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Abstract. In this study, we consider a perturbed risk model with MAP claim arrivals, PH claim
sizes that incorporates possible by-claims and dividend barrier affected by a Brownian motion.
The by-claims can occur along with the main claim, but their settlement is always delayed due to
some necessary investigation. In order to analyze the model, we consider associated Markovian fluid
models defined in the original timeline and an auxiliary timeline. We develop systems of second order
integro-differential equations (IDE) for the Gerber-Shiu functions (GSF) of both the models without as
well as with the barrier and solve them explicitly. Working on the same line we derive expressions
for the Moment of the total dividends paid until ruin. Furthermore, a dividends-penalty identity
is established. To showcase the effectiveness of the method, we numerically illustrate it using a
two-phase model. Finally, we conduct a sensitive analysis by varying some of the parameters involved
in the model.

Keywords. MAP claim arrivals, Phase type claims, By-claims, Risk reserve process, Brownian motion,
Dividend barrier, Lundberg equation, Gerber-Shiu function (GSF)

Mathematics Subject Classification (2020). 62P05, 60J28, 91B30

Copyright © 2024 P. P. Sreeshamim and M. J. Jacob. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

1. Introduction
In this study, we focus on a Perturbed MAP/PH risk model that integrates both a barrier
strategy and delayed settlement of by-claims. The MAP/PH risk model extends the classical
Compound Poisson risk model by incorporating interdependence among claim arrivals through
a Markovian Arrival Process (MAP). This interdependence enhances the model’s ability to
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capture realistic claim occurrences, where the arrival of one claim can influence the likelihood
of subsequent claims. Additionally, the model approximates claim sizes using Phase-Type (PH)
distributions, which offer great flexibility in representing a wide range of positive random
variables. The PH approximation enables the model to accurately capture various claim size
distributions, accommodating both heavy-tailed and light-tailed distributions. By combining
the MAP for claim arrivals and the PH approximation for claim sizes, the MAP/PH risk model
provides an enhanced framework for assessing risk and estimating reserves in insurance
settings.

Perturbation refers to the introduction of small changes or disturbances to a system,
which allows for the examination of the system’s response and sensitivity to such changes.
In the context of insurance risk models, perturbation analysis provides valuable insights into
the stability, robustness, and overall behavior of these models under different scenarios.

In 1957, DeFinetti [7] proposed a dividend strategy that revolves around the payment to
shareholders. Dividend payments are a crucial aspect in evaluating a company’s performance,
reflecting the distribution of profits to shareholders. One commonly accepted approach
to dividend payment involves distributing the surplus beyond a predetermined threshold
immediately to shareholders. This strategy ensures that any excess surplus above the fixed
barrier is promptly distributed among shareholders, aligning with the goal of maximizing
shareholder value and enhancing overall company performance.

Risk models that incorporate delayed claims play a crucial role in effectively representing
real-life scenarios. Various situations, such as in motor insurance, involve the necessity of
immediate settlement for certain claims following an accident, while additional claims may
require investigations and subsequent delays in payment. For instance, major auto accidents can
give rise to diverse types of claims, including those related to automobile damage, injuries, and
fatalities. To address such circumstances, risk models are designed to consider by-claims that
are generated with specific probabilities alongside primary claims. By incorporating possible
delayed by-claims, Markovian risk models achieve a more practical and realistic representation.
This approach enables insurers to effectively manage the complexities associated with claim
settlement, providing a comprehensive perspective for risk assessment and the establishment
of appropriate dividend barriers.

Neuts [11], Latouche and Ramaswami [9] initiated the discussion on MAP (Markovian
arrival process) in the literature. Ahn and Badescu [1] utilized Ramaswami [12] passage-time
matrix analytic techniques to analyze a risk model incorporating MAP claim arrivals and PH
claim sizes. Dibu and Jacob [4] conducted recent analyses on MAP/PH models, considering
stochastic income and delayed capital injunction strategies, respectively, with MAP claim inter-
arrival times and PH claim sizes. Lin et al. [10] investigated the Gerber-Shiu Function (GSF)
for classical risk processes with a constant dividend barrier. In terms of claim settlement with
delay, Waters and Papatriandafylou [15] introduced the concept in discrete-time risk models.
Xie and Zou [16] analyzed the classical risk model with delayed claims. Xie et al. [17] discussed a
compound binomial model with an interest rate dependent on the state’s Markov chain. Dufresne
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and Gerber [5] consider the uncertainty in the classical risk process by adding a wiener process.
Cheng and Landriault [3] handle MAP risk models with barrier and perturbation. Cheng and
Wang [2] studied a similar model with a threshold dividend strategy. In the present work, we
extend and generalize the research conducted in Sreeshamim et al. [14] by incorporating the
concept of perturbation in the surplus process.

Subsequent sections of the paper are organized as follows. In Section 2, we introduce
the model and provide necessary notations to facilitate understanding. Section 3 contains a
comprehensive analysis of the Gerber-Shiu Function (GSF), both in the absence and presence of
the barrier strategy. In Section 3.1, we derive an explicit expression for the GSF of the model
without a barrier, while in Section 3.2, we present an intriguing result regarding the GSF
of the model with a barrier, establishing its relationship with the GSF of the model without
a barrier. In Section 4, we delve into the calculation of Moment of the cumulative dividend
paid, offering insightful expressions. Section 5 unveils an important identity for the dividend
penalty, while Section 6 provides a numerical illustration of the methodology by considering
a two-phase model. By following this structured organization, we aim to present a clear and
cohesive analysis of the model and its various components throughout the rest of the paper.

2. Model
We consider the MAP/PH Risk reserve process Ud

w(t) with possible delayed by-claims and
perturbation defined by

Ud
w(t)= x+ ct−

Nt∑
i=1

X i −Bd(t)+σW(t), t ≥ 0. (2.1)

Here x represents the initial surplus or funds available to the insurance firm at time zero.
The parameter c is the rate at which premiums arrive or are collected by the firm. The term
ct accounts for the cumulative premiums received up to time t. Nt is the number of claims
that occur in the time interval (0, t) with N0 = 0 and X i denotes the ith claim amount. Bd(t) is
the total of all delayed by-claims that are settled till time t ≥ 0. W(t) is the Wiener process with
mean 0 and volatility σ which describes the perturbation in the surplus process.

The inter arrival time follows MAP (Markovian Arrival Process) with m ≥ 1 transient phases
and representation MAPm(α,D0,D1). It is a two-dimensional continuous-time Markov chain
(CTMC) {(Nt, Jt), t ≥ 0} with state space N×S, where S = {1,2, . . . ,m}. Jt is the state of the
underlying CTMC of claim arrivals at time t ≥ 0. The matrix D0 represents the rate of transition
of states in S without claim arrival and the matrix D1 represents the rate of transitions with a
claim arrival. (α,αm+1) is the initial probability vector of the CTMC where α is m-dimensional.

The {X i}i≥1 are the main claim sizes and assumed to be iid positive random variables having
n1 ordered phase-type distribution PHn1 (vM,HM). vM gives the initial probabilities and HM

gives the transition rates for transient states for the underlying CTMC.
The risk model considered is with possible by-claims for which the payments are delayed

till the next claim arrival. Each main claim may induce a by-claim with a probability θ, which
is paid only at the next claim arrival instant. The occurrence of main claims and by-claims is
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assumed to be independent. We assume that the by-claims are iid positive random variables
having a phase-type distribution with order n2 with representations PHn2(vB,HB). In order
to analyze the delayed feature in the model, we consider two timelines, a primary and an
auxiliary (Delayed) timeline. This methodology is used in the literature since Xie and Zou [16].
In the primary timeline the first settlement can have only the main claim whereas, in the
auxiliary timeline, the first settlement will have both the main claim and by-claim. In both
timelines at the second claim epoch, the payment will depend on whether a by-claim occurred
or not in the previous claim instant. The sum of main claim and by-claim is phase type with
representation

PHn1+n2(vM+B,HM+B),

where vM+B = (vM, (1−∑n1
i=1 vMi)vB) and HM+B is the composite S-TRM

HM+B =
(
HM vB⊗h⊤

M
0 HB

)
,

where h⊤
M =−HMe⊤

n1
.

Ren et al. [13] analyzed the perturbed risk reserve process as an embedded fluid flow process.
This embedded process (say), {(L(t),C(t))}t≥0, where C(t) is a finite irreducible CTMC having
the state space (say), S∪F and an infinitesimal (transient) sub-generator

ΛM =
(
Λ′

11m×m
Λ′

12m×mn1
Λ′

21mn1×m
Λ′

22mn1×mn1

)
=

(
D0 vM ⊗D1

h⊤
M⊗Im HM⊗Im

)
. (2.2)

F = {m+1, . . . ,m+n} with n = mn1, having elements corresponding to the Cartesian product of
S and the set of phases of the PH claim distribution.

The ΛM given in equation (2.2) represents the transient generator of the CTMC effect in
the main claims. The transient generator due to the sum of the main claims and by-claims is
given by

ΛM+B =
[

Λ′′
11m×m

Λ′′
12m×m(n1+n2)

Λ′′
21m(n1+n2)×m

Λ′′
22m(n1+n2)×m(n1+n2)

]

=
[

D0 vM+B⊗D1
h⊤

M+B⊗Im HM+B⊗Im

]
. (2.3)

It is to be noted that the condition satisfied by the density function of main claims and
by-claims are

Λ1 =
∫ ∞

x=0
Λ′

12eΛ
′
22xΛ′

21dx =
∫ ∞

x=0
Λ′′

12eΛ
′′
22xΛ′′

21dx. (2.4)

The risk reserve process given in (2.1) is further restricted with a horizontal barrier b ≥ x,
satisfying the equation

dUd
w,b(t)=

{
c dt−d

∑NΛ

i=1 X i − dBd(t)+σ dW(t), Ud
w,b(t)< b,

−d
∑NΛ

i=1 X i − dBd(t)+σ dW(t), Ud
w,b(t)= b.

(2.5)

In risk models with a barrier strategy, by paying the surplus above the barrier as dividends,
the insurance firm will be able to satisfy the economic interest of shareholders.
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Let Q(t)= sup{Ud
w(y) | 0≤ y≤ t} be the running maximum of risk reserve process Ud

w(t). Denoting
Db,w(t)=max{Q(t)−b,0} as the aggregate dividends paid by the firm up to time t, the revised
risk reserve process Ud

w,b(t) is given by

Ud
w,b(t)=Ud

w(t)−Db,w(t), for t ≥ 0. (2.6)

It is assumed that the cumulative dividends paid till time t ≥ 0 is zero if Ud
w,b(t) remains less

than b.
The ultimate time of ruin is defined by T = inf{t ≥ 0 : Ud

b,w(t)≤ 0},

R(u)= P(T <∞ |Ud
w(0)= u), u ≥ 0

and

Rb(u)= P(T <∞ |Ud
w,b(0)= u), 0≤ u ≤ b

to be the ultimate ruin probabilities defines for perturbed risk model without and with barrier,
respectively. Further,

Rb,w(u)= P(T <∞,Ud
w,b(T)= 0 |Ud

w,b(0)= u), 0≤ u ≤ b

and

Rb,s(u)= P(T <∞,Ud
w,b(T)< 0 |Ud

w,b(0)= u), 0≤ u ≤ b

are the ruin probabilities caused by wiener process and claim respectively for the perturbed
risk process with barrier model. Similar way we can define the ruin probabilities caused by
wiener process and claim for the perturbed risk process with out barrier model. We have that,
Rb(u)= Rb,w(u)+Rb,s(u), with Rb,w(0)= 1 and Rb,s(0)= 0.

For risk process without barrier, deficit at ruin is |Ud
w(T)| and surplus immediately before

ruin is Ud
w(T−). Similarly, |Ud

w,b(T)| and Ud
w,b(T−) are defined for risk process with barrier.Define

the m-dimensional vectors

φ⊤
d (x)= (φd,1(x),φd,2(x),φd,3(x), . . . ,φd,m(x))⊤

and

φ⊤
d,b(x)= (φd,b,1(x),φd,b,2(x),φd,b,3(x), . . . ,φd,b,m(x))⊤,

where for i ∈E,

φd,i(x)=φw
d,i(x)+φc

d,i(x),

φd,b,i(x)=φw
d,b,i(x)+φc

d,b,i(x).

φw
d,i(x) and φw

d,b,i(x) are the Gerber-Shiu functions of the perturbed risk process without a
barrier and with a barrier if the ruin caused by wiener process. Similarly, φc

d,i(x) and φc
d,b,i(x)

are the the Gerber-Shiu function of risk process without a barrier and with a barrier respectively
if the ruin due to claim arrival.

φc
d,i(x)= E[e−δTω(Ud

w(T−), |Ud
w(T)|)I(T <∞,Ud

w(T)< 0) |Ud
w(0)= x, J(0)= i],

φw
d,i(x)= E[e−δT I(T <∞, |Ud

w(T)= 0) |Ud
w(0)= x, J(0)= i],

φc
d,b,i(x)= E[e−δTω(Ud

w,b(T−), |Ud
w,b(T)|)I(T <∞, |Ud

w,b(T)< 0) |Ud
w,b(0)= x, J(0)= i],
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φw
d,b,i(x)= E[e−δT I(T <∞, |Ud

w,b(T)= 0) |Ud
w,b(0)= x, J(0)= i].

Also consider φw
d,i(0)= 1, φw

d,b,i(0)= 1, φc
d,i(0)= 0 and φc

d,b,i(0)= 0. The GSFs φd(x), φd,b(x)
in the primary timeline and the GSFs φ∗

d(x), φ∗
d,b(x) in auxiliary timeline are given by

φd(x)=
m∑

i−1
αi φd,i(x), for x ≥ 0, (2.7)

φ∗
d(x)=

m∑
i=1

αi φ
∗

d,i(x), for x ≥ 0, (2.8)

φd,b(x)=
m∑

i−1
αi φd,b,i(x), for 0≤ x ≤ b, (2.9)

and

φ∗
d,b(x)=

m∑
i=1

αi φ
∗

d,b,i(x), for 0≤ x ≤ b. (2.10)

The present value of the cumulative dividend payments up to the ruin time T is

Dδ,b,w =
∫ T

0
e−δt dDb,w(t) |Ud

b,w(0)= x, 0≤ x ≤ b.

In a similar way, we define the m dimensional MGF of Dδ,b by

W⊤
b,w(x, z)= (Wb,w,1(x, z),Wb,w,2(x, z),Wb,w,3(x, z), . . . ,Wb,w,m(x, z))⊤,

where

Wb,w,i(x, z)=E[ezDδ,b,w |Ud
b,w(0)= x, J(0)= i],

provided z is such that Wb,w,i(x, z) exists.
The kth order of moment of Dδ,b,w is defined by,

gk⊤
w (x,b)= (gk

1(x,b), gk
2(x,b), gk

3(x,b), . . . , gk
3(x,b))⊤,

where

gk
i (x,b)=E[Dk

δ,b,w |Ud
b,w(0)= x, j(0)= i], k ∈N, and 0

i (x,b)= 1.

The W∗⊤
b,w(x, y) and g∗k⊤

w (x,b) are the m dimensional vector of MGF and kth order moment
of the total dividend paid in auxiliary timeline.

The expected discounted dividend paid until ruin (EDDR) gw(x,b) and the EDDR of auxiliary
timeline g∗

w(x,b) are given by

gw(x,b)=
m∑

i−1
αi g1

i (x,b), for 0≤ x ≤ b (2.11)

and

g∗
w(x,b)=

m∑
i=1

αi g1∗
i (x,b), for 0≤ x ≤ b. (2.12)

Finally, representing the stationary probability vector for continuous-time Markov chain Jt

as π. In our model we are taking a constant AIF (Average Inflow). We can represent the average
outflow (AOF) as,

AOF=−π[(vM⊗D1)(HM⊗Im)−1e⊤
mn1

+θ(vB⊗D1)(HM⊗Im)−1e⊤
mn2

],
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For the model we are assuming that AIF>AOF and the security loading factor is

L = AIF
AOF

−1, (2.13)

where e⊤
mn1

and e⊤
mn2

denotes column vectors having all entries one with dimensions mn1 and
mn2.

3. Gerber-Shiu Function
In this section, we start by deriving the IDE for the GSF of risk reserve process (2.1) and then
find the GSF of the risk reserve process (2.6) which is related to the GSF of risk reserve process
(2.1).

3.1 Gerber-Shiu Function Without Barrier Strategy
We develop a system of IDE satisfied by φ⊤

d (x) and φ∗⊤
d (x) to find the GSF of risk reserve process

(2.1). Applying Laplace transform and numerical inverse Laplace we solve the system of IDE.

3.1.1 System of Integro-Differential Equations
In the next theorem, we provide a system of IDE for φ⊤

d (x) and φ∗⊤
d(x).

Theorem 1. The GSFs φ⊤
d (x) and φ∗⊤

d (x) will satisfy the system of second order IDEs given
below:

For x ≥ 0,

0= σ2

2
d2

dx2φ
⊤
d (x)+ c

d
dx
φ⊤

d (x)− [δIm −Λ′
11]φ⊤

d (x)

− (1−θ)Λ′
11

[∫ x

0
Λ′

12eΛ
′
22 yΛ′

21φ
⊤
d (x− y)dy+W1(x)

]
−θΛ′

11

[∫ x

0
Λ′

12eΛ
′
22 yΛ′

21φ
∗⊤
d (x− y)dy+W1(x)

]
(3.1)

and

0= σ2

2
d2

dx2φ
∗⊤
d (x)+ c

d
dx
φ∗⊤

d (x)[δIm −Λ′
11]φ∗⊤

d (x)

− (1−θ)Λ′
11

[∫ x

0
Λ′′

12eΛ
′′
22 yΛ′′

21φ
⊤
d (x− y)dy+W2(x)

]
−θΛ′

11

[∫ x

0
Λ′′

12eΛ
′′
22 yΛ′′

21φ
∗⊤
d (x− y)dy+W2(x)

]
, (3.2)

where

Λ′⊤
2 =−Λ′

22e⊤
mn1

,

Λ′′⊤
2 =−Λ′′

22e⊤
m(n1+n2),

W1(x)=
∫ ∞

x+ch+σW(h)
Λ′

12eΛ
′
22 yΛ′⊤

2 ω(x+ ch+σW(h), y− x− ch−σW(h))dy

and

W2(x)=
∫ ∞

x+ch+σW(h)
Λ′′

12eΛ
′′
22 yΛ′′⊤

2 ω(x+ ch+σW(h), y− x− ch−σW(h))dy.
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Proof. For 0≤ x <∞, consider a very small time period [0,h], there are three possibilities:
(i) no claim arrivals in [0,h],

(ii) one main claim arrival in [0,h] but it does not induce any by-claim which happens with
(1−θ) probability (it may or may not cause the ruin),

(iii) one main claim occur in [0,h] and it induces a by-claim that can happen with probability
θ (here also it may or may not cause the ruin).

Conditioning on the above possible events in [0,h], we obtain

φ⊤
d (x)= e−δImheΛ

′
11hφ⊤

δ (x+ ch+σW(h))+ (1−θ)e−δImh(Im − eΛ
′
11h)

·
[∫ x+ch+σW(h)

0
Λ′

12eΛ
′
22 yΛ′

21φ
⊤
d (x+ch+σW(h)−y)dy+W1(x)

]
+θe−δImh(Im − eΛ

′
11h)

·
[∫ x+ch+σW(h)

0
Λ′

12eΛ
′
22 yΛ′

21φ
∗⊤
d (x+ ch+σW(h)− y)dy+W1(x)

]
+ o(h). (3.3)

Apply the Taylor series expansion in (3.3) and dividing the above equation by h then taking
limit h → 0 we get the equation (3.1).

Similar argument yields the auxiliary risk reserve process

φ∗⊤
d (x)= e−δImheT′

11hφ∗⊤
d (x+ ch+σW(h))+ (1−θ)e−δImh(Im − eΛ

′
11h)

·
[∫ x+ch+σW(h)

0
Λ′′

12eΛ
′′
22 yΛ′′

21φ
⊤
d (x+ch+σW(h)−y)dy+W2(x)

]
+θe−δImh(Im − eΛ

′′
11h)

·
[∫ x+ch+σW(h)

0
Λ′′

12eΛ
′′
22 yΛ′′

21φ
∗⊤
d (x+ ch+σW(h)− y)dy+W2(x)

]
+ o(h). (3.4)

Apply the Taylor series expansion in (3.4) then dividing by h and taking limit h → 0 we get
the equation (3.2).

3.1.2 Analytic Solution
In this section, Laplace transforms is used on (3.1) and (3.2) to obtain expressions for φ⊤

d (x) and
φ∗⊤

d (x). Let F be a real-valued integrable function. So Laplace transform of F is defined as

F̃(s)=
∫ ∞

y=0
e−syF(y) dy, (3.5)

where s ∈C.
W̃1(s) and W̃2(s) are the Laplace transforms of W1(x) and W2(x). Applying the Laplace

transform in eqs. (3.1) and (3.2) yield the proposition.

Proposition 2. Let m′(s) = ∫ ∞
0 e−syΛ′

12eΛ
′
22 yΛ′

21dy and m′′(s) = ∫ ∞
0 e−syΛ′′

12eΛ
′′
22 yΛ′′

21dy. Then,

the Laplace transforms φ̃⊤
d (s) and φ̃

∗⊤
d (s) of measures φ⊤

d (x) and φ∗⊤
d (x) can be expressed as

φ̃
⊤
d (s)= [adj Aw(s)]

det Aw(s)
[lw

1 (s)] (3.6)

and

φ̃
∗⊤
d (s)= [adj Aw(s)]

det Aw(s)
[lw

2 (s)] (3.7)
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where

Aw(s)=
[(
σ2

2
s2 + cs−δ

)
Im +Λ′

11

][(
σ2

2
s2 + cs−δ

)
Im +Λ′

11−Λ′
11

[
(1−θ)m′(s)+θm′′(s)

]]
,

lw
1 (s)=

[[(
σ2

2
s2 + cs−δ

)
Im +Λ′

11

]
−Λ′

11θm′′(s)
][
σ2

2
φ′⊤(0)+Λ′

11W̃1(s)+
[
σ2

2
s+ c

]
e⊤

]
+Λ′

11θm(s)
[
σ2

2
φ

′∗⊤
(0)+Λ′

11W̃2(s)+
[
σ2

2
s+ c

]
e⊤

]
and

lw
2 (s)=

[[(
σ2

2
s2 + cs−δ

)
Im +T′

11

]
−Λ′

11(1−θ)m′(s)
][
σ2

2
φ∗′⊤

(0)+Λ′
11W̃2(s)+

[
σ2

2
s+c

]
e⊤

]
+Λ′

11(1−θ)m′(s)
[
σ2

2
φ′⊤(0)+Λ′

11W̃1(s)+
[
σ2

2
s+ c

]
e⊤

]
.

Thus, the matrix Lundberg equation Aw(s) is obtained for the proposed risk model. We
can use the method given in Sreeshamim et al. [14] to find φ′⊤

d (0) and φ
′∗⊤
d (0) and find explicit

solution. Once we compute φ′⊤
d (0) and φ

′∗⊤
d (0), explicit expressions are obtained for the equations

(3.6) and (3.7), respectively.

3.1.3 The Closed-Form Analytical Solutions
In this subsection, we develop explicit expressions for the GSFs both under original and modified
timelines that are derived explicitly in closed forms. We shall take Laplace inverse of equations
(3.6) and (3.7) to find φ⊤

d (x) and φ∗⊤
d (x). The scheme given in Section 2.1(a) in Cheung and

Landriault [3] is used for finding the Laplace transform inversion. In our work, we have used
the matrix structure of the embedded fluid process associated with MAP/PH as given in Ahn and
Badescu [1]. Instead of T(s) in the system of equations (12) given in Cheung and Landriault [3],
we are having M(s)= (1−θ)M′(s)+θM′′(s) in equations (3.6) and (3.7). Thus, the same scheme
can be followed with necessary changes.

Theorem 3. m(s) has the rational form m(s) = pi j(s)
qi j(s) , i, j ∈ E, where pi j(s) is a polynomial of

degree less than r i j and qi j(s) is a polynomial of degree r i j with pi j(0)/qi j(0) = 1. If {ρ i}2m+r
i=1

be the distinct root of the equation q(s)det[A(s)]= 0, where q(s)=∏m
i=1

∏m
j=1 qi j(s). Then, for an

arbitrary κ with κ ̸= ρ i for i = 1, . . . ,2m+ r, then using the Lagrange’s interpolating polynomial
φ⊤

d (x) and φ∗⊤
d (x) have the closed-form expressions

φ⊤
d (x)= 1

h(κ)

2m+r∑
l=1

h1(ρl)βl(κ)(κ−ρl)eρl x (3.8)

and

φ∗⊤
d (x)= 1

h(κ)

2m+r∑
l=1

h2(ρl)βl(κ)(κ−ρl)eρl x, (3.9)

where

βl(s)=
2m+r∏

k=1,k ̸=l
((ρk − s)/(ρk −ρl)),
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h1(s)= q(s)[adj Aw(s)][l1(s)]

and

h2(s)= q(s)[adj Aw(s)][l2(s)]

are polynomials of degrees less than 2m+ r and h(s)= q(s)det Aw(s) is polynomial with degree
2m+ r.

Proof. m(s) have rational form m(s) = pi j(s)
qi j(s) (see Dufresne [6]). We can represent φ̃⊤

δ (s) and

φ̃
∗⊤
δ (s) as

φ̃
⊤
δ (s)= q(s)[adj Aw(s)]

q(s)det Aw(s)
[l1(s)]= h1(s)

h(s)
(3.10)

and

φ̃
∗⊤
δ (s)= q(s)[adj Aw(s)]

q(s)det Aw(s)
[l2(s)]= h2(s)

h(s)
(3.11)

For an arbitrary κ with κ ̸= ρ i for i = 1, . . . ,2m+r, apply Lagrange’s interpolating polynomial
allows us to change the equations (3.6) and (3.7) as

φ̃
⊤
δ (s)= 1

h(κ)

2m+r∑
l=1

h1(ρl)βl(κ)
ρl −κ
ρl − s

(3.12)

and

φ̃
∗⊤
δ (s)= 1

h(κ)

2m+r∑
l=1

h2(ρl)βl(κ)
ρl −κ
ρl − s

. (3.13)

Inverting (3.12) and (3.13) yields (3.8) and (3.9).

3.2 Gerber-Shiu Function With Barrier Strategy
The expression for the GSF of the risk reserve process (2.6) is derived in this section. First, we
derive the IDE system with certain boundary conditions for the GSF. Then, we show that its
solution can be expressed as the linear combination of the solution to the GSF in the risk model
without a barrier (risk reserve process (2.1)) and solutions to the associated homogeneous IDE.

3.2.1 System of Integro-Differential Equations
In the following theorem, our aim is to give a IDE system with boundary conditions for GSFs
φ⊤

d,b(x) and φ∗⊤
d,b(x).

Theorem 4. For 0 ≤ x ≤ b, the GSFs φ⊤
d,b(x) and φ∗⊤

d,b(x) satisfy the IDE with boundary
conditions given below:

0= σ2

2
d2

dx2φ
⊤
d,b(x)+ c

d
dx
φ⊤

d,b(x)− [δIm −Λ′
11]φ⊤

d,b(x)

− (1−θ)Λ′
11

[∫ x

0
Λ′

12eΛ
′
22 yΛ′

21φ
⊤
d,b(x− y)dy+W1(x)

]
−θΛ′

11

[∫ x

0
Λ′

12eΛ
′
22 yΛ′

21φ
∗⊤
d,b(x− y)dy+W1(x)

]
(3.14)
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and

0= σ2

2
d2

dx2φ
∗⊤
d,b(x)+ c

d
dx
φ∗⊤

d,b(x)[δIm −Λ′
11]φ∗⊤

d,b(x)

− (1−θ)Λ′
11

[∫ x

0
Λ′′

12eΛ
′′
22 yΛ′′

21φ
⊤
d,b(x− y)dy+W2(x)

]
−θΛ′

11

[∫ x

0
Λ′′

12eΛ
′′
22 yΛ′′

21φ
∗⊤
d,b(x− y)dy+W2(x)

]
, (3.15)

with boundary conditions
d
dx
φ⊤

d,b(x)
∣∣∣
x=b

= 0

and
d
dx
φ∗⊤

d,b(x)
∣∣∣
x=b

= 0.

Proof. For x = b, conditioning on the possible events in [0,h], we obtain

φ⊤
d,b(b)= e−(δIm−Λ′

11)hφ⊤
d,b(b+σW(h))− (1−θ)Λ′

11h

·
[∫ b

0
Λ′

12eΛ
′
22 yΛ′

21φ
⊤
d,b(b+σW(h)− y)dy+W1(b)

]
−θΛ′

11h
[∫ b

0
Λ′

12eΛ
′
22 yΛ′

21φ
∗⊤
d,b(b+σW(h)− y)dy+W1(b)

]
+ o(h), (3.16)

divide by h then taking limit h → 0,

0= σ2

2
d2

dx2φ
⊤
d,b(b)− [

δIm −Λ′
11

]
φ⊤

d,b(b)− (1−θ)Λ′
11

[∫ x

0
Λ′

12eΛ
′
22 yΛ′

21φ
⊤
d,b(b− y)dy+W1(b)

]
−θΛ′

11

[∫ x

0
Λ′

12eΛ
′
22 yΛ′

21φ
∗⊤
d,b(b− y)dy+W1(b)

]
. (3.17)

Arranging x = b in (3.14) and comparing with (3.17) we can develop the condition
d
dx
φ⊤

d.b(x)
∣∣∣
x=b

= 0.

With the auxiliary risk reserve process, using the same argument we can develop
d
dx
φ∗⊤

d,b(x)
∣∣∣
x=b

= 0.

3.2.2 Solution Analysis
We derive non-homogeneous second order IDE (3.14) and (3.15) for φ⊤

d,b(x) and φ∗⊤
d,b(x). We

begin by looking at the following homogeneous IDE of (3.18) and (3.19) to find the solution of
the same IDEs.

For x ≥ 0,

0= σ2

2
d2

dx2φ
o⊤

d,b(x)+ c
d
dx
φo⊤

d,b(x)− [δIm −Λ′
11]φo⊤

d,b(x)

− (1−θ)Λ′
11

[∫ x

0
Λ′

12eΛ
′
22 yΛ′

21φ
o⊤

d,b(x− y)dy
]

−θΛ′
11

[∫ x

0
Λ′

12eΛ
′
22 yΛ′

21φ
o∗⊤

d,b(x− y)dy
]

(3.18)
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and

0= σ2

2
d2

dx2φ
o∗⊤

d,b(x)+ c
d
dx
φo∗⊤

d,b(x)− [δIm −Λ′′
11]φo∗⊤

d,b(x)

− (1−θ)Λ′′
11

[∫ x

0
Λ′′

12eΛ
′′
22 yΛ′′

21φ
o⊤

d,b(x− y)dy
]

−θΛ′′
11

[∫ x

0
Λ′′

12eΛ
′′
22 yΛ′′

21φ
o∗⊤

d,b(x− y)dy
]
. (3.19)

Solution of IDE system (3.18) and (3.19) derived using the general theory of DE (differential
equation) has the form, for x ≥ 0φo⊤

d,b(x)

φo∗⊤

d,b (x)


2m×1

= [V A
w (x)]2m×2m

[
µ⊤

i (b)
µ∗

i
⊤(b)

]m

i=1
+ [V B

w (x)]2m×2m

[
η⊤i (b)
η∗i

⊤(b)

]m

i=1
. (3.20)

Here the matrices V A
w (x) and V B

w (x) represents the solutions of system of the equation system
(3.18) and (3.19) from Lakshmikantham and Rao [8], i.e., each columns of the matrices are the
linearly independent solution of the system (3.18) and (3.19). η⊤i (b), η∗i

⊤(b), µ⊤
i (b) and µ∗

i
⊤(b)

are the vectors of arbitrary constants.
Now we look for some explicit results. Consider the boundary conditions in Theorem 4 and

using the same arguments similar to the paper those in Zou and Xie [18], we have the general
solutions of the non-homogeneous IDE (3.18) and (3.19):[

φ⊤
d,b(x)

φ∗⊤
d,b(x)

]
2m×1

=
[
φ⊤

d (x)
φ∗⊤

d (x)

]
2m×1

+ [V B
w (x)]2m×2m

[
φ′⊤

d,b(0)−φ′⊤
d (0)

φ
′∗⊤
d,b(0)−φ′∗⊤

d (0)

]
2m×1

. (3.21)

Note that, ηi
⊤(b) = φ′⊤

d,b(0)−φ′⊤
d (0) and ηi

∗⊤
(b) = φ

′∗⊤
d,b(0)−φ′∗⊤

d (0). Furthermore, ηi
⊤(b) and

η∗i
⊤(b) can be obtained by the boundary conditions given in Theorem 4. So to determine φ⊤

d,b(x)

and φ∗⊤
d,b(x), we only need to find [V B

w (x)]2m×2m. Next, using the similar method in Section 3.1.3
we can find the explicit expression for V B

w (x).

Proposition 5. Let [V B
w (x)]2m×2m be the solution matrix of the system of homogeneous IDE

(3.18) and (3.19), [V 1
i j(x)] and [V 2

i j(x)] are two m×2m dimensional matrices which are formed
by considering the first m rows and last m rows of the matrix [V B

w (x)]2m×2m, respectively. Then,
the Laplace transform [Ṽ 1

i j(s)] and [Ṽ 2
i j(s)] of matrices [V 1

i j(x)] and [V 2
i j(x)] can be represented as,

For i = {1,2,3 . . .m}, j = {1,2,3 . . .2m}

[Ṽ 1
i j(s)]m×2m = [adj Aw(s)]m×m

det Aw(s)
[L1(s)]m×2m (3.22)

and for i = {m+1,m+2,m+3 . . .2m}, j = {1,2,3 . . .2m}

[Ṽ 2
i j(s)]m×2m = [adj Aw(s)]m×m

det Aw(s)
[L2(s)]m×2m (3.23)

where

Lw
1 (s)=

[[(
σ2

2
s2 + cs−δ

)
Im +Λ′

11

]
−Λ′

11θm′′(s)
][
σ2

2
V B′

w (0)i j +diag
[
σ2

2
s+ c

]]
+Λ′

11θm(s)
[
σ2

2
V B′

w (0)i−m, j +diag
[
σ2

2
s+ c

]]
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and

Lw
2 (s)=

[[(
σ2

2
s2 + cs−δ

)
Im +Λ′

11

]
−Λ′

11(1−θ)m′(s)
][
σ2

2
V B′

w (0)i j +diag
[
σ2

2
s+ c

]]
+Λ′

11(1−θ)m′(s)
[
σ2

2
V B′

w (0)i−m, j +diag
[
σ2

2
s+ c

]]
.

Proof. Taking the Laplace transform of homogeneous IDE (3.18) and (3.19). Then, making some
simplifications, we get

φ̃
o⊤
d,b(s)=


[[(

σ2

2 s2 + cs−δ
)

Im +Λ′
11

]
−Λ′

11θm′′(s)
]

× [
σ2

2 φ
′⊤(0)+ [σ

2

2 s+ c]e⊤
]+Λ′

11θm(s)
[
σ2

2 φ
′∗⊤

(0)+ [σ
2

2 s+ c]e⊤
]


Aw(s)
(3.24)

and

φ̃
0∗⊤

d,b (s)=


[[(

σ2

2 s2 + cs−δ
)

Im +T′
11

]
−Λ′

11 (1−θ)m′(s)
]

× [
σ2

2 φ
∗′⊤

(0)+ [σ
2

2 s+ c]e⊤
]+Λ′

11 (1−θ)m′(s)
[
σ2

2 φ
′⊤(0)+ [σ

2

2 s+ c]e⊤
]


Aw(s)
(3.25)

from equation (3.21) and the assumption V B′
w (0)= I , we can derive the results.

3.2.3 The Closed-Form Analytical Solutions
Here, we derive explicit expression for the matrices [V 1

i j(x) and [V 2
i j(x)] in closed forms. The

matrices [V 1
i j(x)] and [V 2

i j(x)] together form the solution matrix [V i j(x)] of the homogeneous
IDE system (3.18) and (3.19). We shall take Laplace transform inversion to equations (3.22)
and (4.1) to find the expressions for [V 1

i j(x)] and [V 2
i j(x)]. The method given in Section 2.1(a) in

Cheung and Landriault [3] is used for finding the Laplace transform inversion. In our work, we
have used the matrix structure of the embedded fluid process associated with MAP/PH as given
in Ahn and Badescu [1]. Instead of T(s) in the system of equations (12) given in Cheung and
Landriault [3], we are having M(s)= (1−θ)M′(s)+θM′′(s) in equations (3.22) and (4.1). Thus,
the same scheme can be followed with some necessary changes.

Theorem 6. Let M(s) has the rational form M(s)= pi j(s)
qi j(s) , i, j ∈ E, where pi j(s) is a polynomial

of degree less than r i j and qi j(s) is a polynomial of degree r i j with pi j(0)/qi j(0)= 1. If {ρ i}2m+r
i=1

be the distinct root of the equation q(s)det[A(s)]= 0, where q(s)=∏m
i=1

∏m
j=1 qi j(s). Then, for an

arbitrary κ with κ ̸= ρ i for i = 1, . . . ,2m+ r, then using the Lagrange’s interpolating polynomial
[V 1

i j(x) and [V 2
i j(x)] have the closed-form expressions.

For i = {1,2,3, . . . ,m}, j = {1,2,3, . . . ,2m},

[V 1
i j(x)]m×2m = 1

γ(κ)

2m+r∑
l=1

γ1 i j(ρl)βl(κ)(κ−ρl)eρl x, (3.26)

and, for i = {m+1,m+2,m+3, . . . ,2m}, j = {1,2,3, . . . ,2m},

[V 2
i j(x)]m×2m = 1

γ(κ)

2m+r∑
l=1

γ2 i j(ρl)βl(κ)(κ−ρl)eρl x, (3.27)

Communications in Mathematics and Applications, Vol. 15, No. 1, pp. 279–300, 2024



292 Perturbed MAP/PH Risk Model With Possible Delayed By-Claims. . . : P. P. Sreeshamim and M. J. Jacob

where γ1 i j(s) = q(s)[adj A(s)][L1(s)], γ2 i j(s) = q(s)[adj A(s)][L2(s)] are polynomials of degrees
less than 2m+ r, γ(s)= q(s)det A(s) is polynomial with degree 2m+ r and βl(s)=∏2m+r

k=1,k ̸=l((ρk −
s)/(ρk −ρl)).

Proof. M(s) has rational form M(s) = pi j(s)
qi j(s) (see Dufresne [6]). We can represent [Ṽ 1

i j(s)]m×2m

and [Ṽ 2
i j(s)]m×2m as:

For i = {1,2,3, . . . ,m}, j = {1,2,3, . . . ,2m},

[Ṽ 1
i j(s)]m×2m = q(s)[adj A(s)][L1(s)]

q(s)det A(s)
=
γ1 i j(s)

γ(s)
(3.28)

and for i = {m+1,m+2,m+3, . . . ,2m}, j = {1,2,3, . . . ,2m},

[Ṽ 2
i j(s)]m×2m = q(s)[adj A(s)][L2(s)]

q(s)det A(s)
=
γ2 i j(s)

γ(s)
. (3.29)

For an arbitrary κ with κ ̸= ρ i for i = 1, . . . ,2m+ r, apply Lagrange’s interpolating polynomial
on equations (3.28) and (3.29) gives:

For i = {1,2,3, . . . ,m}, j = {1,2,3, . . . ,2m},

[Ṽ 1
i j(s)]m×2m = 1

γ(κ)

2m+r∑
l=1

γ1 i j(ρl)βl(κ)
ρl −κ
ρl − s

. (3.30)

For i = {m+1,m+2,m+3 . . .2m}, j = {1,2,3, . . . ,2m},

[Ṽ 2
i j(s)]m×2m = 1

γ(κ)

2m+r∑
l=1

γ2 i j(ρl)βl(κ)
ρl −κ
ρl − s

. (3.31)

Inverting (3.30) and (3.31) yields (3.26) and (3.27).

4. The Moment Generating Function and the Moment of Discounted
Dividends Paid Until Ruin

Here we develop an IDE system satisfied by the MGF of the discounted dividend paid until
ruin for the risk reserve process (2.6). Then, applying the Taylor series expansion gives an IDE
system for the Moment of the discounted dividend payments. Further, with the help of the
methodology used in Section 3 we solve this IDE system.

4.1 System of Integro-Differential Equation
In this section, IDE for the MGF of total dividend paid and Moment of total dividend paid are
derived.

Theorem 7. For 0≤ x ≤ b, the MGFs of total dividend paid W⊤
b,w(x, z) and W∗⊤

b,w(x, z) satisfy the
following system of second order IDE with boundary conditions:

0=
[(
σ2

2
d2

dx2 + c
d
dx

−δy
d
dz

)
Im +Λ′

11

]
W⊤

b,w(x, z)− (1−θ)Λ′
11

·
[∫ x

0
Λ′

12eΛ
′
22 yΛ′

21W
⊤
b,w(x− y, z)dy+

∫ ∞

x
Λ′

12eΛ
′
22 yt′⊤2 1dy

]
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−θΛ′
11

[∫ x

0
Λ′

12eΛ
′
22 yΛ′

21W∗⊤
b,w(x− y, z)dy+

∫ ∞

x
Λ′

12eΛ
′
22 yt′⊤2 1dy

]
(4.1)

and

0=
[(
σ2

2
d2

dx2 + c
d
dx

−δz
d
dz

)
Im +Λ′

11

]
W∗⊤

b,w(x, z)− (1−θ)Λ′
11

·
[∫ x

0
Λ′′

12eΛ
′′
22 yΛ′′

21W
⊤
b,w(x− y, z)dy+

∫ ∞

x
Λ′′

12eΛ
′′
22 yt⊤2 1dy

]
−θΛ′

11

[∫ x

0
Λ′′

12eΛ
′′
22 yΛ′′

21W∗⊤
b (x− y, z)dy+

∫ ∞

x
Λ′

12eΛ
′′
22 yt′′⊤2 1dy

]
, (4.2)

with boundary conditions
d
dx

W
⊤
b,w(x, z)

∣∣∣∣
x=b

= zW
⊤
b,w(b, z),

d
dx

W∗⊤
b,w(x, z)

∣∣∣∣
x=b

= zW∗⊤
b,w(b, z). (4.3)

Also, lim
b→∞

W
⊤
b,w(x, z)= e⊤ and lim

b→∞
W∗⊤

b,w(x, z)= e⊤.

Proof. For 0≤ x < b, consider a very small time period [0,h], there are three possibilities:
(i) no claim arrivals in [0,h],

(ii) one main claim occurs in [0,h] but it does not induce any by-claim which happens with
(1−θ) probability (it may or may not cause the ruin),

(iii) one main claim occur in [0,h] and it induces a by-claim that can happen with probability
θ (here also it may or may not cause the ruin).

Conditioning on the above possible events in [0,h], we obtain

W
⊤
b,w(x, z)= eT′

11hW⊤
b,w(x+ ch+σW(h), ze−δh)+ (1−θ)(Im − eΛ

′
11h)

·
[∫ x+ch+σW(h)

0
Λ′

12eΛ
′
22 yΛ′

21W
⊤
b,w(x+ ch+σW(h)− y, ze−δh)dy

+
∫ ∞

x+ch+σW(h)
Λ′

12eΛ
′
22 yΛ′⊤

1 1dy
]
+θ(Im − eΛ

′
11h)

·
[∫ x+ch+σW(h)

0
Λ′

12eΛ
′
22 yΛ′

21W∗⊤
b,w(x+ ch+σW(h)− y, ze−δh)dy

+
∫ ∞

x+ch+σW(h)
Λ′

12eΛ
′
22 yΛ′⊤

2 1dy
]
+ o(h) . (4.4)

Similarly,

W∗⊤
b,w(x, z)= eT′

11hW∗⊤
b,w(x+ ch+σW(h), ze−δh)+ (1−θ)(Im − eΛ

′
11h)

·
[∫ x+ch+σW(h)

0
Λ′

12eΛ
′′
22 yΛ′′

21W
⊤
b,w(x+ ch+σW(h)− y, ze−δh)dy

+
∫ ∞

x+ch+σW(h)
Λ′′

12eΛ
′′
22 yΛ′′⊤

1 1dy
]
+θ(Im − eΛ

′
11h)

·
[∫ x+ch+σW(h)

0
Λ′′

12eΛ
′′
22 yΛ′′

21W∗⊤
b,w(x+ ch+σW(h)− y, ze−δh)dy
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+
∫ ∞

x+ch+σW(h)
Λ′′

12eΛ
′′
22 yΛ′′⊤

2 1dy
]
+ o(h). (4.5)

Expanding the equations (4.4) and (4.5) in Taylor series then dividing the equation by h and
taking limit h → 0, we get the equation (4.1) and (4.2).

For u = b, use the same arguments

W⊤
b,w(b, z)= eT′

11hezchW⊤
b,w(b+σW(h), ze−δh)+ (1−θ)(Im − eΛ

′
11h)

·
[∫ b

0
Λ′

12eΛ
′
22 yΛ′

21W⊤
b,w(b+σW(h)− y, ze−δh)dy

+
∫ ∞

b
Λ′

12eΛ
′
22 yΛ′⊤

1 1dy
]
+θ(Im − eΛ

′
11h)

·
[∫ b

0
Λ′

12eΛ
′
22 yΛ′

21W∗⊤
b,w(b+σW(h)− y, ze−δh)dy

+
∫ ∞

b
Λ′

12eΛ
′
22 yΛ′⊤

1 1dy
]
+ o(h) (4.6)

for the auxiliary risk reserve process

W∗⊤
b,w(b, z)= eT′

11hezchW∗⊤
b,w(b+σW(h), ze−δh)+ (1−θ)(Im − eΛ

′
11h)

·
[∫ b

0
Λ′′

12eΛ
′′
22 yΛ′′

21W⊤
b,w(b+σW(h)− y, ze−δh)dy

+
∫ ∞

b
Λ′′

12eΛ
′′
22 yΛ′′⊤

2 1dy
]
+θ(Im − eΛ

′
11h)

·
[∫ b

0
Λ′′

12eΛ
′′
22 yΛ′′

21W∗⊤
b,w(b+σW(h)− y, ze−δh)dy

+
∫ ∞

b
Λ′′

12eΛ
′′
22 yΛ′′⊤

2 1dy
]
+ o(h). (4.7)

Once again, substituting Taylor series expansion in the equations (4.6) and (4.7) then
dividing it by h and taking limit h → 0

0=−δz
d
dz

W⊤
b,w(b+σW(h), z)+ (zcIm +T′

11)W⊤
b,w(b+σW(h), z)− (1−θ)T′

11

·
[∫ b

0
Λ′

12eΛ
′
22 yΛ′

21W
⊤
b,w(b+σW(h)− y, z)dy+

∫ ∞

b
Λ′

12eΛ
′
22 yΛ′⊤

1 1dy
]

−θT′
11

[∫ b

0
Λ′

12eΛ
′
22 yΛ′

21W∗⊤
b (b+σW(h)− y, z)dy

]
+

[∫ ∞

b
Λ′

12eΛ
′
22 yΛ′⊤

1 1dy
]

(4.8)

and

0=−δz
d
dz

W∗⊤
b,w(b+σW(h), z)+ (zcIm +T′

11)W∗⊤
b,w(b+σW(h), z)− (1−θ)T′

11

·
[∫ b

0
Λ′′

12eΛ
′′
22 yΛ′′

21W
⊤
b,w(b+σW(h)− y, z)dy+

∫ ∞

b
Λ′′

12eΛ
′′
22 yΛ′′⊤

2 1dx
]

−θT′
11

[∫ b

0
Λ′′

12eΛ
′′
22 yΛ′′

21W∗⊤
b (b+σW(h)− y, z)dy

]
+

[∫ ∞

b
Λ′′

12eΛ
′′
22 yΛ′′⊤

2 1dy
]
. (4.9)
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Setting x = b in equations (4.1) and (4.2), using the equation (4.8), (4.9) and W⊤
b,w(x, z) and

W∗⊤
b,w(x, z) are continuous at x = b, we find the boundary conditions (4.3).

Proposition 8. For 0 ≤ x ≤ b and k ≥ 1, the kth Moment gk⊤
w (x,b) and g∗k⊤

(x,b) satisfy
the following system of IDE with boundary conditions:

0=
[(
σ2

2
d2

dx2 + c
d
dx

−δk
)
Im +Λ′

11

]
gk⊤

w (x,b)− (1−θ)Λ′
11

∫ x

0
Λ′

12eΛ
′
22 yΛ′

21 gk⊤
w (x− y,b)dy

−θΛ′
11

∫ x

0
Λ′

12eΛ
′
22 yΛ′

21 g∗k⊤
w (x− y,b)dy (4.10)

and

0=
[(
σ2

2
d2

dx2 + c
d
dx

−δk
)
Im +Λ′

11

]
g∗k⊤

w (x,b)− (1−θ)Λ′
11

∫ x

0
Λ′′

12eΛ
′′
22 yΛ′′

21 gk⊤
w (x− y,b)dy

−θΛ′
11

∫ x

0
Λ′′

12eΛ
′′
22 yΛ′′

21 g∗k⊤
w (x− y,b)dy (4.11)

with boundary conditions
d
dx

gk⊤
w (x,b)

∣∣∣∣
x=b

=kgk−1⊤
w (b,b),

d
dx

g∗k⊤
w (x,b)

∣∣∣∣
x=b

=kg∗k−1⊤
w (b,b). (4.12)

Also, lim
b→∞

gk⊤
w (x,b)= lim

b→∞
g∗k⊤

w (x,b)= 0.

Proof. Using Taylor’s series expansion

W
⊤
b,w(x, z)= e⊤+

∞∑
k=1

zk

k!
gk⊤

w (x,b) and W∗⊤
b,w(x, z)= e⊤+

∞∑
k=1

zk

k!
g∗k⊤

w (x,b), (4.13)

into (4.10) and (4.11) it gives

0=
∞∑

k=1

zk

k!

[
σ2

2
d2

dx2 +
(
c

d
dx

−δk
)
Im +Λ′

11

]
gk⊤

w (x,b)− (1−θ)Λ′
11

·
∞∑

k=1

zk

k!

∫ x

0
Λ′

12eΛ
′
22 yΛ′

21 gk⊤
w (x− y,b)dy

−θΛ′
11

∞∑
k=1

zk

k!

∫ x

0
Λ′

12eΛ
′
22 yΛ′

21 g∗k⊤
w (x− y,b)dy (4.14)

and

0=
∞∑

k=1

zk

k!

[(
σ2

2
d2

dx2 + c
d
dx

−δk
)
Im +Λ′

11

]
g∗k⊤

w (x,b)− (1−θ)Λ′
11

·
∞∑

k=1

zk

k!

∫ x

0
Λ′′

12eΛ
′′
22 yΛ′′

21 gk⊤
w (x− y,b)dy

−θΛ′
11

∞∑
k=1

zk

k!

∫ x

0
Λ′′

12eΛ
′′
22 yΛ′′

21 g∗k⊤
w (x− y,b)dy. (4.15)
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Then comparing the coefficients of yk in (4.14) and (4.15) yields (4.10) and (4.11). Also, from
(4.13) and (4.3), we have

∞∑
k=1

zk

k!
d
dx

gk⊤
w (x,b)

∣∣∣∣
x=b

=
∞∑

k=1
k

zk

k!
gk−1⊤

w (x,b)
∣∣∣∣
x=b

,

∞∑
k=1

zk

k!
d
dx

g∗k⊤
w (x,b)

∣∣∣∣
x=b

=
∞∑

k=1
k

zk

k!
g∗k−1⊤

w (x,b)
∣∣∣∣
x=b

. (4.16)

To get the boundary condition (4.12) just compare the coefficients of ym in (4.16). We omit the
proof of limit result which is trivial.

4.2 Solution Analysis
The solution of IDE system (4.10) and (4.11) with boundary condition (4.12) heavily depends on

the solution to the following associated homogeneous system in gk⊤
w,δ,b

(x) and g∗k⊤

w,δ,b
(x).

For u ≥ 0,

0=
[(
σ2

2
d2

dx2 + c
d
dx

−δk
)
Im +Λ′

11

]
gk⊤

w,δ,b
(x,b)− (1−θ)Λ′

11

·
∫ x

0
Λ′

12eΛ
′
22 yΛ′

21 gk⊤
w,δ,b

(x− y,b)dy

−θΛ′
11

∫ x

0
Λ′

12eΛ
′
22 yΛ′

21 g∗k⊤

w,δ,b
(x− y,b)dy (4.17)

and

0=
[(
σ2

2
d2

dx2 + c
d
dx

−δk
)
Im +Λ′

11

]
g∗k⊤

w,δ,b
(x,b)− (1−θ)Λ′

11

·
∫ x

0
Λ′′

12eΛ
′′
22 yΛ′′

21 gk⊤
w,δ,b

(x− y,b)dy

−θΛ′
11

∫ x

0
Λ′′

12eΛ
′′
22 yΛ′′

21 g∗k⊤

w,δ,b
(x− y,b)dy, (4.18)

where δ= δk. We observe now that (4.17) and (4.18) form a homogeneous IDE system and hence
similar to Section 3.2.2, it holds that for 0≤ x ≤ b,gk⊤

w,δ,b
(x)

g∗k⊤

w,δ,b
(x)


2m×1

= [V k(x)]2m×2m

[
η⊤k,i(b)

η∗
⊤

k,i(b)

]m

i=1

. (4.19)

Then using the same method in Section 3.2.2, we can solve the equation system.

5. The Dividend Penalty Identity
In this section, we develop an identity of dividends-penalty for the risk reserve process (2.6).
Denote for 0≤ x ≤ b, φ⃗d,b(x)= (φ⊤

d,b(x),φ∗⊤
d,b(x))⊤ and 0≤ x ≤∞, φ⃗d(x)= (φ⊤

d (x),φ∗⊤
d (x))⊤,

φ⃗d(x)=
[
φ⊤

d (x)
φ∗⊤

d (x)

]
2m×1

, 0≤ x ≤∞,
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φ⃗d,b(x)=
[
φ⊤

d,b(x)

φ∗⊤
d,b(x)

]
2m×1

, 0≤ x ≤ b,

η⃗(b)=(η⊤i (b),η∗i
⊤(b))⊤2m×1 and η⃗k(b)=(η⊤k.i(b),η∗k,i

⊤(b))⊤2m×1. We also consider the representations

g⃗w
k(x,b)= (gk⊤

w (x,b), gk∗⊤
w (x,b))⊤. Assume that V (x) and V k(x) are same matrices with δ= δk

by replacing δ. We give the dividends-penalty identity for the risk model (2.6) in the following
theorem.

Theorem 9. The identity of dividend penalty for the Markovian risk model with possible by
claims and dividend barrier is as follows.

For 0≤ x ≤ b,

[⃗φd,b(x)]2m×1 = [⃗φd(x)]2m×1 − [V B
w (x)]2m×2m[V B′

w (b)]−1
2m×2m [⃗φ

′
d(b)]2m×1 , (5.1)

[g⃗w
1(x,b)]2m×1 = [V B

w (x)]2m×2m[V B′
w (b)]−1

2m×2m · 1⃗, (5.2)

where 1⃗ is the 2m×1 vector of ones and (′) represent for first derivative.

Proof. From (3.21) we can represent the solution of the homogeneous IDE system (3.18) and
(3.19) as, for 0≤ x ≤ b,

[⃗φd,b(x)]2m×1 = [⃗φd(x)]2m×1 − [V B
w (x)]2m×2m [⃗ηk(b)]2m×1 , (5.3)

where the vector η⃗(b)= φ⃗′
d,b(0)−φ⃗′

d(0) can be obtained by the boundary condition in Theorem 4,

0⃗= [⃗φ
′
d(b)]2m×1 + [V B

w (b)]′2m×2m [⃗ηk(b)]2m×1 , (5.4)

where 0⃗ is the 2m×1 vector of zeros.
From (5.3) and (5.4) we get (5.1).
From (4.19) solution of (4.10) and (4.11) can be expressed as, for 0≤ x ≤ b,

[g⃗w
k(x,b)]2m×1 = [V k(x)]2m×2m [⃗ηk(b)]2m×1 , (5.5)

where the vector η⃗k(b)= g⃗w
k(0,b) can be obtained by the boundary condition in Proposition 8.

In fact,

[⃗ηk(b)]2m×1 = k[V k(b)]−1
2m×2m[V k−1(b)]2m×2mη⃗k−1(b), k ≥ 1 . (5.6)

Setting δ= δ and m = 1 in (5.5) and (5.6) yields

[g⃗w
1(x,b)]2m×1 = [V B

w (x)]2m×2m [⃗η1(b)]2m×1 , (5.7)

[⃗η1(b)]2m×1 = [V B′
w (b)]−1

2m×2m1⃗ . (5.8)

Eqs. (5.7) and (5.8) yields (5.2), hence Theorem 9 proved.

6. Numerical Examples
Numerical illustration of our results is considered here for a two-phase model. The effect of θ,
the by-claim probability and b, the dividend barrier on the EDDR, G(u,b) is shown here.

Assume that inter-arrival times follow a two-phase MAP with

D0 =
(−0.8 0.8

0 −0.9

)
and D1 =

(
1 −1

0.9 0

)
.
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The main claims follow PHn1(vM,HM) and the by-claims follow PHn2(vB,HB) with vB = (0.4,0.6),
vM = (0.2,0.8),

HM =
(−2 0

0 −2

)
and HB =

(−1 0
0 −1

)
.

Here c is taken as 1 and δ= 0.6.
In the below graphs x-axis represents G(u,b) and y-axis represents u. Here we consider u

as the initial surplus.

1.5

2.

2.5

1.

1 2 3 4 5 6
u

5

10

15

G(u,b)

Figure 1. G(u,b) with fixed θ = 0.2 and b = 1,1.5,2,2.5

In Figure 1 the G(u,b) for θ = 0.2, u ∈ [0,4] and b = 1,1.2,1.4,1.6. As expected, G(u,b) is
increasing as the initial surplus u increases. Further, G(u,b) decreases when b increases.

0.8

0.4

1 2 3 4 5
u

5

10

15

G(u,b)

Figure 2. G(u,b) with fixed b = 1 and θ = 0.4,0.8

Figure 2 shows the behavior of G(u,b) for b = 1, u ∈ [0,4] and θ = 0.4,0.8. Here, also G(u,b)
increases as the u increases and it decreases as θ increases for the given b.

7. Concluding Remarks
MAP/PH risk models are highly valuable in capturing the multi-phase structure commonly
found in real-world scenarios. In this study, we expanded upon the significance of these models
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by incorporating small fluctuations through the addition of a Brownian motion component.
Specifically, we analyzed a perturbed MAP/PH risk model that incorporates a constant dividend
barrier and two categories of claims: main claims and possible by-claims. Each main claim
has the potential to generate a by-claim with a probability denoted as θ. The payment of a
by-claim is postponed until the arrival of the next main claim, which is particularly relevant
when further investigation is required.

To analyze the model, we employed Markovian fluid queue processes, utilizing both the
original timeline and an auxiliary timeline. We developed a system of integro-differential
equations (IDE) for the Gerber-Shiu function (GSF) and the total dividend paid until ruin.
Solving this system involves employing Laplace transforms and subsequently inverting them
using the Lagrange interpolation formula. The resulting analysis yields explicit expressions for
the GSF in both the models without a barrier and with a barrier. Additionally, we presented
expressions for the Moment of the total dividends paid until ruin. Moreover, we established a
dividend penalty identity that pertains to the investigated risk model.

To illustrate the effectiveness of our method, we provided a numerical demonstration
using a two-phase model. Furthermore, we conduct sensitivity analysis by varying essential
system parameters, allowing for a comprehensive understanding of the model’s behavior and
its robustness. The results obtained from this study lay the foundation for further research on
a Markovian risk model with possible by-claims, a dividend barrier, and additional elements
such as random incomes, capital injections, and taxes. Expanding the scope of investigation to
include these factors would provide a more comprehensive understanding of risk dynamics in
complex real-world scenarios.
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