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1. Introduction
The management of uncertainty constitutes a pivotal challenge across numerous academic
domains, ranging from engineering to economics. Addressing this challenge, Molodtsov’s seminal
work on soft sets [10] revolutionized the field by introducing a formalism for handling imprecise
or incomplete information. This concept has since found extensive applications in decision-
making, pattern recognition, and data analysis.

Building on this foundation, subsequent researchers, such as Das et al. [6], have contributed
significantly to the principle of soft NDLS. Their investigations provided a mathematical

http://doi.org/10.26713/cma.v15i1.2527
https://orcid.org/0000-0002-6078-9934
https://orcid.org/0000-0002-9905-7730
https://orcid.org/0000-0003-2842-7471
https://orcid.org/0000-0002-6064-505X


266 Soft n-Normed Linear Spaces: Generalizations and Extensions from Soft Normed Spaces: B. S. Reddy et al.

framework for modeling uncertainty within normed vector spaces. This extension not only
enriched the theoretical foundation but also opened up new avenues for practical applications,
particularly in fields like optimization and approximation theory.

Gunawan and Mashadi’s [8] derivation of an (n−1)-norm from the n-norm represents a
notable stride in the study of normed spaces. Their work illuminated the intricate relationships
between different levels of norms, unveiling a profound structure within these mathematical
structures. This revelation holds far-reaching implications, not only for the theoretical
comprehension of normed spaces but also for their practical efficacy across diverse domains.

In the present study, we draw inspiration from these seminal contributions and aim to
broaden the horizons of NDLS. We introduce the conceptions of soft 2-NDLS and soft n-NDLS,
unifying and extending theories from soft NDLS (Das et al. [6]), n-NDS (Gunawan and Mashadi
[8]), and insights from Narayanan and Vijayabalaji [11].

1.1 Historical Review
The management of uncertainty has been a perennial challenge in various fields, driving the
need for formal frameworks to grapple with imprecise or incomplete information. A pivotal
milestone in this endeavor was reached with the introduction of soft sets by Molodtsov [1] in
his seminal work. This breakthrough, which happened in the latter half of the 20th century,
marked a watershed moment in the field of uncertainty modeling.

Molodtsov’s notion of soft sets provided a versatile mathematical tool to represent and
manipulate uncertain information. It laid the groundwork for a systematic approach for handling
vague, ambiguous, or contradictory data. This development found immediate applications
in decision-making, where uncertainties abound, and in pattern recognition, where precise
distinctions can be elusive.

Building on the foundation laid by Molodtsov, subsequent researchers further extended
and refined the theory. Notable among these contributions is the work of Das et al. [6], who
delved into the realm of soft (NDLS). Their investigations, spanning the late 20th and early
21st centuries, provided a rigorous mathematical framework for modeling uncertainty within
normed vector spaces.

The incorporation of soft norm into the theory of normed spaces represented a significant
advancement. This extension not only enriched the theoretical underpinnings but also opened
up new avenues for practical applications. In particular, the newfound ability to quantify
uncertainty within normed spaces had profound implications for fields like optimization and
approximation theory.

In parallel, Gunawan and Mashadi [8] made a noteworthy contribution in the study of
normed spaces by deriving an (n−1)-norm from the n-norm. This development, emerging in
the early 21st century, shed light on the intricate relationships between different levels of
norms. It revealed a deep-seated structure within these mathematical spaces, offering a fresh
perspective on the nature of NDS.

This revelation had far-reaching implications, not only for the theoretical understanding of
normed spaces but also for their practical utility across diverse domains. It provided researchers
with a powerful tool to navigate the complexities of spaces equipped with norms, offering
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insights that could be leveraged in a wide range of applications, from mathematical analysis to
engineering and beyond.

In summary, the historical evolution of uncertainty management reflects a trajectory of
continuous innovation and refinement. From Molodtsov’s [10] pioneering work on soft sets
to the extensions into soft NDLS by Das et al. [6] and the insights gained from Gunawan
and Mashadi’s [8] study of normed spaces, each contribution has left an indelible mark on
the field. These developments collectively form the foundation upon which the present study
builds, seeking to further extend and unify these theories to address contemporary challenges
in uncertainty modeling.

1.2 Need of the Present Study
While the existing body of work on soft NDLS and n-NDLS has been instrumental in handling
uncertainty, there exists a compelling case for extending this theory. The current paradigm,
though insightful, primarily addresses specific instances and may not fully capture the
intricacies of uncertainty in more complex, multidimensional settings.

Moreover, Gunawan and Mashadi’s [8] derivation of an (n− 1)-norm from the n-norm
represents a crucial advancement, prompting the exploration of higher-order norms and their
potential implications. Investigating these extensions may uncover deeper insights into the
underlying structures of normed spaces, offering a more nuanced understanding of their
mathematical properties.

Practical applications of soft n-normed linear spaces remain an area ripe for exploration.
By establishing concrete use cases across various domains, from optimization to decision-making
under uncertainty, we aim to not only validate the theoretical underpinnings of this extended
framework but also showcase its utility in real-world scenarios.

In light of these attentions, this paper seeks to bridge these gaps by introducing the concept
of soft n-NDLS. Through unification and extension of existing theories, we endeavor to provide
a versatile mathematical framework capable of addressing the diverse challenges posed by
uncertainty. By means of rigorous analysis and practical demonstrations, we aim to underscore
the relevance and significance of this extended theory in both theoretical and applied contexts.

2. Preliminaries
In this part, we undertake a comprehensive analysis of the essential notations and definitions
outlined by Molodtsov [10], Das et al. [6], and Yazar et al. [14]. This critical examination
sets the stage for subsequent discussions and extensions, providing the necessary theoretical
groundwork for our exploration.

Definition 2.1 ([10]). Let U be a universe and E be a collection of parameters. We define a soft
set over U as a pair (F,A), where F is defined as F :A→P(U), with P(U) signifying the power
set of U, and A⊂ E.

Definition 2.2 ([6]). A soft set (F,E) is called an absolute soft set (Ǔ) if ∀ δ ∈A, F(δ)=U.

Definition 2.3 ([6]). A soft set (F,E) is called a null soft set (Φ) if ∀ δ ∈A, F(δ)=Φ.

Communications in Mathematics and Applications, Vol. 15, No. 1, pp. 265–277, 2024



268 Soft n-Normed Linear Spaces: Generalizations and Extensions from Soft Normed Spaces: B. S. Reddy et al.

Definition 2.4 ([6]). Let R be the collection of real numbers and B(R) the set of all non-empty
bounded subsets of R and A taken as a collection of parameters. Then F :A→B(R) is named
as a soft real set and is represented by (F,A). If (F,A) is a singleton soft set, then (F,A) with
the equivalent soft element, it is called a soft real number.

We use p̃, q̃, r̃, . . . for soft real numbers. For example, 0̃, 1̃ are soft real numbers where 0̃(δ)= 0,
1̃(δ)= 1, ∀ δ ∈A.

Definition 2.5 ([6]). For two soft real numbers p̃, q̃, the following hold:
(i) p̃ ≤ q̃ if p̃(δ)≤ q̃(δ), ∀ δ ∈A,

(ii) p̃ ≥ q̃ if p̃(δ)≥ q̃(δ), ∀ δ ∈A,

(iii) p̃ <̃ q̃ if p̃(δ)< q̃(δ), ∀ δ ∈A,

(iv) p̃ >̃ q̃ if p̃(δ)> q̃(δ), ∀ δ ∈A.

Definition 2.6 ([6]). A soft real number p̃ is non-negative if p̃(δ)≥ 0, for all δ ∈A. We symbolize
the set of all non-negative soft real numbers by R(A)∗.

Definition 2.7 ([6]). A soft set (F, A), F : A →P(V ) will be indicated by F only. A soft set G over
V called a soft linear space (SLS) of V over K if G(λ) is a vector subspace of V , ∀ λ ∈ A.

Definition 2.8 ([6]). Let G be a SLS of V over K. Then a soft element of G is a soft vector (SV) of
G and it is denoted by p̃δ if there is exactly one δ ∈A such that F(δ)= {p} for some p ∈U and
F(δ′) =φ, ∀ δ′ ∈A\{δ}. A soft element of the soft set (K,A) is called a soft scalar and K being
the scalar field.

Definition 2.9 ([6]). A SV p̃δ in a SLS G is the null SV if p̃δ = p̃(δ) = θ, ∀ δ ∈A, θ being the
zero element of V and indicated by Θ. A SV is non-null if it is not a null SV.

We use p̃δ, q̃δ, r̃δ, . . . for SVs of a SLS and k̃, l̃, m̃, . . . for soft real numbers.

The collection of all SVs over Ǔ will be represented by SV(Ǔ) and it is called SLS.

Definition 2.10 ([6]). Let p̃δ, q̃δ be SVs of G and k̃ be a soft scalar. Then
(i) p̃δ+ q̃δ = p̃(δ)+ q̃(δ)= (p̃+ q̃)(δ),

(ii) (k̃ p̃)δ = (k̃ p̃)(δ)= k̃(δ)p̃(δ), ∀ δ ∈A. Obviously, p̃δ+ q̃δ, k̃ p̃δ are SVs of G.

Definition 2.11 ([11]). Let ∥·, ·∥ be a real-valued function on U×U satisfying the succeeding
conditions:
(c-2-N1) ∥p, q∥ = 0 if and only if p and q are linearly dependent,

(c-2-N2) ∥p, q∥ = ∥q, p∥,

(c-2-N3) ∥kp, q∥ = |k|∥p, q∥, where k is real,

(c-2-N4) ∥p, q+ r∥ ≤ ∥p, q∥+∥p, r∥,
∥·, ·∥ is called a 2-norm on U and the pair (U,∥·, ·∥) is called a 2-NDLS.
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Definition 2.12 ([11]). A real-valued function ∥·, . . . , ·∥ on U×·· ·×U︸ ︷︷ ︸
n

satisfying the succeeding

four properties,
(c-n-N1) ∥p1, p2, . . . , pn∥ = 0if and only if p1, p2, . . . , pn are linearly dependent,

(c-n-N2) ∥p1, p2, . . . , pn∥is invariant under any permutation,

(c-n-N3) ∥p1, p2, . . . ,kpn∥ = |k|∥p1, p2, . . . , pn∥, for any k ∈ R (real),

(c-n-N4) ∥p1, p2, . . . , pn−1, q+ r∥ ≤ ∥p1, p2, . . . , pn−1, q∥+∥p1, p2, . . . , pn−1, r∥,
is called a n-norm on U and the pair (U,∥·, . . . , ·∥) is called a n-NDLS.

Definition 2.13 ([14]). Let Ǔ be the absolute SLS, i.e., Ǔ(δ) = U, ∀ δ ∈ A. Then a mapping
∥ ·∥ : SV(Ǔ)→R(A)∗ is a soft norm on the SLS Ǔ if ∥ ·∥ satisfies the succeeding conditions:
For all p̃δ, q̃δ ∈̃SV(Ǔ),
(s-N1) ∥p̃δ∥ ≥ 0,

(s-N2) ∥p̃δ∥ = 0̃ if and only if p̃δ = θ,

(s-N3) ∥k̃ · p̃δ∥ = |k̃| · ∥ p̃δ∥ for every soft scalar k̃,

(s-N4) ∥p̃δ+ q̃δ∥ ≤ ∥p̃δ∥+∥q̃δ∥.
The SLS SV(Ǔ) with a soft norm ∥ · ∥ on Ǔ is said to be a soft NDLS and is symbolized by
(Ǔ,∥ ·∥,A) or (Ǔ,∥ ·∥).

3. Soft 2-NDLS and soft n-NDLS
In this section, we embark on the starter of the concept of soft 2-NDLS and soft n-NDLS,
offering a broader perspective that extends beyond the scope of Definition 2.13, as outlined
below.

Definition 3.1. Let Ǔ be the absolute SLS, i.e., Ǔ(δ)=U, ∀ δ ∈A, of dimension greater than 1,
then ∥·, ·∥ : SV(Ǔ)×SV(Ǔ) →R(A)∗ is said to be a soft 2-norm on the SLS on Ǔ× Ǔ satisfying
succeeding conditions:

For all p̃δ, q̃δ, r̃δ ∈̃SV(Ǔ),
(s-2-N1) ∥p̃δ, q̃δ∥ if and only if p̃δ and q̃δ are linearly dependent,

(s-2-N2) ∥p̃δ, q̃δ∥ = ∥q̃δ, p̃δ∥,

(s-2-N3) ∥k̃ p̃δ, q̃δ∥ = |k̃|∥ p̃δ, q̃δ∥, for every soft scalar k̃,

(s-2-N4) ∥p̃δ, q̃δ+ r̃δ∥ ≤ ∥p̃δ, q̃δ∥+∥ p̃δ, r̃δ∥.
The pair (Ǔ,∥·, ·∥) is called a soft 2-NDLS.

Definition 3.2. The function ∥·, . . . , ·∥ : SV(Ǔ)×·· ·×SV(Ǔ)→R(A)∗ is said to be a soft n-norm
on the SLS on Ǔ×·· ·× Ǔ︸ ︷︷ ︸

n

satisfying the succeeding four properties:

For all p̃δ1 , p̃δ2 , . . . , p̃δn , q̃δn and r̃δn ∈̃SV(Ǔ),
(s-n-N1) ∥p̃δ1 , p̃δ2 , . . . , p̃δn∥ = θ if and only if p̃δ1 , p̃δ2 , . . . , p̃δn are linearly dependent,

(s-n-N2) ∥p̃δ1 , p̃δ2 , . . . , p̃δn∥ is invariant under any permutation,

Communications in Mathematics and Applications, Vol. 15, No. 1, pp. 265–277, 2024



270 Soft n-Normed Linear Spaces: Generalizations and Extensions from Soft Normed Spaces: B. S. Reddy et al.

(s-n-N3) ∥p̃δ1 , p̃δ2 , . . . , k̃ p̃δn∥ = |k̃|∥ p̃δ1 , p̃δ2 , . . . , p̃δn∥, for every soft scalar k̃,

(s-n-N4) ∥p̃δ1 , p̃δ2 , . . . , p̃δn−1 , q̃δn + r̃δn∥ ≤ ∥p̃δ1 , p̃δ2 , . . . , p̃δn−1 , q̃δn∥+∥ p̃δ1 , p̃δ2 , . . . , p̃δn−1 , r̃δn∥.
The pair (Ǔ,∥·, . . . , ·∥) is called a soft n-NDLS.

Proposition 3.3. Every parameterized family of n-norms {∥·, . . . , ·∥δ : δ ∈A} on a vector space U
can be deliberated as a soft n-norm on the soft vector space SV(Ǔ).

Proof. Let Ǔ be the absolute SLS over a field K, A be a non-empty collection of parameters. Let
{∥·, . . . , ·∥δ : δ ∈A} be a parameterized set of n-norms. Let p̃δ ∈̃Ǔ then

p̃(δ) ∈U, ∀ δ ∈A.

Let us define a mapping ∥·, . . . , ·∥ : SV(Ǔ)×·· ·×SV(Ǔ)→R(A)∗ by

∥p̃δ1 , p̃δ2 , . . . , p̃δn∥(δ)= ∥p̃δ1(δ), p̃δ2(δ), . . . , p̃δn(δ)∥δ, ∀ δ ∈A, ∀ p̃δi ∈̃SV(Ǔ).

Then ∥·, . . . , ·∥ is a soft n-norm on Ǔ×·· ·× Ǔ︸ ︷︷ ︸
n

.

We now verify the conditions (s-n-N1), (s-n-N2), (s-n-N3) and (s-n-N4) for soft n-norm.

(s-n-N1): For all p̃δ ∈̃SV(Ǔ) and for every δ ∈A,

∥p̃δ1 , p̃δ2 , . . . , p̃δn∥(δ)= θ

⇐⇒ ∥ p̃δ1(δ), p̃δ2(δ), . . . , p̃δn(δ)∥δ = θ

⇐⇒ p̃δ1(δ), p̃δ2(δ), . . . , p̃δn(δ)= θ

⇐⇒ p̃δ1 , p̃δ2 , . . . , p̃δn =Θ
⇐⇒ p̃δ1 , p̃δ2 , . . . , p̃δn are linearly dependent

∥p̃δ1 , p̃δ2 , . . . , p̃δn∥ = θ if and only if p̃δ1 , p̃δ2 , . . . , p̃δn are linearly dependent.

(s-n-N2): For all, δ ∈A,

∥p̃δ1 , p̃δ2 , . . . , p̃δn∥(δ)= ∥p̃δ1(δ), p̃δ2(δ), . . . , p̃δn(δ)∥δ is invariant under any permutation.

(s-n-N3):

∥p̃δ1 , p̃δ2 , . . . , k̃ p̃δn∥(δ)= ∥p̃δ1(δ), p̃δ2(δ), . . . , k̃(δ)p̃δn(δ)∥δ
= |k̃(δ)|∥ p̃δ1(δ), p̃δ2(δ), . . . , p̃δn(δ)∥δ
= |k̃(δ)|∥ p̃δ1 , p̃δ2 , . . . , p̃δn∥(δ)

= |k̃|∥ p̃δ1 , p̃δ2 , . . . , p̃δn∥(δ).

So,

∥p̃δ1 , p̃δ2 , . . . , k̃ p̃δn∥ = |k̃|∥ p̃δ1 , p̃δ2 , . . . , p̃δn∥, ∀ p̃δi ∈̃SV(Ǔ)

and for all soft scalar k̃.

(s-n-N4): For all p̃δ1 , p̃δ2 , . . . , p̃δn , q̃δn and r̃δn ∈̃SV(Ǔ)

∥p̃δ1 , p̃δ2 , . . . , p̃δn−1 , q̃δn + r̃δn∥ ≤ ∥p̃δ1 , p̃δ2 , . . . , p̃δn−1 , q̃δn∥+∥ p̃δ1 , p̃δ2 , . . . , p̃δn−1 , r̃δn∥,

∥p̃δ1 , p̃δ2 , . . . , p̃δn−1 , q̃δn + r̃δn∥(δ)= ∥p̃δ1(δ), p̃δ2(δ), . . . , p̃δn−1(δ), (q̃δn + r̃δn)(δ)∥δ
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= ∥p̃δ1(δ), p̃δ2(δ), . . . , p̃δn−1(δ), (q̃δn(δ)+ r̃δn(δ))∥δ
≤ ∥p̃δ1(δ), p̃δ2(δ), . . . , p̃δn−1(δ), q̃δn(δ)∥δ
+∥ p̃δ1(δ), p̃δ2(δ), . . . , p̃δn−1(δ), r̃δn(δ)∥δ

≤ ∥p̃δ1 , p̃δ2 , . . . , p̃δn−1 , q̃δn∥(λ)+∥ p̃δ1 , p̃δ2 , . . . , p̃δn−1 , r̃δn∥(λ)

≤ (∥p̃δ1 , p̃δ2 , . . . , p̃δn−1 , q̃δn∥+∥ p̃δ1 , p̃δ2 , . . . , p̃δn−1 , r̃δn∥)(λ)

≤ ∥p̃δ1 , p̃δ2 , . . . , p̃δn−1 , q̃δn∥+∥ p̃δ1 , p̃δ2 , . . . , p̃δn−1 , r̃δn∥.

Hence, (s-n-N4) is satisfied.
Therefore, ∥·, . . . , ·∥ is a soft n-norm on Ǔ×·· ·× Ǔ︸ ︷︷ ︸

n

and subsequently (Ǔ,∥·, . . . , ·∥) is a soft

n-NDLS.

Proposition 3.4. Every n-norm ∥·, . . . , ·∥U on U can be extended to a soft n-norm on the SLS
SV(Ǔ).

Proof. Let Ǔ be the absolute SLS and A be a non-empty collection of parameters.
We define a mapping ∥·, . . . , ·∥ : SV(Ǔ)×·· ·×SV(Ǔ)→R(A)∗ by

∥p̃δ1 , p̃δ2 , . . . , p̃δn∥(δ)= ∥p̃δ1(δ), p̃δ2(δ), . . . , p̃δn(δ)∥U, ∀ δ ∈A, ∀ p̃δi ∈̃SV(Ǔ).

By using the same technique as in Proposition 3.3, it can be easily shown that ∥·, . . . , ·∥ is a
soft n-norm on Ǔ×·· ·× Ǔ︸ ︷︷ ︸

n

.

This soft n-norm is generated using the n-norm ∥·, . . . , ·∥U and is called the soft n-norm
generated by ∥·, . . . , ·∥U.

Example 3.5. Let (Ǔ,∥·, . . . , ·∥) be a soft n-NDS. In this case, for every p̃δi ∈̃SV(Ǔ),

∥p̃δ1 , p̃δ2 , . . . , p̃δn∥ =
n∑

i=1
|δi|+∥p1, p2, . . . , pn∥ is a soft n-norm.

For all p̃δ1 , p̃δ2 , . . . , p̃δn , q̃δn and r̃δn ∈̃SV(Ǔ) and for every soft scalar k̃:

(s-n-N1):

∥p̃δ1 , p̃δ2 , . . . , p̃δn∥ =
n∑

i=1
|δi|+∥p1, p2, . . . , pn∥,

∥p̃δ1 , p̃δ2 , . . . , p̃δn∥ = θ

⇐⇒
n∑

i=1
|δi|+∥p1, p2, . . . , pn∥ = θ

⇐⇒ δi = 0, ∥p1, p2, . . . , pn∥ = 0

⇐⇒ δi = 0, p1, p2, . . . , pn are linearly dependent

p̃δ1 , p̃δ2 , . . . , p̃δn are linearly dependent.

(s-n-N2): Clearly,

∥p̃δ1 , p̃δ2 , . . . , p̃δn∥ =
n∑

i=1
|δi|+∥p1, p2, . . . , pn∥

is invariant under any permutation.
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(s-n-N3):

∥p̃δ1 , p̃δ2 , . . . , k̃ p̃δn∥ =
n∑

i=1
|kδi|+∥p1, p2, . . . ,kpn∥

= |k|
(

n∑
i=1

|δi|+∥p1, p2, . . . , pn∥
)

= |k|∥ p̃δ1 , p̃δ2 , . . . , p̃δn∥.

(s-n-N4):

∥p̃δ1 , p̃δ2 , . . . , p̃δn−1 , q̃δn + r̃δn∥

=
n∑

i=1
|δi +δ′i|+∥p1, p2, . . . , pn−1, q+ r∥

≤
n∑

i=1
|δi|+

n∑
i=1

|δ′i|+∥p1, p2, . . . , pn−1, q∥+∥p1, p2, . . . , pn−1, r∥

=
(

n∑
i=1

|δi|+∥p1, p2, . . . , pn−1, q∥
)
+

(
n∑

i=1
|δ′i|+∥p1, p2, . . . , pn−1, r∥

)
≤ ∥p̃δ1 , p̃δ2 , . . . , p̃δn−1 , q̃δn∥+∥ p̃δ1 , p̃δ2 , . . . , p̃δn−1 , r̃δn∥.

4. Convergence and Completeness of Soft n-NDLS
Converge and completeness of soft n-NDLS are discussed below.

Definition 4.1. A sequence of SV {p̃n
δn

} in soft n-NDLS (Ǔ,∥·, . . . , ·∥) is said to converge to the SV
p̃0
δ0
∈̃Ǔ, whenever lim

n→∞∥p̃δ1 , p̃δ2 , . . . , p̃δn−1 , p̃n
δn

− p̃0
δ0
∥ = 0̃, for every p̃δ1 , p̃δ2 , . . . , p̃δn−1 ∈̃Ǔ and it is

denoted by p̃n
δn

→ p̃0
δ0

as n →∞.

Definition 4.2. A sequence of SVs {p̃n
δn

} in soft n-NDS (Ǔ,∥·, . . . , ·∥) is said to be a
Cauchy sequence on soft n-NDLS if lim

m,n→∞∥p̃δ1 , p̃δ2 , . . . , p̃δn−1 , p̃n
δn

− p̃m
δm

∥ = 0̃ for every

p̃δ1 , p̃δ2 , . . . , p̃δn−1 ∈̃Ǔ.

Definition 4.3. A soft n-NDLS (Ǔ,∥·, . . . , ·∥) is called complete soft n-norm if every Cauchy
sequence is convergent on soft n-NDLS (Ǔ,∥·, . . . , ·∥).

Theorem 4.4. Every convergent sequence in a soft n-NDLS is Cauchy and also every Cauchy
sequence is bounded.

Proof. Let {p̃n
δn

} be a convergent sequence of SVs with limit p̃δ in soft n-NDLS (Ǔ,∥·, . . . , ·∥).
Then equivalent to each ϵ̃> 0̃, there exists m ∈ N such that p̃δ ∈̃ B̃

(
p̃δ, ϵ̃2

)
, i.e.,

∥p̃δ1 , p̃δ2 , . . . , p̃δn−1 , p̃n
δn

− p̃δ∥ ≤
ϵ̃

2
, ∀ n ≥ m ,

then, for i, j ≥ m,

∥p̃δ1 , p̃δ2 , . . . , p̃δn−1 , p̃n
δn

− p̃δ1 , p̃δ2 , . . . , p̃δm−1 , p̃m
δm

∥
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≤ ∥p̃δ1 , p̃δ2 , . . . , p̃δn−1 , p̃n
δn

− p̃δ∥+∥ p̃δ− p̃δ1 , p̃δ2 , . . . , p̃δm−1 , p̃m
δm

∥

≤ ϵ̃

2
+ ϵ̃

2
= ϵ̃.

Hence {p̃n
δn

} is a Cauchy sequence.
Let {p̃n

δn
} be a Cauchy sequence of SVs in soft n-NDLS (Ǔ,∥·, . . . , ·∥). Then there exists s ∈ N

such that

∥p̃δ1 , p̃δ2 , . . . , p̃δn−1 , p̃n
δn

− p̃δ1 , p̃δ2 , . . . , p̃δm−1 , p̃m
δm

∥ < 1̃, ∀ m,n ≥ s.

Take M̃ with

M̃(λ)= max
1≤m,n≤s

{∥p̃n
δn

− p̃m
δm

∥(λ)}, ∀ λ ∈̃A,

then, for 1≤ n ≤ s and m ≥ s,

∥p̃δ1 , p̃δ2 , . . . , p̃δn−1 , p̃n
δn

− p̃δ1 , p̃δ2 , . . . , p̃δm−1 , p̃m
δm

∥
≤ ∥p̃δ1 , p̃δ2 , . . . , p̃δn−1 , p̃n

δn
− p̃δ1 , p̃δ2 , . . . , p̃δs−1 , p̃s

δs
∥

+∥ p̃δ1 , p̃δ2 , . . . , p̃δs−1 , p̃s
δs
− p̃δ1 , p̃δ2 , . . . , p̃δm−1 , p̃m

δm
∥

< M̃+ 1̃.

thus,

∥p̃δ1 , p̃δ2 , . . . , p̃δn−1 , p̃n
δn

− p̃δ1 , p̃δ2 , . . . , p̃δm−1 , p̃m
δm

∥ < M̃+ 1̃, ∀ m,n ∈̃N

and consequently the sequence is bounded.

Theorem 4.5. Let (Ǔ,∥·, . . . , ·∥) be a soft n-NDLS. Then
(i) if p̃n

δn
→ p̃δ and q̃n

δn
→ q̃δ then p̃n

δn
+ q̃n

δn
→ p̃δ+ q̃δ,

(ii) if p̃n
δn

→ p̃δ and λ̃δn → λ̃δ then λ̃δn · p̃n
δn

→ λ̃δ p̃δ, where {λ̃δn} is a sequence of soft scalars,

(iii) if {p̃n
δn

} and {q̃n
δn

} are Cauchy sequences in (Ǔ,∥·, . . . , ·∥) and {λ̃δn} is a Cauchy sequence of
soft scalars, then {p̃n

δn
+ q̃n

δn
} and {λ̃δn · p̃n

δn
} are also Cauchy sequences in (Ǔ,∥·, . . . , ·∥).

Proof. (i) Since p̃n
δn

→ p̃δ and q̃n
δn

→ q̃δ, for ϵ̃> 0̃, there exists positive integers N1, N2 such that

∥p̃δ1 , p̃δ2 , . . . , p̃δn−1 , p̃n
δn

− p̃δ∥ <
ϵ̃

2
, ∀ n ≥ N1

and

∥q̃δ1 , q̃δ2 , . . . , q̃δn−1 , q̃n
δn

− q̃δ∥ <
ϵ̃

2
, ∀ n ≥ N2 .

Let N =max {N1, N2}, then both the above relations hold for n ≥ N , then

∥(p̃δ1 , p̃δ2 , . . . , p̃δn−1 , p̃n
δn

+ q̃δ1 , q̃δ2 , . . . , q̃δn−1 , q̃n
δn

)− (p̃δ+ q̃δ)∥
= ∥p̃δ1 , p̃δ2 , . . . , p̃δn−1 , p̃n

δn
+ q̃δ1 , q̃δ2 , . . . , q̃δn−1 , q̃n

δn
− p̃δ− q̃δ∥

≤ ∥p̃δ1 , p̃δ2 , . . . , p̃δn−1 , p̃n
δn

− p̃δ∥+∥q̃δ1 , q̃δ2 , . . . , q̃δn−1 , q̃n
δn

− q̃δ∥

< ϵ̃

2
+ ϵ̃

2
= ϵ̃, ∀ n ≥ N

=⇒ p̃n
δn

+ q̃n
δn

→ p̃δ+ q̃δ.
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(ii) Since p̃n
δn

→ p̃δ, for ϵ̃> 0̃, there is a positive integers N such that

∥p̃δ1 , p̃δ2 , . . . , p̃δn−1 , p̃n
δn

− p̃δ∥ < ϵ̃, ∀ n ≥ N.

Now,

∥p̃δ1 , p̃δ2 , . . . , p̃δn−1 , p̃n
δn
∥ = ∥p̃δ1 , p̃δ2 , . . . , p̃δn−1 , p̃n

δn
− p̃δ+ p̃δ∥

≤ ∥p̃δ1 , p̃δ2 , . . . , p̃δn−1 , p̃n
δn

− p̃δ∥+∥ p̃δ∥
< ϵ̃+∥ p̃δ∥, ∀ n ≥ N

=⇒ ∥p̃δ1 , p̃δ2 , . . . , p̃δn−1 , p̃n
δn
∥ < ϵ̃+∥ p̃δ∥, ∀ n ≥ N.

Thus, the sequence {p̃n
δn

} is bounded.
Now,

∥λ̃δn · (p̃δ1 , p̃δ2 , . . . , p̃δn−1 , p̃n
δn

)− λ̃δ p̃δ∥
= ∥λ̃δn · (p̃δ1 , p̃δ2 , . . . , p̃δn−1 , p̃n

δn
)− λ̃δ(p̃δ1 , p̃δ2 , . . . , p̃δn−1 , p̃n

δn
)+ λ̃δ(p̃δ1 , p̃δ2 , . . . , p̃δn−1 , p̃n

δn
)− λ̃δ p̃δ∥

= ∥(p̃δ1 , p̃δ2 , . . . , p̃δn−1 , p̃n
δn

)(λ̃δn − λ̃δ)+ λ̃δ(p̃δ1 , p̃δ2 , . . . , p̃δn−1 , p̃n
δn

− p̃δ)∥
≤ ∥(p̃δ1 , p̃δ2 , . . . , p̃δn−1 , p̃n

δn
)(λ̃δn − λ̃δ)∥+∥λ̃δ(p̃δ1 , p̃δ2 , . . . , p̃δn−1 , p̃n

δn
− p̃δ)∥

= |λ̃δn − λ̃δ| · ∥(p̃δ1 , p̃δ2 , . . . , p̃δn−1 , p̃n
δn

)∥+|λ̃δ| · ∥ p̃δ1 , p̃δ2 , . . . , p̃δn−1 , p̃n
δn

− p̃δ∥
implies

∥λ̃δn · (p̃δ1 , p̃δ2 , . . . , p̃δn−1 , p̃n
δn

)− λ̃δ p̃δ∥
≤ |λ̃δn − λ̃δ| · ∥(p̃δ1 , p̃δ2 , . . . , p̃δn−1 , p̃n

δn
)∥+|λ̃δ| · ∥ p̃δ1 , p̃δ2 , . . . , p̃δn−1 , p̃n

δn
− p̃δ∥.

Since p̃n
δn

→ p̃δ and λ̃δn → λ̃δ, then, we have |λ̃δn − λ̃δ|→ 0̃ and ∥p̃δ1 , p̃δ2 , . . . , p̃δn−1 , p̃n
δn

− p̃δ∥→ 0̃
as n →∞.
Therefore, ∥λ̃δn · (p̃δ1 , p̃δ2 , . . . , p̃δn−1 , p̃n

δn
)− λ̃δ · p̃δ∥→ 0̃ as n →∞.

Hence, λ̃δn · p̃n
δn

→ λ̃δ p̃δ.

(iii) Let {p̃n
δn

} and {q̃n
δn

} be Cauchy sequences in (Ǔ,∥·, . . . , ·∥), then for ϵ̃> 0̃, there exists positive
integers N1, N2 such that

∥p̃δ1 , p̃δ2 , . . . , p̃δn−1 , p̃n
δn

− p̃δ1 , p̃δ2 , . . . , p̃δm−1 , p̃m
δm

∥ < ϵ̃

2
, ∀ m,n ≥ N1

and

∥q̃δ1 , q̃δ2 , . . . , q̃δn−1 , q̃n
δn

− q̃δ1 , q̃δ2 , . . . , q̃δm−1 , q̃m
δm

∥ < ϵ̃

2
, ∀ m,n ≥ N2.

Let N =max{N1, N2}, then both the above relations hold for m,n ≥ N .
Now,

∥(p̃δ1 , p̃δ2 , . . . , p̃δn−1 , p̃n
δn
+q̃δ1 , q̃δ2 , . . . , q̃δn−1 , q̃n

δn
)−(p̃δ1 , p̃δ2 , . . . , p̃δm−1 , p̃m

δm
+q̃δ1 , q̃δ2 , . . . , q̃δn−1 , q̃m

δm
)∥

=∥(p̃δ1 , p̃δ2 , . . . , p̃δn−1 , p̃n
δn
− p̃δ1 , p̃δ2 , . . . , p̃δm−1 p̃m

δm
)+(q̃δ1 , q̃δ2 , . . . , q̃δn−1 , q̃n

δn
−q̃δ1 , q̃δ2 , . . . , q̃δm−1 , q̃m

δm
)∥

≤∥ p̃δ1 , p̃δ2 , . . . , p̃δn−1 , p̃n
δn
− p̃δ1 , p̃δ2 , . . . , p̃δm−1 , p̃m

δm
∥+∥q̃δ1 , q̃δ2 , . . . , q̃δn−1 , q̃n

δn
−q̃δ1 , q̃δ2 , . . . , q̃δm−1 , q̃m

δm
∥

< ϵ̃

2
+ ϵ̃

2
= ϵ̃, ∀ m,n ≥ N
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implies

{p̃n
δn

+ q̃n
δn

}

is a Cauchy sequence in (Ǔ,∥·, . . . , ·∥).
Since {p̃n

δn
} is a Cauchy sequences in (Ǔ,∥·, . . . , ·∥), for ϵ̃> 0̃, there exists positive integers N such

that

∥p̃δ1 , p̃δ2 , . . . , p̃δn−1 , p̃n
δn

− p̃δ1 , p̃δ2 , . . . , p̃δm−1 , p̃m
δm

∥ < ϵ̃, ∀ m,n ≥ N.

Taking in particular n = m+1,

∥p̃m+1
δm+1

∥ < ϵ̃, ∀ m,n ≥ N,

so {∥p̃n
δn
∥} is bounded.

Now, ∥λ̃δn∥ is bounded too.
Then,

∥λ̃δn · (p̃δ1 , p̃δ2 , . . . , p̃δn−1 , p̃n
δn

)− λ̃δm · (p̃δ1 , p̃δ2 , . . . , p̃δm−1 , p̃m
δm

)∥
= ∥λ̃δn · (p̃δ1 , p̃δ2 , . . . , p̃δn−1 , p̃n

δn
)− λ̃δn · (p̃δ1 , p̃δ2 , . . . , p̃δm−1 , p̃m

δm
)

+ λ̃δn · (p̃δ1 , p̃δ2 , . . . , p̃δm−1 , p̃m
δm

)− λ̃δm · (p̃δ1 , p̃δ2 , . . . , p̃δm−1 , p̃m
δm

)∥
= ∥λ̃δn(p̃δ1 , p̃δ2 , . . . , p̃δn−1 , p̃n

δn
− p̃δ1 , p̃δ2 , . . . , p̃δm−1 , p̃m

δm
)

+ (p̃δ1 , p̃δ2 , . . . , p̃δm−1 , p̃m
δm

)(λ̃δn − λ̃δm)∥
≤ |λ̃δn | · ∥ p̃δ1 , p̃δ2 , . . . , p̃δn−1 , p̃n

δn
− p̃δ1 , p̃δ2 , . . . , p̃δm−1 , p̃m

δm
∥

+|λ̃δn − λ̃δm | · ∥ p̃δ1 , p̃δ2 , . . . , p̃δnm1 , p̃m
δm

∥
→ 0̃ as n →∞.

Therefore {λ̃δn p̃n
δn

} is also a Cauchy sequence in (Ǔ,∥·, . . . , ·∥).

5. Conclusion
We have expanded the theoretical landscape of normed linear spaces by introducing the
innovative concepts of soft 2-NDLS and soft n-NDLS. This extension transcends the boundaries
set by the conventional notion of a norm, allowing for a more encompassing framework to tackle
uncertainty within normed spaces.

Furthermore, we have addressed the critical topics of convergence and completeness within
the context of soft n-NDLS. These discussions lay the foundation for a deeper understanding of
the behavior and properties of spaces equipped with a soft norm, offering valuable insights for
both theoretical explorations and practical applications.

By unifying and extending existing theories, we have endeavored to provide a versatile
mathematical framework capable of addressing the diverse challenges posed by uncertainty.
The integration of soft norms with normed spaces opens up new avenues for research in various
domains, from optimization to decision-making in complex, uncertain environments.

In conclusion, the introduction of soft 2-NDLS and soft n-NDLS, equipped with the notion
of a soft norm, marks a significant advancement in the field of uncertainty modeling. This
framework not only enriches the theoretical underpinnings of normed spaces but also offers
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practical tools for navigating uncertainty in a wide range of applications. We anticipate that
this work will serve as a catalyst for further exploration and innovation in this burgeoning area
of study.
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