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1. Introduction
K-homology is the homology theory dual to topological K-theory.
A geometric model for K-homology was introduced by Baum-Douglas (see [1]), and proved to be
an extremely important tool in index theory and physics (see [5]). Motivated by generalizing the
pairings between K-theory and K-homology to the case of R/Z-coefficients, Deeley defined in [2]
a model for geometric K-homology with R/Z-coefficients using approach of operators algebras.
Let X be a finite CW-complex and N be a II1-factor. A cycle in the Deeley R/Z-K-homology (which
we call R/Z-K-cycle) over X is a triple (W , (H,ε,α)(∇

H ,∇ε), g) where W is a smooth compact Spinc -
manifold, H is a fiber bundle over W with fibers are finitely generated projective Hermitian
Hilbert N-modules, with a Hermitian connection ∇H , ε is a Hermitian vector bundle over ∂W
with a Hermitian connection ∇ε , α is an isomorphism from H|∂W to ε⊗N, and g : W → X is
a continuous map. The Deeley R/Z-K-homology group K∗(X ,R/Z) is the quotient of the set of
isomorphism classes of R/Z-K-cycles over X by the equivalence relation generated by bordism
and vector bundle modification (Definition 3.6).
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On the other hand, we defined in [3] the differential K-homology group Ǩ∗(X ) of a smooth
compact manifold X . A cycle in Ǩ∗(X ) is called a differential K-cycle over X and consisting
of a pair ((M,E∇E

, f ),φ) of a cycle of Baum-Douglas (M,E∇E
, f ) over X and a class of

currents φ ∈ Ω∗(X )
img(∂) . A flat differential K-cycle is a differential K-cycle (M,E∇E

, f ,φ) such that
∂φ= ∫

M Td(∇M)ch(∇E) f ∗ .

The flat differential K-homology group Ǩ f
∗(X ) is the subgroup of Ǩ∗(X ) consisting of classes of

flat differential K-cycles over X , and then fits into the exact sequence

0 // Ǩ f
∗(X ) �

� // Ǩ∗(X ) // Ω0∗(X ) // 0 ,

where Ω0∗(X ) denotes the group of closed continuous currents whose de Rham homology class
lies in the image of the geometric Chern character.
In this paper we show that the groups K∗(X ,R/Z) and Ǩ f

∗−1(X ) are isomorphic.

2. The Functor Ǩ f

For the benefit of the reader, we recall the construction of flat K-homology groups defined in [3].
Let E be a smooth Hermitian vector bundle over a smooth compact manifold M with a Hermitian
connection ∇. The Chern character form of ∇ is given by

ch(∇) :=Tr
(
e
−∇2
2iπ

)
.

It is a closed real-valued form on M , and then defines a class in the de Rham cohomology of M .

Let chk(∇) ∈Ω2k(M,R) with chk(∇) := 1
k! Tr

((
−∇2

2iπ

)k
)
. It is obvious that

ch(∇)= ∑
k≥0

chk(∇).

If ∇1 and ∇2 are two Hermitian connections on E , there is a canonically-defined Chern-Simons
class CS(∇1,∇2) ∈ Ωodd(M)

img(d) (see [4]) such that

dCS(∇1,∇2)= ch(∇1)− ch(∇2).

If M is an n-dimensional smooth Spinc -manifold and ∇M is the Levi-Civita connection on M ,
the todd form of ∇M is the closed form defined by

Td(∇M) :=

√√√√√√det

 ∇M2

2

sinh
(
∇M2

2

)
∧ ech1(∇L),

where L is the Hermitian line bundle associated with the Spinc structure on M and ∇L is the
induced Hermitian connection on L.

In all the following, we denote by X a smooth compact manifold.
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Definition 2.1. A flat differential K-cycle over X is a quadruple (M,E∇E
, f ,φ) consisting of:

• A smooth closed Spinc -manifold M ;
• A smooth Hermitian vector bundle E over M with a Hermitian connection ∇E ;
• A smooth map f : M → X ;
• A de Rham homology class of continuous currents φ ∈ Ω∗(X )

img(∂) with

∂φ=
∫

M
Td(∇M)ch(∇E) f ∗ .

There are no connectedness requirements made upon M , and hence the bundle E can have
different fibre dimensions on the different connected components of M . It follows that the
disjoint union,

(M,E∇E
, f ,φ)t (M′,E′∇E′

, f ′,φ′) := (MtM′,EtE′∇Et∇E′
, f t f ′,φ+φ′),

is a well-defined operation on the set of flat differential K-cycles over X .

A flat differential K-cycle (M,E∇E
, f ,φ) is called even (resp. odd), if all connected components of

M are of even (resp. odd) dimension and φ ∈ Ωodd(X )
img(∂) (resp. φ ∈ Ωeven(X )

img(∂) ).

There are several kinds of relations involving flat differential K-cycles.

Definition 2.2 (Isomorphism). Two flat differential K-cycles (M,E∇E
, f ,φ) and (M′,E′∇E′

, f ′,φ′)
over X are isomorphic if there exists a diffeomorphism h : M → M′ such that

• h preserves the Spinc -structures;
• h∗E′ ∼= E ;
• the diagram

M

f
��

h
// M′

f ′~~
X

commutes;

• φ−φ′ =
[∫

M×[0,1]
Td(∇M×[0,1])ch(B)( f ◦ p)∗

]
where B is the connection on the pullback of

E by the natural projection p : M× [0,1]→ M given by B = (1− t)∇E + th∗∇E′ +dt d
dt .

The semigroup for the disjoint union of isomorphism classes of flat differential K-cycles over X
will be denoted by C∗(X ).

Definition 2.3 (Bordism). Two flat differential K-cycles (M,E∇E
, f ,φ) and (M′,E′∇E′

, f ′,φ′) over
X are said to be bordant if there exist a smooth compact Spinc -manifold W , a smooth Hermitian
vector bundle ε over W , and a smooth map g : W → X such that

(MtM′−,EtE′∇Et∇E′
, f t f ′)= (∂W ,ε|∇ε|∂W

∂W , g|∂W )
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and

φ−φ′ =
[∫

W
Td(∇W )ch(∇ε)g∗

]
,

where M′− denotes M′ with its Spinc -structure reversed (see [1]).

Let (M,E∇E
, f ,φ) be a flat differential K-cycle over X and V be a Spinc -vector bundle of even

rank over M with an Euclidean connection ∇V . Let 1M denote the trivial rank-one real vector
bundle over M . The direct sum V ⊕1M is a Spinc -vector bundle, and moreover the total space
of this bundle may be equipped with a Spinc -structure in a canonical way. This is because its
tangent bundle fits into an exact sequence

0→π∗[V ⊕1M]→ T(V ⊕1M)→π∗[TM]→ 0

where π is the projection from V ⊕1M onto M .
Let us now denote by M̂ the unit sphere bundle of the bundle V ⊕1M . Since M̂ is the boundary
of the disk bundle, we may equip it with a natural Spinc -structure by first restricting the given
Spinc -structure on the total space of V ⊕1M to the disk bundle, and then taking the boundary
of this Spinc -structure to obtain a Spinc -structure on the sphere bundle.
Denote by S := S−⊕S+ the Z2-graded spinor bundle associated with the Spinc -structure on the
vertical tangent bundle of M̂ carring with a Hermitian connection ∇S :=∇S− ⊕∇S+ induced by
∇V . Define V̂ to be the dual of S+ and ∇V̂ to be the Hermitian connection on V̂ induced by ∇S+ .

We obtain that the quadruple (M̂, V̂ ⊗π∗E∇V̂⊗π∗∇E
, f ◦π,φ) is a flat differential K-cycle over X .

Definition 2.4 (Vector bundle modification). The modification of a flat differential K-cycle
(M,E∇E

, f ,φ) associated to a Spinc -vector bundle V of even rank over M carring with an
Euclidean connection ∇V is the flat differential K-cycle

(M̂, V̂ ⊗π∗E∇V̂⊗π∗∇E
, f ◦π,φ).

We are now ready to define the flat differential K-homology group Ǩ f
∗(X ).

Definition 2.5. The flat differential K-homology group Ǩ f
∗(X ) is the quotient of C∗(X ) by the

equivalence relation ∼ generated by

(i) direct sum: (M,E∇E
, f ,φ)t (M,E′∇E′

, f ,φ′)∼ (M,E⊕E′∇E⊕∇E′
, f ,φ+φ′);

(ii) bordism;
(iii) vector bundle modification.

The class of a flat differential K-cycle (M,E∇E
, f ,φ) in Ǩ f

∗(X ) will be denoted by [M,E∇E
, f ,φ].

The neutral element of Ǩ f
∗(X ) is [;,;,;,0], and the inverse of a class [M,E∇E

, f ,φ] (∈ Ǩ f
∗(X ))

is [M−,E∇E
, f ,−φ].

Since the equivalence relation ∼ preserves the parity of flat differential K-cycles, this gives a
Z2-gradation of Ǩ f

∗(X ):

Ǩ f
∗(X )= Ǩ f

even(X )⊕ Ǩ f
odd(X ),

where Ǩ f
even(X ) (resp. Ǩ f

odd(X )) is the subgroup of Ǩ f
∗(X ) consisting of classes of even (resp.

odd) flat differential K-cycles over X .
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3. The Deeley Model for R/Z-K-Homology
In this section we recall the Deeley construction of a model for R/Z-K-homology (see [2]).
In all the following, we denote by N a II1-factor and τ a faithful normal trace on N.

Definition 3.1. An R/Z-K-cycle over X is a triple (W , (H,ε,α)(∇H ,∇ε), g), where

• W is a smooth compact Spinc -manifold;
• H is a fiber bundle over W with fibers are finitely generated projective Hermitian Hilbert

N-modules, with a Hermitian connection ∇H ;
• ε is a Hermitian vector bundle over ∂W with a Hermitian connection ∇ε ;
• α is an isomorphism from H|∂W to ε⊗N;
• g : W → X is a smooth map.

An R/Z-K-cycle (W , (H,ε,α)(∇
H ,∇ε), g) is called even (resp. odd), if all connected components of W

are of even (resp. odd) dimension.
The addition operation on the set of R/Z-K-cycles is defined using disjoint union operation.
Two R/Z-K-cycles over X are isomorphic if there are compatible isomorphisms of all of the above
three components in the definition of R/Z-K-cycle.
The semigroup of isomorphism classes of R/Z-K-cycles over X will be denoted by Γ∗(X ).

Definition 3.2. A bordism of R/Z-K-cycles over X consists of the following data:

• Z is a smooth compact Spinc -manifold;
• W ⊆ ∂Z is a regular domain;
• V is a fiber bundle over Z with fibers are finitely generated projective Hermitian Hilbert

N-modules, with a Hermitian connection ∇V , and ϑ is a Hermitian vector bundle over

∂Z− int(W) with a Hermitian connection ∇ϑ such that V |∂Z−int(W)
β∼=ϑ⊗N;

• h : Z → X is a smooth map.

Here, a regular domain W of ∂Z means a closed submanifold of ∂Z such that int(W) 6= ; and
if x ∈ ∂W , then there exists a coordinate chart ψ : U →Rn centred at x with ψ(W ∩U)= {(yi) ∈
ψ(U) | yn ≥ 0}.
The boundary of a bordism (Z,W , (V ,ϑ,β)(∇V ,∇ϑ),h) is the R/Z-K-cycle

∂(Z,W , (V ,ϑ,β)(∇V ,∇ϑ),h) := (W , (V |W ,ϑ|∂W ,β)∇
V |W ,∇ϑ|∂W ,h|W ).

Remark 3.3. If (Z,W , (V ,ϑ,β)(∇V ,∇ϑ),h) is a bordism, then (∂Z − int(W),ϑ∇ϑ ,h|∂Z−int(W)) is a
chain of Baum-Douglas with boundary (∂W ,ϑ|∇ϑ|∂W

∂W ,h|∂W ).

Definition 3.4. Two R/Z-K-cycles (W0, (H0,ε0,α0)(∇H0 ,∇ε0 ), g0) and (W1, (H1,ε1,α1)(∇H1 ,∇ε1 ), g1)
are bordant if there exists a bordism ζ such that (W0, (H0,ε0,α0)(∇H0 ,∇ε0 ), g0)t
(W−

1 , (H1,ε1,α1)(∇H1 ,∇ε1 ), g1) is isomorphic to ∂ζ.

Remark 3.5. If (M,E∇E
, f ) is a cycle of Baum-Douglas over X , then its associated R/Z-K-cycle

(M, (E ⊗N,;,;)(∇E ,;), f ) is bordant to the trivial R/Z-K-cycle, where a bordism is given by
(M× [0,1], M, (p∗

ME⊗N,E)(p∗
M∇E ,∇E), f ◦ pM) with pM : M× [0,1]→ M is the natural projection.
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The vector bundle modification of an R/Z-K-cycle can be defined in the same way as the vector
bundle modification of a flat differential K-cycle.

Definition 3.6. The Deeley R/Z-K-homology group K∗(X ,R/Z) is the quotient of Γ∗(X ) by the
equivalence relation generated by bordism and vector bundle modification.

K∗(X ,R/Z) is Z2-graded by the parity of R/Z-K-cycles.
Note that if X is a smooth compact Spin-manifold, the group K∗(X ,R/Z) is isomorphic to the
Kasparov group KK∗−1(C(X ),Ci) where Ci is the mapping cone of the inclusion i :C ,→N ([2,
Theorem 3.10] together with [2, Theorem 5.2]).

4. The Isomorphism K∗(X ,R/Z)∼= Ǩ f
∗−1(X )

Recall that the geometric K-homology group of X is denoted by Kgeo
∗ (X ).

Following the exact sequence in [3, p. 7] together with the fact that the geometric Chern
character Ch∗ : Kgeo

∗ (X )→ HdR∗ (X ) is rationally injective, Ǩ f
∗(X ) fits into the exact sequence

0→ HdR
∗+1(X )

img(Ch∗)
a→ Ǩ f

∗(X ) i→T (Kgeo
∗ (X ))→ 0

where T (Kgeo
∗ (X )) is the torsion subgroup of Kgeo

∗ (X ), i is the forgetful map, and a is the map
which associates to each φ ∈ HdR

∗+1(X ) the class [;,;,;,φ] ∈ Ǩ f
∗(X ).

Now, note that from [2] and [6], an element in the Kasparov’s group KK∗(C(X ),N) can be
described by a geometric cycle of the form (M,H∇H

, f ) where M is a smooth closed Spinc -
manifold, H is a fiber bundle over M with fibers are finitely generated projective Hermitian
Hilbert N-modules, with a Hermitian connection ∇H , and f : M → X is a smooth map.
KK∗(C(X ),N) is a model for the real K-homology of X ; an isomorphism between Kgeo

∗ (X )⊗R
and KK∗(C(X ),N) is given at level of cycles by

ν((M,E∇E
, f ), t) := [M,E⊗ ptN

n∇E
, f ],

where pt ∈ Mn(N) is a projection with τ(pt)= t.
Define a homomorphism Chτ,∗ : KK∗(C(X ),N)→ HdR∗ (X ,R) by setting

Chτ,∗[M,H∇H
, f ] :=

[∫
M

Td(∇M)chτ(∇H) f ∗
]

,

where chτ(∇H) := (τ⊗Tr)(e
−∇H2

2iπ ) ∈Ω2∗(X ,R). It fits into the commutative diagram

Kgeo
∗ (X )⊗R

∼=ChR∗
��

ν

''

HdR∗ (X ,R) KK∗(C(X ),N)
Chτ,∗
oo

where ChR∗ : Kgeo
∗ (X )⊗R→ HdR∗ (X ,R) is the Chern character.
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Denote by δ′ : KK∗(C(X ),N)→ K∗(X ,R/Z) the homomorphism given at the level of N-K-cycles
by

δ′(M,H∇H
, f ) := [M, (H,;,;)(∇H ,;), f ],

and δ= δ′ ◦ν : Kgeo
∗ (X )⊗R→ K∗(X ,R/Z). Let µ : Kgeo

∗ (X ) → Kgeo
∗ (X )⊗R be the homomorphism

given by

µ[M,E∇E
, f ] := ([M,E∇E

, f ],1).

By Remark 3.5, δ induces a well-defined homomorphism from coker(µ) to K∗(X ,R/Z).

Theorem 4.1. The groups K∗(X ,R/Z) and Ǩ f
∗−1(X ) are isomorphic.

To prove the theorem, we need the following lemma:

Lemma 4.2. The following sequence is exact:

0→ coker(µ) δ→ K∗(X ,R/Z) ∂→T (Kgeo
∗−1(X ))→ 0,

where the map ∂ sends an R/Z-K-cycle (W , (H,ε,α)(∇H ,∇ε), g) to (∂W ,ε∇
ε
, g|∂W ).

Proof of Lemma 4.2. It is clear that ∂ is compatible with the relation of vector bundle
modification. Compatibility with the relation of bordism follows from Remark 3.3.

Surjectivity of ∂. For [M,E∇E
, f ] ∈T (Kgeo

∗ (X )), there exist a positive integer k and a chain of
Baum-Douglas (W ,ϑ∇ϑ , g) over X such that

(M,kEk∇E
, f )

h∼= (∂W ,ϑ|∇ϑ|∂W
∂W , g|∂W ).

If we denote by α : ∂W → M and β : ϑ|∂W → kα∗E the isomorphisms induced by h, then
(W , (ϑ⊗N,α∗E,β⊗1)(∇ϑ,α∗∇E), g) is an R/Z-K-cycle over X such that

ϑ|∂W ⊗N
β⊗1∼= α∗E⊗kN∼=α∗E⊗N,

and satisfies

[∂(W , (ϑ⊗N,α∗E,β⊗1)(∇ϑ,α∗∇E), g)]= 0= [M,E∇E
, f ].

Injectivity of δ. Let (M,E∇E
, f ) be a cycle of Baum-Douglas over X and t ∈ R such that

δ([M,E∇E
, f ], t) is the trivial element. There exists a bordism (Z,W , (V ,ϑ,β)(∇V ,∇ϑ),h) over X

such that:

∂(Z,W , (V ,ϑ,β)(∇V ,∇ϑ),h) := (W , (V |W ,ϑ|∂W ,β)(∇V |W ,∇ϑ|∂W ),h|W )

= (M, (E⊗ ptN
n,;,;)(∇E ,;), f ).

Since

(∂Z,V |∂Z
∇V |∂Z ,h|∂Z)= (∂Z−W ,ϑ⊗N∇ϑ ,h|∂Z−W )t (W ,V |W∇V |W ,h|W ),

Communications in Mathematics and Applications, Vol. 5, No. 2, pp. 73–81, 2014



80 An Explicit Isomorphism in R/Z-K-Homology: A. Elmrabty and M. Maghfoul

(Z,V∇V
,h) is a bordism in KK∗(C(X ),N) between the N-K-cycles ν((∂Z−W ,ϑ∇ϑ , g|∂Z−W ),1) and

ν((M−,E∇E
, f ), t). It follows that

(−[M,E∇E
, f ], t)=µ([∂Z−W ,ϑ∇ϑ ,h|∂Z−W ]),

and then ([M,E∇E
, f ], t) determines the zero element in coker(µ).

In view of cycles of Baum-Douglas are without boundaries, the composition ∂◦δ is zero.
It remains to show that Ker(∂) ⊆ Img(δ). Let (W , (H,ε,α)(∇H ,∇ε), g) be an R/Z-K-cycle over X
with (∂W ,ε∇

ε
, g|∂W ) is the boundary of a chain of Baum-Douglas (Z,F∇F

,h). Form the closed
smooth Spinc manifold W̃ :=W∪∂W∼=∂Z Z . Denote that the fiber bundles and differentiable maps
are compatible with the isomorphism ∂W ∼= ∂Z . Hence, we can form the N-K-cycle (W̃ ,V∇V

, j)
with

V = H∪∂W∼=∂Z (F ⊗N), ∇V =∇H ∪∂W∼=∂Z ∇F

and

j = g∪∂W∼=∂Z h.

It determines a class in the KK-group KK∗(C(X ),N). We first show that there exists a bordism
between δ′(W̃ ,V∇V

, j) and (W , (H,ε,α)(∇H ,∇ε), g). This is given by the following quadruple

(W̃ × [0,1],W̃ tW , (p∗V ,F)(p∗∇V ,∇F ), j ◦ p),

where p : W̃ × [0,1]→ W̃ is the natural projection.
Since KK∗(C(X ),N)∼= Kgeo

∗ (X )⊗R and from the definition of δ, there exist [M,E∇E
, f ] ∈ Kgeo

∗ (X )
and t ∈R such that

δ([M,E∇E
, f ], t)= δ′[M,E⊗ ptN

n∇E
, f ]

= δ′[W̃ ,V∇V
, j]

= [W , (H,ε,α)(∇H ,∇ε), g].

Proof of Theorem 4.1. Using Remark 3.3, the Atiyah-Singer index theorem on even spheres
and the commutative diagram in page 9 relating Chτ,∗ and ChR∗ , we obtain that the map
γ : K∗(X ,R/Z)→ Ǩ f

∗−1(X ) given by

γ[W , (H,ε,α)(∇H ,∇ε), g] :=
[
∂W ,ε∇

ε

, g|∂W ,
[∫

W
Td(∇W )chτ(∇H)g∗

]]
is a well-defined homomorphism. The theorem results from the commutativity of the following
diagram together with the five-lemma:

0 // coker(µ)
δ
//

χ
��

	

K∗(X ,R/Z)
∂
//

γ

��
	

T (Kgeo
∗−1(X )) // 0

0 // HdR∗ (X )
img(Ch∗)

a
// Ǩ f

∗−1(X )
i
// T (Kgeo

∗−1(X )) // 0
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where χ is the homomorphism induced by ChR∗ , which is obviously an isomorphism.
It is evident that i ◦γ= ∂. It remains to show that γ◦δ= a◦χ.

Let [M,E∇E
, f ] ∈ Kgeo

∗ (X ) and t ∈R. We have

γ(δ([M,E∇E
, f ], t))= γ([M, (E⊗ ptN

n,;,;)(∇E ,;), f ])

=
[
;,;,;,

[∫
M

Td(∇M)chτ(∇E⊗ptN) f ∗
]]

=
[
;,;,;,

[
τ(pt)

∫
M

Td(∇M)ch(∇E) f ∗
]]

= a(χ([M,E∇E
, f ], t)).

This finishes the proof.
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