, x j ≥ 1, then the minimum value will attain for

the path with q edges and ABCa(G)= (q−2)
(2(2a−1)

22a

) 1
2 + (2a−1

2a−1

) 1
2 . The maximum value attains if

the degree of incident vertices of each edge is 1 and q and ABCa(G)= q
( qa−1

qa

) 1
2 .

(q−2)
(
2(2a −1)

22a

) 1
2 +

(
2a −1
2a−1

) 1
2 ≤ABCa(G)≤ q

(
qa −1

qa

) 1
2

.

By Theorem 2.2, we have

Corollary 2.1. Let G be any tree with p-vertices and q-edges. Then

(p−3)
(
2(2a −1)

22a

) 1
2 +

(
2a −1
2a−1

) 1
2 ≤ABCa(G)≤ (p−1)

(
(p−1)a −1

(p−1)a

) 1
2

.

Theorem 2.3. Let G be a connected graph with p-vertices and q-edges. Then

q
(
2∆a −2
∆2a

) 1
2 ≤ABCa(G)≤ q

(
δa +∆a −2

δa∆a

) 1
2

.
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Proof. Let G be a connected graph, using equation (2.5) and Observation 2.1, the minimum
value attains if xi = x j =∆ and maximum value attains if xi = δ, x j =∆ for all eh ∈ E(G).
Taking the maximum and minimum values of each term corresponding to eh and summing, we
have

q
(
2∆a −2
∆2a

) 1
2 ≤ABCa(G)≤ q

(
δa +∆a −2

δa∆a

) 1
2

.

3. Inequalities in Terms of General Zagreb Indices
Now, we obtain an inequality of ABCa(G) in terms of the first and second general Zagreb indices,

Ma+1
1 (G)= ∑

uv∈E(G)
[xa

i + xa
j ], (3.1)

Ma
2 (G)= ∑

uv∈E(G)
[xa

i xa
j ], (3.2)

where xi denotes the degree of the vertex vi and a is a non-zero real number.

Theorem 3.1. Let G be a graph with p-vertices and q-edges. Then

ABCa(G)≤ Ma+1
1 (G)+M−a

2 (G)
2

− q .

Proof. Let n1, n2 are any two positive real numbers, the inequality of arithmetic and geometric
means is given by

p
n1n2 ≤ n1+n2

2 .
Replacing n1 by xa

i + xa
j −2 and n2 by xa

i xa
j , we have√√√√ xa

i + xa
j −2

xa
i xa

j
≤

xa
i + xa

j −2+ 1
xa

i xa
j

2

⇒
√√√√ xa

i + xa
j −2

xa
i xa

j
≤

xa
i + xa

j

2
−1+ 1

2xa
i xa

j
. (3.3)

The inequality (3.3) satisfies for each eh = xix j ∈ E(G), taking the sum of those inequalities,
we have ∑

viv j∈E(G)

√√√√ xa
i + xa

j −2

xa
i xa

j
≤ ∑

viv j∈E(G)

(
xa

i + xa
j

2
+ 1

2xa
i xa

j

)
−

q∑
h=1

1 .

Using equation (3.1) and equation (3.2), we have the required bounds,

ABCa(G)≤ Ma+1
1 (G)+M−a

2 (G)
2

− q .

Observation 3.1. Let G be a connected graph with p-vertices and q-edges. Then

ABCa(G)≤ABC
a
2 (G).

Further, the equality holds if a = 1.

4. Special Classes of Graphs
Theorem 4.1. Let G be a regular graph with xi = r for each vi ∈V (G), p ≥ 2. Then
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(i) ABCa(G)= pr
2

(
2ra−2

r2a

) 1
2 ,

(ii) ABCa(G)= p(p−r−1)
2

(
2ra−2

r2a

) 1
2 ,

(iii) ABCa(G)= p(p−r−1)
2

(
2(p−r−1)a−2

(p−r−1)2a

) 1
2 ,

(iv) ABCa(G)= pr
2

(
2(p−r−1)a−2

(p−r−1)2a

) 1
2 ,

where a ≥ 1.

Proof. Let G be a regular graph with dG(vi) = r for all 1 ≤ i ≤ p. The degree of each edge is
xa

i + xa
j −2= 2ra −2, also xa

i xa
j = r2a for a ≥ 1.

By equation (1.1), we have

ABCa(G)= q
(
2ra −2

r2a

) 1
2

,

also, we have for the complementary graph

ABCa(G)= p(p− r−1)
2

(
2ra −2

r2a

) 1
2

.

We can also prove the cases (iii) and (iv) in a similar way.

Corollary 4.1. Let G be a graph with p ≥ 3 vertices. By Theorem 4.1, we have
(i) ABCa(Cp)= p(21−a −21−2a)

1
2 and ABCa(G)= p(p−3)

2 (21−a −21−2a)
1
2 , for any cycle Cp with

p ≥ 3.

(ii) ABCa(G)= p(p−1)
2

(
2(p−1)a−2

(p−1)2a

) 1
2 and ABCa(G)= 0, for complete graph Kp .

Corollary 4.2. Let Km,n be a complete bipartite graph with m and n cardinal vertex set
partitions. Then

(i) ABCa(Km,n)= mn
(

ma+na−2
mana

) 1
2 ,

(ii) ABCa(Km,n)=
(

p(p−1)
2 −mn

)(ma+na−2
mana

) 1
2 ,

(iii) ABCa(Km,n)= m(m−1)
2

(
2(m−1)a−2

(m−1)2a

) 1
2 + n(−1)

2

(
2(n−1)a−2

(n−1)2a

) 1
2 ,

(iv) ABCa(Km,n)= mn
(

(n−1)a+(m−1)a−2
(n−1)a(m−1)a

) 1
2 ,

where a ≥ 1.

5. Conclusions
The novel Atom-Bond Connectivity related indices of a graph, the a-analogue ABC indices lie in
their specific cases for relevantly chosen parameter a values. From the mathematical point of
view, applications, and comparative advantages, many questions are suggested by this research,
among them the following. The extremum value of the terms of ABCa(G) is based on the value
of xi and x j of incident vertices of the edge eh = viv j .

(i) The value of ABCa(G) increases as the degree of adjacent vertices of an arbitrary edge
approaches 1 and p−1.
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(ii) The value of ABCa(G) decreases as the degree of the incident vertices approaches to p−1.

(iii) In the case of a non-cyclic graph, the maximum value of ABCa(G) attains if it has a
subgraph with a degree of incident vertices of each edge is 1 and q.

(iv) For various values of the variant a results in the convex function since it has fractional
power.
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