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1. Introduction
In the last two decades, the study of algebraic structure using graph properties has become an
exciting research topic, yielding many fascinating results and questions. The structure of a ring
is more closely related to ideal behavior than elements in ring theory, so it is appropriate to
define a graph with vertex sets as ideals. There are many articles in the literature that assign
graphs to rings (Behboodi and Rakeei [1], Curtis et al. [3], and Mohammad et al. [5]). Recently,
Selvakumar and Ramanathan [6] introduced and studied the concept of k-annihilating ideal
hypergraph of a commutative ring and defined it as: Let R be a commutative ring and let
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A(R,k) be the set of all k-annihilating ideals in R and k > 2 an integer. The k-annihilating
ideal hypergraph of R, denoted by AGk(R) is a hypergraph with vertex set A(R,k) and for
distinct elements I1, I2, . . . , Ik in A(R,k), the set {I1, I2, . . . , Ik} is an edge of AGk(R) if and only

if
k∏

i=1
I i = (0) and the product of (k−1) element of {I1, I2, . . . , Ik} is nonzero. Later, Essa et al. [4]

modified and investigated the structure of a k-annihilating ideal hypergraph of a commutative
ring.

Throughout this article, all rings R assumed to be finite commutative ring with identity
and every local ring (R,m) has a finite number of ideals with index of nilpotency i of m (i.e.,
an Artinain local ring R). Also, R is PIR, denoted by (R,m, i), if and only if the maximal ideal
m is cyclically generated. A ring R is called a principal ideal ring (PIR) if each of its ideals is
principal. Moreover, if (R,m, i) is local ring, then the number of nontrivial ideals of R is i−1.

A hypergraph H is a pair (V(H),E(H)) of disjoint sets, where V(H) is a non-empty finite
set whose elements are called vertices, and the number of elements of V(H), is called order
of hypergraph H, denote by n(H). Also, the elements of E(H) are a finite family of distinct
nonempty subsets of V(H) known as hyperedges, with UE∈E(H)E =V(H), and they are arbitrary
sets of vertices that can contain an arbitrary number of vertices, and the number of elements of
hyperedges is called the size of hypergraph H, denoted by m(H). If every hyperedge E of H is
of size k, then the hypergraph H is said to be k-uniform. The degree of a vertex v is the number
of edges that contain it, denoted as dH(v). A path of length k in a hypergraph H is a finite
sequence of the form v1,E1, y1,E2, y2, . . . ,Ek−1, yk−1,Ek,v2 such that v1 ∈ E1 and yi ∈ (E i ∩E i+1)
for i = 1,2, . . . ,k−1 and v2 ∈ Ek . The distance between u and v in V(H) is the length of a shortest
path from u and v in H, denoted by dH(u,v). Precisely, dH(u,u)= 0. The diameter of H is the
maximum distance between all of its vertex pairs. The center of H is the minimum distance of
vertex v to other vertices of it (see Bretto [2]).

The purpose of this article is to determine some fundamental graphical properties of a
k-annihilating ideal hypergraph of a local ring. In section two, we determine the order and size
of AGk(R), as well as the degree of any nontrivial ideal of a local ring containing in A(R,k). In
section three, we find the diameter of AGk(R), which is the same as [4, Theorem 3.1], that is,
diam(AGk(R))≤ 2 and the center of AGk(R). We also discover the Wiener index of AGk(R) of a
local ring.

A partition of a positive integer n is a finite sequence of positive integers λ1,λ2, . . . ,λr such

that
r∑

i=1
λi = n. The λi are referred to as the parts of the partition n. The Qn denotes the set

of partitions of n into distinct parts, and Qn,l denotes the set of partitions of n into distinct
parts whose least part is l and not equal to n, for 1 ≤ l ≤ n−1. Furthermore, let q(n) and
q(n, l) represents the number of elements in Qn and Qn,l respectively, and q(n, l) = ⌊n−1

2

⌋− l
(see Srichen [7]). We rely on r = 2 and r = 3 in particular to count our problem.

2. Fundamentals of k-Annihilating Ideal Hypergraph of Local Ring
This section is started by determining the cases of a k-annihilating ideal hypergraph of R that
is empty. Let A(R,k) be the set of all k-annihilating ideals of R, where k > 2 is an integer, as a
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vertex set, and obtain important properties of A(R,k). In addition, the order and size of AGk(R)
are found, as well as the degree of every vertex of A(R,k).

Theorem 2.1. Let R be a ring, then a k-annihilating ideal hypergraph AGk(R) is empty, if and
only if one of the following conditions is satisfied:

(1) R is an integral domain;

(2) (R,m, i) is a local ring whose maximal ideal with index of nilpotency i ∈ {2,3,4,5};

(3) (R,m) is a local ring which is not PIR and the nilpotency index of m is two;

(4) R is a nonlocal ring such that R ∼= R1 ×R2 where R1 and R2 are finite fields or R1 is a
finite field and (R2,m) is a local ring with m, that is, the unique proper ideal of R2.

Proof. We have the followings:
(1) It’s clear.

(2) Since (R,m, i) is a local ring with maximal ideal m having index of nilpotency 2≤ i ≤ 5,
then the ideals of R which contained in A(R,k) as {m,m2, . . . ,mi−1}, that is if I1, I2 and,
I3 are contained in A(R,k) so I1 · I2 · I3 = (0) implies that I t1 · I t2 = (0) for t1, t2 ∈ {1,2,3},
thus AGk(R) is empty. Conversely, let R is a local ring whose maximal ideal m which has
index of nilpotency i ≥ 6. Without lost generality, suppose that i = 6, then m5 is minimal
ideal which is not contained in A(R,k) by [4, Lemma 2.1], so A(R,k) = {m,m2,m3,m4}.
Take m ·m2 ·m3 = (0) then m ·m2 ̸= (0), m ·m3 ̸= (0), m2 ·m3 ̸= (0), similarly, for any i > 6,
then AGk(R) is nonempty. Hence i must be belong to {2,3,4,5}.

(3) If m3 = (0), m2 ̸= (0), and (R,m) is local ring which is not PIR, then m is generated at
least by two elements, without loss generality, assume m = (x, y), if x · y= 0, then we have
m2 = 0 which is a contradiction. This implies that (x) · (y) ̸= 0, that is {(x), (y),m}⊆A(R,k)
so m · (x) · (y) = 0 with m · (x) ̸= (0), m · (y) ̸= (0) and (x) · (y) ̸= (0). Therefore, AGk(R) is
nonempty. So the index of nilpotency must be equal to 2. Conversely, let (R,m) be a
local ring that is not PIR with maximal ideal m with m2 = (0), then for any two ideals
I1, I2 ∈A(R,k) we have I1 · I2 = (0), so AGk(R) is empty.

(4) Let R be a nonlocal ring such that R ∼= R1 × R2 × . . .× Rn, where Ri are finite fields
and 1 ≤ i ≤ n. If i ≥ 3, then AGk(R) is nonempty since for any I1 = (R1 ×R2 ×0× . . .×0),
I2 = (0×R2×R3×0× . . .×0) and I3 = (R1×0×R3×0× . . .×0) contained in A(R,k), that is,
I1 · I2 · I3 = (0) with I1 · I2 ̸= (0), I1 · I3 ̸= (0), I2 · I3 ̸= (0). If n = 2, then we have three cases:

(i) If R ∼= R1 ×R2, for a finite fields R1 and R2. Then the ideals of R, are either trivial
or minimal. So A(R,k) = φ, thus AGk(R) is empty. Also, if R ∼= R1 ×R2, for a finite
field R1 and (R2,m) is a local ring with one ideal as m. Then A(R,k) contains
four nontrivial ideals of R, namely I = (R1 × (0)), J = (R1 ×m), K = ((0)×m) and
L = ((0)×R2). That is AGk(R) is empty.

(ii) If R ∼= R1 ×R2, for a finite field R1 and (R2,m) is a local ring with at least two ideals
as I1 and I2 contained in R2 such that I1 · I2 = (0), then the ideals (R1× I1), (R1× I2)
and ((0)×R2) are contained in A(R,k) with (R1 × I2) · (R1 × I1) · ((0)×R) = (0), and
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(R1× I2) · (R1× I1) ̸= (0), (R1× I2) · ((0)×R) ̸= (0), (R1× I1) · ((0)×R) ̸= (0), so AGk(R) is
nonempty.

(iii) If R ∼= R1 ×R2, and (R1,m1) and (R2,m2) are not field, then there exists mi of Ri

and i = 1,2 such that mi
2 = (0), implying that (R1×m2), (m1×R2) and (m1×m2) are

nontrivial ideals contained in A(R,k) such that (R1 ×m2) · (m1 ×R2) · (m1 ×m2)= (0)
and (R1 ×m2) · (m1 ×R2) ̸= (0), (R1 ×m2) · (m1 ×m2) ̸= (0), (m1 ×R2) · (m1 ×m2) ̸= (0),
thus AGk(R) is nonempty.

Lemma 2.2. Let (R,m, i) be a local ring for positive integer i ≥ 6. Then mi−1 and mi−2 are not
contained in A(R,k).

Proof. Let (R,m, i) be a local ring and mi = (0), for positive integer i ≥ 6. Since by [4, Lemma 2.1],
mi−1 is a minimal ideal that is not contained in A(R,k). Furthermore, (R,m, i) is a PIR, so for
some m,mt are contained in A(R,k), where 2≤ t ≤ i−3 then m ·mt ·mi−2 = (0) and m ·mt ̸= (0),
m ·mi−2 ̸= (0) but mt ·mi−2 = (0). Thus mi−2 is not contained in A(R,k).

Theorem 2.3. Let (R,m, i) be a local ring for positive integer i ≥ 6, then the set of k-annihilating
ideal hypergraph A(R,k)= {m,m2,m3, . . . ,mi−3} and n(AGk(R))= i−3.

Proof. Let (R,m, i) be a local ring with mi = (0), for positive integer i ≥ 6, and let the set of all
nontrivial ideals hypergraph A(R,k)= {m,m2,m3, . . . ,mi−1} but by Lemma 2.2, mi−1 and mi−2

are not contained in A(R,k). At that time, mi−3 ·m2 ·m = (0), but mi−3 ·m2 ̸= (0), mi−3 ·m ̸= (0),
and m2 ·m ̸= (0). Thus mi−3 is contained in A(R,k). Similarly, for any nontrivial ideal such mt

contained in A(R,k), for 1≤ t ≤ i−3.

Theorem 2.4. Let (R,m, i) be a local ring, for positive integer i ≥ 6 and let A(R,k) =
{m,m2, . . . ,mi−3} be the set of all nontrivial k-annihilating ideal hypergraph of AGk(R). Then
the size of AGk(R) is defined as:

m(AGk(R))=
⌊

i−2
2

⌋
−2∑

s=0
q(3)(i+ s, s),

where q(3)(i+ s, s) is the number of 3-partitions of i+ s into distinct parts whose least part is s
and not equal to i+ s.

Proof. Let (R,m, i) be a local ring with mi = (0) for positive integer i ≥ 6, and let A(R,k) =
{m,m2, . . . ,mi−3} be the set of all nontrivial k-annihilating ideal hypergraph of R. Suppose that
mt1 ,mt2 and mt3 are contained in A(R,k) where t1, t2 and t3 are differ and 1≤ t1, t2, t3 ≤ i−3,
then mt1 ·mt2 ·mt3 = (0) and mt1 ·mt2 ̸= (0), mt1 ·mt3 ̸= (0), mt2 ·mt3 ̸= (0). So we obtain

t1 + t2 + t3 ≥ i, (2.1)

and

t1 + t2 < i, t1 + t3 < i and t2 + t3 < i . (2.2)
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Now, we can describe the number of all solutions S of (2.1) for t1, t2 and t3 as

S = p(3)(i)+ p(3)(i+1)+ p(3)(i+2)+ . . .+ p(3)(i+ j),

where p(3)(i+ j) is 3-partitions of i+ j and 0≤ j ≤ i−1.
Since t1, t2 and t3 are differ and 1≤ t1, t2, t3 ≤ i−3, then we count all distinct solutions S of

(2.1) for t1, t2 and t3 by

S = q(3)(i)+ q(3)(i+1)+ q(3)(i+2)+ . . .+ q(3)(i+ j),

where q(3)(i+ j) is 3-partitions of i+ j into distinct parts, but we need to delete some exceptions
of S which are not satisfied (2.2). Thus, we get

S = q(3)(i)+ q(3)(i+1,1)+ q(3)(i+2,2)+·· ·+ q(3)(i+ j, j),

where q(3)(i+ j, j) is 3-partitions of i+ j into distinct parts whose the least part is j and that is
not equal to i+ j for 0≤ j ≤ i−1, that is

S =
j∑

s=0
q(3)(i+ s, s). (2.3)

From (2.2), t1+ t2 < i where t1 ̸= t2 and 1≤ t1, t2, t3 ≤ i−3. Then, the maximum solution s for t1

and t2 can then be reset to t1 + t2 ≤ i−1. So s = q(2)(i+1,1) where q(2)(i+1,1) is 2-partitions
of i−1 into distinct parts whose the least part is one and which is not equal to i−1 where
i ≥ 6. Since q(2)(i−1,1) = ⌊ (i−1)−1

2

⌋−1, so s = ⌊ i−2
2

⌋−1 for i ≥ 6. As a result, we constrain s to
1≤ s ≤ ⌊ i−1

2

⌋−1 and verify it in (2.3). Thus we conclude that the general form of size of AGk(R)
is

m(AGk(R))=
⌊

i−2
2

⌋
−2∑

s=0
q(3)(i+ s, s).

Corollary 2.5. Let (R,m, i) be a local ring for positive integer i ≥ 6 and let A(R,k) =
{m,m2, . . . ,mi−3} be the set of all nontrivial k-annihilating ideal hypergraph of AGk(R). Then
the set of all subsets of hyperedges of AGk(R) are represented as follow

E(AGk(R))= {Q(3)(i+ s, s)},

for all 0≤ s ≤ ⌊ i−2
2

⌋−2, where Q(3)(i+ s, s) is the set of partitions of i+ s into distinct parts whose
least part is s and not equal to i+ s.

Theorem 2.6. Let (R,m, i) be a local ring for positive integer i ≥ 6 and A(R,k)= {m,m2, . . . ,mi−3}
be the set of all nontrivial k-annihilating ideal hypergraph of AGk(R). Then, the degree of md

contained in A(R,k) where 1≤ d ≤ i−3, verifies one the following:
(i) If i = 2d, then

deg(md)=
d−1∑
s=0

(q(2)(i− (d− s))− s).

(ii) If i < 2d, then

deg(md)=
n−d−3∑

s=0
(q(2)(i− (d− s))− s).
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(iii) If i > 2d and i ̸= 3d− s, then

deg(md)=
d−1∑
s=0

(q(2)(i− (d− s))− (s+1)), for all 0≤ s ≤ d−1.

Furthermore, if i = 3d− s1, for some s1, then

deg(md)= 1+
d−1∑
s=0

(q(2)(i− (d− s))− (s+1)),

where q(2)(i− (d− s)) is the number of 2-partitions of (i− (d− s)) into distinct parts.

Proof. Let (R,m, i) be a local ring with mi = (0) and for positive integer i ≥ 6, and let the set of
all nontrivial k-annihilating ideal hypergraph of AGk(R) defined as A(R,k)= {m,m2, . . . ,mi−3}.
Suppose that md,mt1 and mt2 are contained in A(R,k) for 1≤ d, t1, t2 ≤ i−3, where d, t1 and t2

are different. Then md ·mt1 ·mt2 = (0) such that md ·mt1 ̸= (0), md ·mt2 ̸= (0) and mt1 ·mt2 ̸= (0).
So we have d+ t1 + t2 ≥ i with for positive integer i ≥ 6, that is

t1 + t2 ≥ i−d (2.4)

and

d+ t1 < i,d+ t2 < i and t1 + t2 < i. (2.5)

Then, the number of solution of S of (2.4) represented by

S = p(2)(i− (d−0))+ p(2)(i− (d−1))+ . . .+ p(2)(i− (d− (d−1))),

for all 0≤ s ≤ d−1. Since d, t1 and t2 are different, then we get the number of distinct solutions
S of (2.4), thus, we get

S =
d−1∑
s=0

q(2)(i− (d− s)). (2.6)

Now, we discuss the following cases:
(i) Let q(2)(i − (d − s)) is the number of 2-partitions into distinct part of i − (d − s), since

i = 2d, then i−d = d so there are exceptions in (2.6) that are not verified (2.4). Therefore
i−(d−s) ̸= d for 1≤ s ≤ d−1, so we delete s cases from every q(2)(i−(d−s)) which explains
as

deg(md)=
d−1∑
s=0

(q(2)(i− (d− s))− s). (2.7)

(ii) Again, let q(2)(i− (d− s)) is the number of 2-partitions into distinct part of i− (d− s), since
i < 2d, then i−d ̸= d such that d ̸= t1 and d ̸= t2 so there are some exceptions in (2.6) that
are not verified (2.4). Thus to find degree of md we use (2.7) but we replace the range of s
which is defined as 0≤ s ≤ d−1 to 0≤ s ≤ i−d−3 because d+(i−d)= i for positive integer
i ≥ 6 that is mean, d+ t1 ≥ i or d+ t2 ≥ i, implies that md ·mt1 = (0) or md ·mt2 = (0) which
contracts (2.5). So, we have

deg(md)=
i−d−3∑

s=0
(q(2)(i− (d− s))− s).
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(iii) Let q(2)(i− (d− s)) is the number of 2-partitions into distinct part of i− (d− s), since i > 2d
and i ̸= 3d− s, then i−d > d so from (2.4) we get t1 + t2 > d which implies that either
d = t1 or d = t2. As a result of using (2.7), we must remove one addition case from every
q(2)(i− (d− s)) where 0≤ s ≤ d−1. Thus we obtain

deg(md)=
d−1∑
s=0

(q(2)(i− (d− s))− s−1),

and then

deg(md)=
d−1∑
s=0

(q(2)(i− (d− s))− (s+1)). (2.8)

Furthermore, if i ̸= 3d− s1 for exactly s1 where 0 ≤ s1 ≤ d−1 and i > 2d, then by (2.4)
we get d = t1 = t2, so we only need to delete one case from q2(i− (d− s1)) because it is
combined with the condition of 2-partitions into distinct parts of i− (d− s1). Hence we can
explain it by using (2.8), as follows:

deg(md)= 1+
d−1∑
s=0

(q(2)(i− (d− s))− (s+1)).

3. Distance Between Nontrivial Ideals in A(R,k)
This section is concentrated on the distance notation in the k-annihilating ideal hypergraph of
AGk(R) for two nontrivial ideals contained in A(R,k) which is used to determine the diameter
and center of AGk(R), also discusses the Wiener index of AGk(R).

Theorem 3.1. Let (R,m, i) be a local ring for positive integer i ≥ 7. Then, diam(AGk(R))≤ 2 and

cent(AGk(R))=
{

{m2}, if i is odd,
{m,m2}, if i is even.

Proof. Let (R,m, i) be a local ring and mi = (0) for i ≥ 7, and let mt1 and mt2 are two
nontrivial ideals contained in A(R,k) where t1 ̸= t2 and 1 ≤ t1, t2 ≤ i − 3. First, we show
that diam(AGk(R))≤ 2. It is enough to find a path between any two nontrivial ideals of (R,m, i)
in AGk(R). Consider that if i is odd positive integer, then

d(m,mt)=
{

2, if t = ⌊ i
2

⌋
,

1, otherwise.

Now, if mt1 ·mt2 ̸= (0) implies that there are two cases that, if t1+t2 < i, then there exists another
nontrivial ideal such ms for 1≤ s ≤ i−3 which is contained in A(R,k) such that mt1 ·ms ̸= (0) and
mt2 ·ms ̸= (0), that is, t1+ s < i and t2+ s < i so t1+ t2+ s ≥ i. Thus mt1 ·mt2 ·ms = (0). Therefore,
there exists a hyperedge as E contains mt1 , mt2 and ms, so d(mt1 ,mt2)= 1. Again, if t1+ t2 ≥ i.
Since 1≤ t1, t2 ≤ i−3, then there exists m2 which contained in A(R,k) such that mt1 and mt2

are different from m2 but t1 +2≥ i and t2 +2≥ i. So by above proof there exist two hyperedges
E1 and E2 such that mt1 ,m2 ∈ E1 and mt2 ,m2 ∈ E2 that is d(mt1 ,mt2)= 2 which discerns that
diam(AGk(R))≤ 2.
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Furthermore, the central nontrivial ideals contained in A(R,k) are those ideals whose
distance to other ideals in A(R,k) is one, since diam(AGk(R))≤ 2 and AGk(R) is not complete
hypergraph, then the central nontrivial ideals of A(R,k) lie in every hyperedge of AGk(R).
Consider that if i is even positive integer, then m and m2 are contained in every hyperedge of
AGk(R), since m·mt ̸= (0) for any 2≤ t ≤ i−3, then d(m,mt)= 1 and we obtain m ∈ cent(AGk(R)),
also for the same reason, m2 ·mt ̸= (0) for any 3≤ t ≤ i−3. On the other hand if, i is odd positive
integer, then m ·m⌊ i

2 ⌋ ·mt = (0) iff t = ⌊ i
2

⌋
implies that d(m,m⌊ i

2 ⌋)= 2. That is m ∈ cent(AGk(R))
iff i is an even positive integer. At a last, for any ms is contained in A(R,k), there exists another
mt contained in A(R,k), for s ̸= t and 3 ≤ s, t ≤ i−3 such that ms ·mt = (0) thus d(ms,mt) = 2
and so ms ̸∈ cent(AGk(R)) which discerns that

cent(AGk(R))=
{

{m2}, if i is odd,
{m,m2}, if i is even

Corollary 3.2. Let (R,m,6) be a local ring, then a k-annihilating ideal hypergraph of AGk(R) is
complete hypergraph with diam(AGk(R))= 1 and cent(AGk(R))= {m,m2,m3}.

Theorem 3.3. Let (R,m, i) be a local ring for even positive integer i ≥ 6. Then, the Wiener index
of AGk(R) is defined as

W(AGk(R))= 3
4

(n−1)2,

where n represents to an order of AGk(R).

Proof. Let (R,m, i) be a local ring and mi = (0) for even positive integer i ≥ 6 and let A(R,k)=
{m,m2, . . . ,mi−3} be the set of all nontrivial k-annihilating ideal hypergraph of R. Suppose that
ms, mt are contained in A(R,k) for 1≤ s, t ≤ i−3. So, we can get dAGk(R)(ms,mt) as a distance
between ms and mt.

Now, to determine the Wiener index of AGk(R) we get the summation of all dAGk(R)(ms,mt)
for {ms,mt}⊆A(R,k) as

W(AGk(R))= ∑
ms,mt∈A(R,k)

dAGk(R)(ms,mt)

=
i−3∑
s=2

d(m1,ms)+
i−3∑
s=3

d(m2,ms)+·· ·+
i−3∑

s=k+1
d(mk,ms)

+
i−3∑

s=k+2
(d(mk+1,m j)+·· ·+d(mi−4,mi−3)). (3.1)

By Theorem 3.1, then diam(AGk(R))≤ 2, so Wiener index is represented by

W(AGk(R))= ((i−3)−1)+ ((i−3)−2)+ ((i−3)−3)+·· ·
+ ((i−3)−k)+ (k−2)+ ((i−3)− (k+1))+ (k−2)+·· ·
+ ((i−3)− (i−4)+1).

Observe that, m1 and m2 are in the center of AGk(R) by Theorem 3.1, then the first and second
terms are represented as d(m1,ms)= d(m2,ms)= 1, for all s = 3,4, . . . , i−3. Also the third term
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represents by d(m3,ms) = 1 for all s = 4,5, . . . , i−4 except i−3 because m3 and mi−3 are not
adjacent in AGk(R), and we can conclude the following form for all terms of (3.1) as

W(AGk(R))= (i−3)−1+
j∑

l=2
(((i−3)− l)+ (l−2))+

i−4∑
l= j+1

(((i−3)− l)+ ((i−3)− l))

= (i−4)+
j−1∑
l=1

(i−5)+2
i−4∑

l= j+1
((i−3)− l)

= (i−4)+ ( j−1)(i−5)+2
( ((i−3)− ( j+1))((i−3)− ( j+1)+1)

2

)
= (i−4)+ ( j−1)(i−5)+ ((i−3)− ( j+1))((i−3)− j).

Also, suppose that j = ⌊ i−3
2

⌋+1 or j = i−2
2 , we get

W(AGk(R))= (i−4)+ i−4
2

(i−5)+
(
i−3− i

2

)(
i−3− i−2

2

)
= (i−4)+ 1

2
(i−4)(i−5)+ 2i−6− i

2
2i−6− i+2

2

= (i−4)+ 1
2

(i−4)(i−5)+ 1
4

(i−6)(i−4)

= 1
4

(4(i−4)+2(i−4)(i−5)+ (i−6)(i−4))

= 1
4

(i−4)(4+2i−10+ i−6)

= 3
4

(i−4)2.

By Theorem 2.3, n(AGk(R))= i−3, and we set it as n, we obtain

W(AGk(R))= 3
4

(n−1)2.

Theorem 3.4. Let (R,m, i) be a local ring for odd positive integer i ≥ 7. Then, the Wiener index
of AGk(R) is defined as

W(AGk(R))= 3
4

n(n−2)+2,

where n represents to an order of AGk(R).

Proof. Let (R,m, i) is a local ring and mi = (0) for odd positive integer i ≥ 7 and let A(R,k) =
{m,m2, . . . ,mi−3} be the set of all nontrivial k-annihilating ideal hypergraph of R. Suppose that
ms, mt are contained in A(R,k) for 1≤ s, t ≤ i−3. So, we can get dAGk(R)(ms,mt) as a distance
between ms and mt. So

W(AGk(R))= ∑
ms,mt∈A(R,k)

dAGk(R)(ms,mt)

=
i−3∑
s=2

d(m1,ms)+
i−3∑
s=3

d(m2,ms)+·· ·+
i−3∑

s=k+1
d(mk,ms)

+
i−3∑

s=k+2
(d(mk+1,ms)+·· ·+d(mi−4,mi−3)). (3.2)
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Again, by Theorem 3.1, diam(AGk(R))≤ 2, so we describe Wiener index as:

W(AGk(R))= ((i−3)−1)+1+ ((i−3)−2)+0+ ((i−3)−3)+1+·· ·
+ ((i−3)− j)+ ( j−2)+ ((i−3)− ( j+1))+ ( j−1)+·· ·
+ ((i−3)− (i−4))+1.

Consider that the first term represents d(m1,ms)= 1, for all s = 2,3, · · · , i−3 except i−5 because
m1 and mi−5 are not adjacent in AGk(R). Also, the second term represents d(m2,ms)= 1, for all
s = 2,3, · · · , i−3, because m2 is lie in the center of AGk(R) by Theorem 3.1. In addition the third
term represents d(m3,ms) = 1 for all s = 2,3, · · · , i−4 except i−3 since m1 and mi−5 are not
adjacent in AGk(R), and we can conclude the following form for all terms of (3.2)

W(AGk(R))= (i−3)+
j∑

l=2
(((i−3)− l)+ (l−2))+

i−4∑
l= j+1

(((i−3)− l)+ ((i−3)− l))

= (i−3)+
j−1∑
l=1

(i−5)+2
i−4∑

l= j+1
((i−3)− l)

= (i−3)+ ( j−1)(i−5)+2
( ((i−3)− ( j+1))((i−3)− ( j+1)+1)

2

)
= (i−3)+ ( j−1)(i−5)+ ((i−3)− ( j+1))((i−3)− j).

Now, suppose that j = ⌊ i−3
2

⌋+1 or j = i−1
2 , we obtain

W(AGk(R))= (i−3)+ i−3
2

(i−5)+
(
(i−3)− i+1

2

)(
(i−3)− i−1

2

)
= (i−3)+ 1

2
(i−3)(i−5)+ 1

4
(i−7)(i−5).

Also by Theorem 3.1, we use i−3= n as an order of AGk(R), so we get

W(AGk(R))= n+ 1
2

n(n−2)+ 1
4

(n−4)(n−2)

= n+ n2

2
−n+ 1

4
(n2 −6n+8)

= n2

2
+ n2

4
− 3

2
n+2

= 3
4

n(n−2)+2.

4. Conclusion
This paper interprets the graphical structure of a k-annihilating ideal hypergraph of local
rings based on partition theory and counts the order and size of it. The concept of adjacency
between all non-trivial k-annihilating ideals is explained, such as contained in the vertex set
A(R,k), in which the degree of them is counted, also, the diameter of a k-annihilating ideal
hypergraph AGk(R) is found, which equals one or two. Finally, the center and Wiener index of it
are determined.
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