
Communications in Mathematics and Applications
Vol. 15, No. 1, pp. 33–42, 2024
ISSN 0975-8607 (online); 0976-5905 (print)
Published by RGN Publications http://www.rgnpublications.com

DOI: 10.26713/cma.v15i1.2333

Research Article

Ring in Which Every Element is Sum of Two
5-Potent Elements
Kumar Napoleon Deka* and Helen K. Saikia
Department of Mathematics, Gauhati University, Guwahati, India
*Corresponding author: kumarnapoleondeka@gmail.com

Received: July 5, 2023 Accepted: December 23, 2023

Abstract. Every element of a ring R is a sum of two commuting 5-potents if and only if
R ∼= R1 × R2 × R3 × R4, where R1/J(R1) is Boolean and U(R1) is a group of exponent 4, R2 is a
subdirect product of Z3 ’s, R3 is a subdirect product of Z5 ’s and R4 is a subdirect product of Z13 ’s.
Also, if in a ring R every element is a sum of two 5-potents and a nilpotent that commute with one
another then R ∼= R1 ×R2 ×R3 ×R4 where R1/J(R1) is Boolean and J(R1) is nil, R2 ∼= Ra ×Rb ×Rc
where Ra = 0, Rc = 0 and Rb/J(Rb) is a subdirect product of rings isomorphic to Z3, M2(Z3) or F9
with J(Rb) is nil, R3/J(R3) is a subdirect product of Z5 ’s and J(R3) is nil, R4/J(R4) is a subdirect
product of Z13 ’s and J(R4) is nil.
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1. Introduction
In the year 1988, Hirano and Tominaga [5] discussed about the properties of a ring R in which
every element is sum of two commuting idempotents. They showed R has the identity x3 = x.
Then after a long break in 2016, Ying et al. [8] discussed about the ring R in which every
element is sum of two commuting tripotents. They showed if every element of R is sum of two
commuting tripotents if and only if R ∼= R1 ×R2 ×R3, where R1/J(R1) is Boolean with U(R1)
is a group of exponent 2, R2 is subdirect product of Z3 ’s, and R3 is a subdirect product of Z5 ’s.
They questioned about rings in which every element is a sum of two commuting p-potents.
Inspiring from these authors work, we discuss about the ring in which every element is sum of
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two commuting 5-potents in this paper. Then, we discuss about the ring in which every element
is sum of 5-potents and a nilpotent all commute each other.

All ring consider here is associative with unity. The Jacobson radical, the group of units, the
set of nilpotent elements are denoted by J(R), U(R) and Nil(R), respectively. Again, the Chinese
Remainder Theorem states that for a ring R with I , J are ideals of R such that I + J = R then
there exists a ring isomorphism R/(I ∩ J)= R/I ×R/J. For our work, we take the generalized
version which states if I i , 1≤ i ≤ n are ideals of a ring R with

∑n
i=1 I i = R and ∩n

i=1I i = 0 then
R ∼= ( R

I1

)× ( R
I2

)× . . .× ( R
In

)
.

2. Results and Discussion
Lemma 2.1 ([6]). Let p be a prime. The following are equivalent for a ring R:

(i) p ∈Nil(R) and ap −a is nilpotent for all a ∈ R.
(ii) J(R) is nil and R/J(R) is a subdirect product of Zp ’s.

Lemma 2.2 ([8]). Let a ∈ R. If a2−a is nilpotent, then there exists a monic polynomial θ(t) ∈ Z(t)
such that θ(a)2 = θ(a) and a−θ(a) is nilpotent.

Lemma 2.3.
(2k

a
)

where 1≥ a ≥ 2k −1 is always even.

Proof. We have
(2k

a
)= (2k)!

a!(2k−a)! .

Now power of 2 in (2k)! is
[2k

2

]+ [2k

22

]+ [2k

23

]+ . . .= 2k−1 +2k−2 + . . .+22 +2+1= 2k −1.

Power of 2 in a! is
[a

2

]+ [ a
22

]+ [ a
23

]+ . . ..

Power of 2 in (2k −a)! is
[2k−a

2

]+ [2k−a
22

]+ [2k−a
23

]+ . . ..

For any a,b ∈ R we have [a+b]≥ [a]+ [b].

So [2k/2l] ≥ [a/2l]+ [(2k − a)/2l] for 0 ≤ a ≤ 2k. Now 1 = [2k/2k] > [a/2k]+ [(2k − a)/2k] = 0 for
1≤ a ≤ 2k −1. So power of 2 in (2k)! is atleast one greater than the combine power of 2 in a! and
(2k −a)!. So

(2k

a
)

is always even for 1≤ a ≤ 2k −1.

For example
(8
1

)
,
(8
2

)
,
(8
3

)
,
(8
4

)
are all even.

Lemma 2.4 ([7, Theorem 2.7]). A ring R is strongly nil-clean if and only if R/J(R) is Boolean
and J(R) is nil.

Lemma 2.5. The R =∏
Rα be direct product of rings. then every element of R is a sum of two

commuting n-potents if and only if, for each α, every element of Rα is a sum of two commuting
n-potents.

Lemma 2.6 ([6, Corollary 3.10]). The following are equivalent for a ring R.
(i) a9 −a is nilpotent for all a ∈ R.

(ii) R = R1 ×R2 ×R3, where R1 is zero or R1/J(R1) is Boolean with J(R1) is nil, R2 is zero or
R2/J(R2) is a subdirect product of rings isomorphic to Z3, M2(Z3) or F9 with J(R2) is nil,
and R3 is zero or R3/J(R3) is subdirect product of Z5 ’s with J(R3) is nil.
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Theorem 2.1. The following conditions are equivalent.
(1) Let R be a ring in which every element is sum of two commuting five potent elements.

(2) R has the following properties:

(a) For every k ∈ R, we have

(k−2)(k−1)k(k+1)(k+2)(k2 +1)(k2 +4)(k2 +2k+2)(k2 −2k+2)= 0.

(b) R ∼= R1 ×R2 ×R3 ×R4 ×R5, where

(i) R1 is zero or a ring with 24 = 0. R1 has the identity k64 = k32 for every k ∈ R1.
For every n ∈Nil(R) we have n16 = 0, 8n4 = 0. R1/J(R1) is Boolean and J(R1) is
nil. U(R1) is group of exponent 4.

(ii) R2 is zero or R2 is a subdirect product of Z3 ’s.
(iii) R3 is zero or a is a subdirect product of Z5 ’s.
(iv) R4 is zero or R4is a subdirect product of Z13 ’s.

Proof. (a)⇒(b): Let k ∈ R then there exists e, f ∈ R with e5 = e, f 5 = f , e f = f e such that
k = e+ f . Now,

k5 = e5 + f 5 +5(e4 f + e f 4)+10(e3 f 2 + e2 f 3)

⇒ k5 −k = 5(e4 f + e f 4)+10(e3 f 2 + e2 f 3). (2.1)

Now,

k5 −k = (k4 −1)(e+ f )

⇒ (k5 −k)e4 f 4 = (k4 −1)(e f 4 + e4 f ) .

Again,

(k5 −k)e4 f 4 = 5(e8 f 5 + e5 f 8)+10(e7 f 6 + e6 f 7)

= 5(e4 f + e f 4)+10(e3 f 2 + e2 f 3)

= k5 −k .

Therefore, we have

k5 −k = (k4 −1)(e f 4 + e4 f ).

Using (2.1), we have

(k4 −6)(e4 f + e f 4)−10(e3 f 2 + e2 f 3)= 0 . (2.2)

Now multiplying (2.2) by e4 f 4, we have

(k4 −6)(e3 f 2 + e2 f 3)−10(e4 f + e f 4)= 0 . (2.3)

Now using equations (2.2) and (2.3), we have

[(k4 −6)2 −102](e4 f + e f 4)= 0

⇒ [(k4 −6)2 −102](k4 −1)(e4 f + e f 4)= 0

⇒ (k4 −16)(k4 +4)(k5 −k)= 0

⇒ (k−2)(k−1)k(k+1)(k+2)(k2 +1)(k2 +4)(k2 +2k+2)(k2 −2k+2)= 0

Putting k = 3, we have

2×3×3×4×5×10×13×85= 0

Communications in Mathematics and Applications, Vol. 15, No. 1, pp. 33–42, 2024



36 Ring in Which Every Element is Sum of Two 5-Potent Elements: K. N. Deka and H. K. Saikia

⇒ 24 ×3×53 ×13×17= 0

Again putting k = 6, we have

4×5×6×7×8×37×40×26×50= 211 ×3×54 ×7×13×37= 0 .

Putting k = 5, we have

26 ×32 ×5×13×17×29×37= 0 .

Taking gcd(24 ×3×53 ×13×17, 211 ×3×54 ×7×13×37, 26 ×32 ×5×13×17×29×37), we get

24 ×3×5×13= 0 .

As for k = 0,±1,±2,±3,±4,±5,±6 we see that 13 divides (k4 +4)(k4 −16)(k5 −k) (taking modulo
13). Also, 3 divides (k−1)k(k+1) for k = 0,±1 (taking modulo 3). Again in (k−2)(k−1)k(k+1)(k+
2), 3 consecutive even no are present for any integer k so 16 divides (k−2)(k−1)k(k+1)(k+2) and
5 divides k5−k for any integer k. Hence ultimately 24×3×5×13 divides (k4+4)(k4−16)(k5−k) for
integer value of k (i.e. k ·1R where 1R is the multiplicative identity of R. Here, we take 1R = 1).
As 24 ×3×5×13= 0. So, by using Chinese Remainder Theorem we have R ∼= R1×R2×R3×R4

where R1
∼= R/24R, R2

∼= R/3R, R3
∼= R/53R, R4

∼= R/13R.
Assume that R1 ̸= 0. Now in R1 we have 24 = 0. For k ∈ R1 we can write k = e+ f where

e, f ∈ R with e5 = e, f 5 = f , e f = f e. Now k4 = e4 + f 4 +2F1, therefore

k8 = e8 + f 8 +2F ′
2 = e4 + f 4 +2F ′

2 = k4 −2F1 +2F ′
2 = k4 +2F2

⇒ k8 = k4 +2F2

so (k8 − k4)4 = 0, 23(k8 − k4) = 0. Similarly, k16 = k8 +4F3, k32 = k16 +8F4, k64 = k32 +16F5 ⇒
k64 = k32, where F1, F ′

2, F2, F3, F4, F5 are functions of e, f . Now for n ∈ Nil(R1) we have
1−nα ∈U(R1), where α ∈ N . Now for n ∈Nil(R1) we have

(n8 −n4)4 = 0

⇒ n16(n4 −1)4 = 0

⇒ n16 = 0 .

Also,

8(n8 −n4)= 0

⇒ 8n4 = 0

Again

(k2 −k)32 = k64 +k32 +2F(k)= 2(k32 +F(k))

⇒ (k2 −k)32×32 = 0

using Lemma 2.3, where F(k) is a function of k. Therefore, k2 − k is nilpotent, so by using
Lemma 2.1 we have R1/J(R1) is Boolean and J(R1) is nil. Now as R1/J(R1) is Boolean so for
u ∈U(R1) we have

u2 −u ∈ J(R1)

⇒ u−1 ∈ J(R)
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So U(R1)⊆ 1+J(R1). Again as J(R) is nil so for every j ∈ J(R1) we have 1+ j ∈U(R1). Therefore,
1+ J(R1)⊆U(R1). Hence 1+ J(R1)=U(R1). Now for u ∈U(R1) we have

(u4 +4)(u4)(u5 −u)= 0

⇒ (u4 +4)(u4 −1)= 0

as u ∈U(R1) and 16= 0. Again as u4 ∈U(R1) so

u4 = 1+ j

⇒ u4 +4= 1+ (4+ j)

Now as 2 ∈ Nil(R) so 4+ j ∈ Nil(R1). As n16 = 0 for n ∈ Nil(R1) so 1+ n ∈ U(R1) which imply
u4 +4 ∈U(R1). Therefore,

u4 −1= 0

⇒ u4 = 1

Hence U(R1) is a group of exponent 4.
Assume that R2 ̸= 0. Now in R2 we have 3= 0. Suppose k2 = 0 in R2. For k ∈ R2 we can write

k = e+ f where e, f ∈ R with e5 = e, f 5 = f , e f = f e. Now

k3 = e3 + f 3 +3e2 f +3e f 2 = e3 + f 3

⇒ k9 = e9 + f 9 = k

⇒ k = 0

as e9 = e5e4 = e5 = e. Therefore, R2 is a reduced ring, so R2 is a subdirect product of domains
{Rα}. Now for x ∈ Rα with x5 − x = 0, we have

x(x−1)(x+1)(x2 +1)= 0

⇒ x = 0,1,−1 or x2 +1= 0

But 3 = 0 in Rα so x2 +1 ̸= 0 as if x2 = −1 then as x2 = 1 or 0 (as 3 = 0) which imply 1 = 0 or
−1= 0 which is a contradiction. So, −1,0,1 are only trivial 5-potents Rα, so we conclude that
Rα = {−2,−1,0,1,2}. But 3= 0 in Rα so 2=−1,−2= 1. Thus Rα = {0,1,2}, which is isomorphic to
Z3. Hence R2 is a subdirect product of Z3 ’s.

Assume that R3 ̸= 0. In R3 we have 5 = 0. Suppose k2 = 0 in R3. For k ∈ R3 we can write
k = e+ f where e, f ∈ R with e5 = e, f 5 = f , e f = f e. Now

0= k5 = e5 + f 5 +5F1 = k

⇒ k = 0

Therefore, R3 is a reduced ring. Hence R2 is a subdirect product of domains {Rα}. Now for
x ∈ Rα with x5 − x = 0 we have

x(x−1)(x+1)(x2 +1)= 0

⇒ x = 0,1,−1 or x2 +1= 0

As 5= 0 in Rα so x2 +1= 0 is satisfied by x = 2,3. So 0,1,2,3,−1= 4 are 5-potent elements Rα.
Hence Rα = {0,1,2,3,4} which is isomorphic to Z5. So R3 is a subdirect product of Z5 ’s.

Assume that R4 ̸= 0. Now in R4 we have 13 = 0. Suppose k2 = 0 in R4. For k ∈ R4 we can
write k = e+ f where e, f ∈ R with e5 = e, f 5 = f , e f = f e. Now 0= k13 = e13 + f 13 +13F(k)= k
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as e13 = (e5)2e3 = e5 = e. Therefore, R4 is a reduced ring, hence R4 is a subdirect product of
domains {Rα}. Now for x ∈ Rα with x5 − x = 0 we have

x(x−1)(x+1)(x2 +1)= 0
⇒ x = 0,1,−1 or x2 +1= 0

As 13= 0 in Rα so x2+1= 0 is satisfied by x = 5,8. So 0,1,5,8,12 are only trivial 5-potent of Rα.
Therefore, Rα = {0,1,2,5,6,9,10,8,16,17,12,20,24}= {0,1,2,3,4,5,6,7,8,9,10,11,12} as 13= 0
in Rα, which is isomorphic to Z13. So R4 is a subdirect product of Z13.

(b)⇒(a): Let (b) hold. R1,R2,R3,R4 are defined as in (b). Now in R1 we have R1/J(R1) is Boolean
and J(R1) is nil. So by Lemma 2.4 R1 is strongly nil clean. So for a ∈ R1 there exist e ∈ R1 with
e2 = e and n ∈Nil(R1) such that

a−1= e+n
⇒ a = e+ (1+n)

where en = ne. As e2 = e so e5 = e and as 1+n ∈U(R1) so

(1+n)4 = 1
⇒ (1+n)5 = (1+n)

So R1 is sum of two commuting 5-potent elements.
Using [8, Proposition 3.9] we have R2 is subdirect product of Z3 ’s if and only if R2 is a strong

SIT-ring with 3= 0. So every element k of R2 can be expressed as k = e+ f where e2 = e, f 3 = f ,
e f = f e. Clearly, e5 = e, f 5 = f so we have the result.

Using converse part of [8, Theorem 5.2] we have R3 is subdirect product of Z5 ’s if and only if
every element of R3 is a sum of two commuting tripotents. Consequently, every element of R3 is
sum of two commuting 5-potents.

Finally, we have to show in R4 every element of R4 is a sum of two commuting 5-potents.
Suppose R is a subdirect product of {Rα :α ∈∧} where Rα = Z13 for all α ∈∧. So R4 is a subring
of

∏
α∈∧ Rα. Let x = (xα) ∈ R4. So ∧ is a disjoint union of ∧0, ∧1, ∧2, ∧3, ∧4, ∧5, ∧6, ∧7, ∧8, ∧9,

∧10, ∧11, ∧12 such that xα = i if and only if α ∈∧i for i = 0,1,2,3,4,5,6,7,8,9,10,11,12. Without
loss of generality we can denote x = (0∧0 ,1∧1 ,2∧2 ,3∧3 ,4∧4 ,5∧5 ,6∧6 ,7∧7 ,8∧8 ,9∧9 ,10∧10 ,11∧11 ,12∧12).
As we know in Z13 the 5-potents are 0,1,5,8,12. So if u = (0∧0 ,1∧1 ,1∧2 ,8∧3 ,5∧4 ,5∧5 ,1∧6 ,8∧7 ,8∧8 ,
8∧9 ,5∧10 ,12∧11 ,12∧12) and v = (0∧0 ,0∧1 ,1∧2 ,8∧3 ,12∧4 ,0∧5 ,5∧6 ,12∧7 ,0∧8 ,1∧9 ,5∧10 ,12∧11 ,0∧12) then
u5 = u,v5 = v,uv = vu and x = u+v which shows every element of R4 is sum of two commuting
5-potents. Hence using Lemma 2.5 we have every element of R can be expressed as sum of two
5-potent elements.

Example 2.1. There are many ring in which every element is sum of two commuting 5-potents.
Some of which are given below:

(i) Ring R with the identity x3 = x for every x ∈ R. Ring in which every element is sum or
difference of two commuting idempotents that commute one another.

(ii) All SIT rings or a ring R with the identity x6 = x4 for every x ∈ R (ring in which every
element is a sum of a tripotent and an idempotent that commute each other). Also, the
rings in which every element is a difference of a tripotent and an idempotent that commute
with one another.
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(iii) Ring in which every element is sum of two commuting tripotents.

(iv) All strongly nil clean rings R with n2 = 0, 2n = 0 or n4 = 0, 2n = 0 for every n ∈ Nil(R).
Also, all rings R in which every element is a sum of tripotent and nilpotent that commute
each other with n2 = 0, 2n = 0 or n4 = 0, 2n = 0 for every n ∈Nil(R).

(v) All strongly clean rings R with U(R) of exponent 2 or 4. Also, the rings in which every
element is sum of a tripotent and an unit that commute with each other and U(R) is a
group of exponent 2 or 4.

(vi) Z2 ×Z3 ×Z5 ×Z13, Z5 ×Z13, Z3 ×Z5, Z5 ×Z5 etc. are some ring with the given property.

Theorem 2.2. If every element of a ring is a sum of two 5-potents and a nilpotent, all commute
one another then R ∼= R1 ×R2 ×R3 ×R4, where

(i) R1/J(R1) is Boolean and J(R1) is nil. R1 is a strongly nil clean.

(ii) R2
∼= Ra ×Rb ×Rc where Ra = 0, Rc = 0 and Rb/J(Rb) is a subdirect product of rings

isomorphic to Z3, M2(Z3) or F9 with J(Rb) is nil.

(iii) R3/J(R3) is a subdirect product of Z5 ’s and J(R3) is nil.

(iv) R4/J(R4) is a subdirect product of Z13 ’s and J(R4) is nil.

Proof. Let k ∈ R so k can be expressed as k = e+ f +n where e5 = e, f 5 = f , n ∈Nil(R), e f = f e,
ne = en, en = nf . Now k−n = e+ f which is sum of two commuting tripotents. So, Theorem 2.1,
we have

[(k−n)4 −16][(k−n)4 +4](k−n)5 − (k−n)]= 0
⇒ (k4 −16)(k4 +4)(k5 −k)= nf (n)

where f (n) is a function of n. So (k4 −16)(k4 +4)(k5 −k) is a nilpotent element for every k ∈ (R).
Now from Theorem 2.1 we get 24 ×3×5×13 divides (k4 −16)(k4 +4)(k5 − k) for every integer
value of k (i.e., k = k.1R , where 1R is the multiplicative identity of R, here we take 1R = 1).

Let m be the least integer such that

(24 ×3×5×13)m = 0
⇒ 24m ×3m ×5m ×13m = 0

Now by using Chinese Remainder Theorem, we have R ∼= R1 ×R2 ×R3 ×R4 where R1
∼= R

24mR ,
R2

∼= R
3mR , R3

∼= R
5mR and R4

∼= R
13mR .

Assume that R1 ̸= 0. In R1 we have 24m = 0. Now let k ∈ R1 so there exist e, f ,n ∈ R1

such that e5 = e, f 5 = f and n ∈ Nil(R1). As 2 is nilpotent so all odd numbers of R1 are
unit. now we have k8 − k4 = (e+ f +n)8 − (e+ f +n)4 = e8 + f 8 − e4 − f 4 +n8 −n4 +2F1(e, f ,n) =
e4+ f 4− e4− f 4+n4(n4−1)+2F1 = n4(n4−1)+2F1, where F1(e, f ,n)= F1 is a function of e, f ,n.
As n4(n4 −1)+2F1 is nilpotent (as n,2 ∈ Nil(R) and e, f ,n,F1 are commutative), so k8 − k4 is
nilpotent. Therefore, k8 − k4 = n1 for some n1 ∈ Nil(R1). Clearly, k,n1 commute each other as
n1 = n4(n4 −1)+2F1. Suppose n2p

1 = 0 for some integer p. Now continue with squiring, we get

k8 = k4 +n1

⇒ k24 = k23 +2F2 +n2
1

⇒ k25 = k24 +2F3 +n22

1
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⇒ k26 = k25 +2F4 +n23

1

Continuing in this way ultimately we get

k2p+2 = k2p+1 +2Fp +n2p

1

⇒ k2p+2 = k2p+1 +2Fp

Now again continue squiring we get

k2p+3 = k2p+2 +22Fp+1

⇒ k2p+4 = k2p+3 +23Fp+2, . . .

⇒ k2p+4m+1 = k2p+4m +24mFp+4m−1

⇒ k2p+4m+1 = k2p+4m

as 24m = 0. Here Fi ’s are functions of e, f ,n. Now (k2 −k)2p+4m = k2p+4m+1 +k2p+4m +2F(e, f ,n)=
2kp+4m+2F(e, f ,n)= 2[kp+4m+F(e, f ,n)] using Lemma 2.3. Now, (k2−k)2

p+4m×4m = 24m[kp+4m+
F(e, f ,n)]= 0 which imply k2−k is nilpotent. As k is arbitrary element of R1 so for every k ∈ R1

we have k2 − k is nilpotent. So by using Lemma 2.1, R1/J(R1) is a subdirect product of Z2 ’s
i.e. R1/J(R1) is Boolean and J(R1) is nil, using Lemma 2.4 we get R1 is strongly nil-clean.

Assume that R2 ̸= 0. In R2 we have 3m = 0. Let k ∈ R2 so it can be expressed as k = e+ f +n,
where e5 = e, f 5 = f , n ∈Nil(R2), e f = f e, en = ne, f n = nf . Now, k9−k = (e+ f +n)9−(e+ f +n)=
n9−n+3F(e, f ,n)= n(n8−1)+3F(e, f ,n) as e9 = e5e4 = e5 = e, f 9 = f where F(e, f ,n) is a function
of e, f ,n. Now n(n8−1)+3F(e, f ,n) is nilpotent as n,3 ∈Nil(R) and e, f ,n are all commutative. So
k9−k is nilpotent for every k ∈ R2. Now as 3 is nilpotent so 2,5 are unit otherwise 1= 0⇒ R2 = 0
which is a contradiction. Now using Lemma 2.6 we have R2

∼= Ra ×Rb ×Rc where R2 = 0 as 2
is unit and Rc is zero as 5 is unit, and in Rb we have Rb/J(Rb) is a subdirect product of rings
isomorphic to Z3, M2(Z3) or F9 with J(Rb) is nil.

Assume that R3 ̸= 0. In R3 we have 5m = 0. Let k ∈ R3 so it can be expressed as k = e+ f +n,
where e5 = e, f 5 = f , n ∈Nil(R2), e f = f e, en = ne, f n = nf . Now, k5−k = (e+ f +n)5−(e+ f +n)=
e5+ f 5+n5+5F(e, f ,n)− e− f −n = n(n4−1)+5F(e, f ,n), where F(e, f ,n) is a function of e, f ,n.
As n,5 ∈ Nil(R) and e, f ,n are commutative so n(n4 −1)+5F(e, f ,n) is nilpotent which imply
k5 − k is nilpotent for every k ∈ R3. So, by using Lemma 2.1 we have R3/J(R3) is a subdirect
product of Z5 ’s and J(R2) is nil.

Assume that R4 ̸= 0. In R4 we have 13m = 0. Let k ∈ R3 so it can be expressed as
k = e + f + n, where e5 = e, f 5 = f , n ∈ Nil(R2), e f = f e, en = ne, f n = nf . Now, k13 − k =
(e + f + n)13 − (e + f + n) = e13 + f 13 + n13 + 13F(e, f ,n) − e − f − n = n(n12 − 1) + 13F(e, f ,n),
where F(e, f ,n) is a function of e, f ,n. As n,13 ∈ Nil(R) and e, f ,n are commutative so
n(n12 −1)+13F(e, f ,n) is nilpotent which imply k13 − k is nilpotent for every k ∈ R4. So by
using Lemma 2.1 we have R4/J(R4) is a subdirect product of Z13 ’s and J(R4) is nil.

Now, the question arises: What is the structure of a ring in which every element is sum
of three commuting 5-potent or three 5-potent and an nilpotent that commute one another?
It is still open while we make little progress in it. We are ending our study by the following
proposition:

Communications in Mathematics and Applications, Vol. 15, No. 1, pp. 33–42, 2024



Ring in Which Every Element is Sum of Two 5-Potent Elements: K. N. Deka and H. K. Saikia 41

Proposition 2.1. Let R be ring. If k ∈ R can be expressed as k = e+ f + g where e5 = e, f 5 = f ,
g5 = g, e f = f e, f g = gf , eg = ge then we have (k−2)(k−1)k(k+1)(k+2)(k2+1)(k2+2k+2)(k2−
2k+2)(e4 − e)13 = 0. Similar result we get for f and g.

Proof. First, we prove the following results for e ∈ R where e5 = e. Then for k ∈ R with ke = ek
and integer a,b, we have

(i) (k−a− e)(e4 − e)= (k−a)(e4 − e),

(ii) [(k− e+a)2 +b](e4 − e)2 = [(k−a)2 +b](e2 − e)2.
We have (k−a− e)(e4 − e)= (k−a)(e4 − e)− (e5 − e)= (k−a)(e4 − e). Again

[(k− e+a)2 +b](e4 − e)2 = [{(k+a)(e4 − e)− (e5 − e)}2 +b(e4 − e)2]

= [{(k+a)}2(e4 − e)2 +b(e4 − e)2]

= [(k+a)2 +b](e4 − e)2.

Now

k = e+ f + g

⇒ k− e = f + g.

Therefore, k− e can be expressed as sum of two commuting 5-potent. Now by using Theorem 2.1,
we have

(k− e−2)(k− e−1)(k− e)(k− e+1)(k− e+2)

· {(k− e)2 +4}{k− e)2 +1}{(k− e+1)2 +1}{(k− e−1)2 +1}= 0.

Now multiplying it by (e2 − e)13 and using above two formulas we get

(k−2)(k−1)k(k+1)(k+2)(k2 +1)(k2 +4)(k2 +2k+2)(k2 −2k+2)(e4 − e)13 = 0.

Competing Interests
The authors declare that they have no competing interests.

Authors’ Contributions
All the authors contributed significantly in writing this article. The authors read and approved
the final manuscript.

References
[1] S. Breaz, P. Danchev and Y. Zhou, Rings in which every element is either a sum or a difference

of a nilpotent and an idempotent, Journal of Algebra and Its Applications 15(8) (2016), 1650148,
DOI: 10.1142/S0219498816501486.

[2] H. Chen and M. Sheibani, Strongly 2-nil-clean rings, Journal of Algebra and Its Applications 16(9)
(2017), 1750178, DOI: 10.1142/S021949881750178X.

[3] J. Cui and G. Xia, Rings in which every element is a sum of a nilpotent and three tripotents, Bulletin
of the Korean Mathematical Society 58(1) (2021), 47 – 58, DOI: 10.4134/BKMS.B191064.

[4] A. Diesl, Sums of commuting potent and nilpotent elements in rings, Journal of Algebra and Its
Applications 22(3) (2023), 2350113, DOI: 10.1142/S021949882350113X.

Communications in Mathematics and Applications, Vol. 15, No. 1, pp. 33–42, 2024

http://doi.org/10.1142/S0219498816501486
http://doi.org/10.1142/S021949881750178X
http://doi.org/10.4134/BKMS.B191064
http://doi.org/10.1142/S021949882350113X


42 Ring in Which Every Element is Sum of Two 5-Potent Elements: K. N. Deka and H. K. Saikia

[5] Y. Hirano and H. Tominaga, Rings in which every element is the sum of two idempotents, Bulletin of
the Australian Mathematical Society 37(2) (1988), 161 – 164, DOI: 10.1017/S000497270002668X.
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