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Abstract. Let N0 be the set of all non-negative integers. An Integer Additive Set-Indexer (IASI) is
defined as an injective function f : V (G)→P(N0) such that the induced function f + : E(G)→P(N0)
defined by f +(uv)= f (u)+ f (v) is also injective, where f (u)+ f (v) is the sum set of f (u) and f (v) and
P(N0) is the power set of N0 . If f +(uv)= k for all uv ∈ E(G), then f is said to be a k-uniform integer
additive set-indexer. An integer additive set-indexer f is said to be a weak integer additive set-indexer
if | f +(uv)| =max(| f (u)|, | f (v)|) for all uv ∈ E(G). In this paper, we study about the sparing number of
the Cartesian product of two graphs.
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1. Introduction
For all terms and definitions, not defined specifically in this paper, we refer to [8] and for more
about graph products we refer to [7]. Unless mentioned otherwise, all graphs considered here
are simple, finite and have no isolated vertices.

Let N0 denote the set of all non-negative integers. For all A,B ⊆N0 , the sum of these sets
is denoted by A+B and is defined by A+B = {a+ b : a ∈ A,b ∈ B}. The set A+B is called the
sum set of the sets A and B. If either A or B is countably infinite, then their sum set is also
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countably infinite. Hence, the sets we consider here are all finite sets of non-negative integers.
The cardinality of a set A is denoted by |A|. The power set of a set A is denoted by P(A).

Definition 1.1 ([4]). An integer additive set-indexer (IASI, in short) is defined as an injective
function f : V (G) → P(N0) such that the induced function f + : E(G) → P(N0) defined by
f +(uv)= f (u)+ f (v) is also injective.

Lemma 1.2 ([5]). If f is an IASI on a graph G , then max(| f (u)|, | f (v)|)≤ f +(uv)≤ | f (u)|| f (v)|,
for all u,v ∈V (G).

Definition 1.3 ([5]). An IASI f is called a weak IASI if | f +(uv)| = max(| f (u)|, | f (v)|) for all
u,v ∈V (G). A weak IASI f is said to be weakly uniform IASI if | f +(uv)| = k, for all u,v ∈V (G)
and for some positive integer k. A graph which admits a weak IASI may be called a weak IASI
graph.

It is to be noted that if G is a weak IASI graph, then every edge of G has at least one
mono-indexed end vertex (or, equivalently no two adjacent vertices can have non-singleton
set-labels simultaneously).

Definition 1.4 ([11]). The cardinality of the set-label of an element (vertex or edge) of a graph
G is called the set-indexing number of that element. An element (a vertex or an edge) of a graph
which has the set-indexing number 1 is called a mono-indexed element of that graph.

Definition 1.5 ([11]). The sparing number of a graph G is defined to be the minimum number
of mono-indexed edges required for G to admit a weak IASI and is denoted by ϕ(G).

Theorem 1.6 ([11]). A subgraph of a weak IASI graph is also a weak IASI graph.

Theorem 1.7 ([11]). A graph G admits a weak IASI if and only if G is bipartite or it has at
least one mono-indexed edge.

Theorem 1.8 ([11]). An odd cycle Cn has a weak IASI if and only if it has at least one mono-
indexed edge.

Theorem 1.9 ([11]). Let Cn be a cycle of length n which admits a weak IASI, for a positive
integer n. Then, Cn has an odd number of mono-indexed edges when it is an odd cycle and has
even number of mono-indexed edges, when it is an even cycle.

Theorem 1.10 ([11]). The sparing number of complete graph Kn is 1
2 (n−1)(n−2).

In this paper, we discuss about the sparing number of the Cartesian products of two weak
IASI graphs.

2. Main Results
Definition 2.1 ([8]). Let G1(V1,E1) and G2(V2,E2) be two graphs. Then, the Cartesian product
of G1 and G2 , denoted by G1 ×G2 , is the graph with vertex set V1 ×V2 defined as follows. Let
u = (u1,u2) and v = (v1,v2) be two points in V1 ×V2 . Then, u and v are adjacent in G1 ×G2
whenever [u1 = v1 and u2 is adjacent to v2] or [u2 = v2 and u1 is adjacent to v1]. If |Vi| = pi
and |E i| = qi for i = 1,2, then |V (G1 ×G2)| = p1 p2 and |E(G1 ×G2)| = p1q2 + p2q1 .

Communications in Mathematics and Applications, Vol. 5, No. 1, pp. 23–30, 2014



Sparing Number of Cartesian Products of Certain Graphs: K.P. Chithra, K.A. Germina and N.K. Sudev 25

The Cartesian product G1×G2 may be viewed as follows. Make p2 copies of G1 . Denote these
copies by G1i , which corresponds to the vertex vi of G2 . Now, join the corresponding vertices
of two copies G1i and G1 j if the corresponding vertices vi and v j are adjacent in G2 . Thus, we
view the product G1×G2 as a union of p2 copies of G1 and a finite number of edges connecting
two copies G1i and G1 j of G1 according to the adjacency of the corresponding vertices vi and v j
in G2 , where 1≤ i 6= j ≤ p2 .

The Cartesian products G1 ×G2 and G2 ×G1 of two graphs G1 and G2 , are isomorphic
graphs. Also, the Cartesian product of two bipartite graphs is also a bipartite graph.

Theorem 2.2 ([14]). Let G1 and G2 be two weak IASI graphs. Then, the Cartesian product
G1 ×G2 also admits a weak IASI.

Theorem 2.3. The sparing number of a planar grid Pm ×Pn is 0.

Proof. Let Pm and Pn be two paths which admit weak IASIs. Label the vertices of Pmi , 1≤ i ≤ n,
as follows. For odd values of i, label the vertices of Pmi , starting from the initial vertex,
alternately by distinct singleton sets and distinct non-singleton sets respectively and for even
values of i, label the vertices of Pmi , starting from the initial vertex, alternately by non-singleton
sets and singleton sets that are not used for labeling any vertex before. This labeling is a weak
IASI for Pm ×Pn .

In Pm ×Pn , the corresponding vertices of different copies of Pm are adjacent. Hence, if we
label as mentioned above, no two edge of Pm×Pn have the set-label of the same kind. Therefore,
the sparing number of a planar grid is 0.

Now, the following theorem estimates the sparing number of a prism, the Cartesian product
of a cycle and a path.

Proposition 2.4. The sparing number of a prism Cm ×Pn is

ϕ(Cm ×Pn)=
{

0 if m is even
2n+1 if m is odd.

Proof. Since Pn has n+1 vertices, there are n+1 copies of Cm in Cm ×Pn . Now, we consider
the following cases.

Case 1: Suppose that m is even. Label the vertices of each copy Cmi of Cm , starting from
the initial vertex, by distinct singleton sets and distinct non-singleton sets alternately for
odd number i and label the vertices of Cmi , starting from the initial vertex, by distinct non-
singleton sets and distinct singleton sets alternately for even number i. Then, for every pair
of adjacent vertices in Cm ×Pn , one will be mono-indexed and the other have non-singleton
set-label. Therefore, ϕ(Cm ×Pn)= 0.

Case 2: Let m be an odd integer. Then, by Theorem 1.8, Cm has at least one mono-indexed edge.
That is, at least two adjacent vertices in each copy of Cm will be mono-indexed. Then, every
copy Cmi of Cm must contain at least one mono-indexed edge. Therefore, if we label the vertices
of each Cmi alternately by distinct singleton sets and distinct non-singleton sets, there will be
two adjacent vertices in each Cmi are mono-indexed. Label the vertices of each copy, in such a
way that the corresponding edges of neighbouring copies Cmi must not be mono-indexed. Then,
there will be one mono-indexed edge between Cmi and Cmi+1 for all i < n. Therefore, there are
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n+1 mono-indexed edges, one in each copy Cmi and n mono-indexed edges, connecting Cmi

and Cmi+1 . Therefore, ϕ(Cm ×Pn)= 2n+1

The following theorem discusses the sparing number of the Cartesian product Cm ×Cn of
two cycles Cm and Cn .

Theorem 2.5. Let Cm and Cn be two cycles. Then, the sparing number of the Cartesian product
Cm ×Cn is

ϕ(Cm ×Cn)=


0 if both m and n are even
2n if m is odd and n is even
2l otherwise l =max(m,n).

Proof. Let Cmi be the i-th copy of Cm in Cm ×Cn . Label the vertices of Cmi , for odd values
of i, starting from the initial vertex, by distinct singleton sets and distinct non-singleton sets
(that are not used for labeling vertices in any other copy of Cm), alternately and label the
vertices of Cmi , for odd values of i, starting from the initial vertex, by distinct non-singleton
sets and distinct singleton sets (that are not used for labeling vertices in any other copy of Cm)
alternately in such a way that no two adjacent vertices are labeled by non-singleton sets. Now
we have the following cases.

Case 1: If both Cm and Cn are even, then the product Cm ×Cn is the union of even cycles and
hence is bipartite. Hence, by Theorem 1.7, the sparing number of Cm ×Cn is 0.

Case 2: If m and n are not simultaneously even.

Here we have the following subcases.

Case 2.1: Without loss of generality, let Cm be an odd cycle and Cn be an even cycle. Then each
copy of Cm must have at least one mono-indexed edge. That is, in each copy of Cm , at least
two adjacent vertices are mono-indexed. Therefore, there exist at least one mono-indexed edge
between two neighbouring copies Cmi and Cmi+1 , for all i < n. Therefore, the total number of
mono-indexed edges in Cm ×Cn is 2n.

Case 2.2: Without loss of generality, let m ≤ n. Let both Cm and Cn be two odd cycles. Then, in
Cm ×Cn , in each copy of Cm , at least two adjacent vertices are mono-indexed. Therefore, there
exist at least one mono-indexed edge between two neighbouring copies Cmi and Cmi+1 , for all
i < n. Therefore, the total number of mono-indexed edges in Cm ×Cn is 2n.

Now, let m ≥ n. Then, since Cm ×Cn and Cn ×Cm are isomorphic graphs, Cm ×Cn can be
considered as the graph consisting of m copies of Cn with the corresponding edges of consecutive
two copies are joined by edges. Hence, as explained in the above paragraph, the total number of
mono-indexed edges in Cm ×Cn is 2m. That is, the sparing number of Cm ×Cn is max(m,n), if
m and n are odd.

An interesting question in this context is about the sparing number of the Cartesian product
of two graphs, at least one of which is a complete graph. The following theorem estimates the
sparing number of the Cartesian product of two complete graphs.
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Theorem 2.6. The sparing number of the product Km ×Kn of two complete graphs Km and
Kn is

ϕ(Km ×Kn)=


n
(m−1

2

)+m
(n−1

2

)
if n < m

m(m−1)(m−2) if n = m
1
2 m(n−2)(m+n−2) if n > m.

Proof. Let vi j be the i-th vertex of the j-th copy of Km in Km ×Kn . Then, ui j is adjacent to
all other vertices in the same copy of Km and is adjacent to the corresponding vertices of all
other copies of Km in Km ×Kn . Therefore, the degree of ui j is m+n−2. That is, Km ×Kn is
an (m+n−2)-regular graph. More over, the number of vertices in Km ×Kn is mn. Hence, the
number of edges in Km ×Kn is 1

2 mn(m+n−2). Here, we have the following cases. Also, each
copy of Km has at most one vertex that is not mono-indexed.

Case 1: Let n < m. Then, each copy of Km has at most (m−1) edges that are not mono-indexed.
More over, (n−1) edges that are not mono-indexed, are incident on one vertex of each copy
of Km . Therefore, the maximum number of edges that are not mono-indexed in Km ×Kn is
m(n−1)+n(m−1). Hence, the number of mono-indexed edges in Km ×Kn is

ϕ(Km ×Kn)= 1
2

mn(m+n−2)− [m(n−1)+n(m−1)]

= 1
2

[m2n+mn2 −6mn+2m+2n]

= 1
2

[m(n−1)(n−2)+n(m−1)(m−2)]

= n

(
m−1

2

)
+m

(
n−1

2

)
.

Case 2: Let n = m. Then, by Case 1, ϕ(Km ×Kn)= 2m
(m−1

2

)= m(m−1)(m−2).

Case 3: Let n > m. Then, m copies of Km have one mono-indexed vertex each and the
remaining (n−m) copies must be 1-uniform. Since the corresponding vertices of all copies
of Km are adjacent to each other, no two corresponding vertices can have non-singleton set-
labels. Therefore, the total number of edges that are not mono-indexed in Km×Kn is m(m+n−2).
Therefore, the number of mono-indexed edges in Km ×Kn is

ϕ(Km ×Kn)= 1
2

mn(m+n−2)−m(m+n−2)

= 1
2

[m2n+mn2 −4mn−2m2 +4m]

= 1
2

m(n−2)(m+n−2).

This completes the proof.

We now proceed to determine the sparing number of the Cartesian product of a complete
graph and a path.
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Theorem 2.7. The sparing number of the Cartesian product of a complete graph Kn and a path
Pm is 1

2 (n−1)[(m+1)(n+1)−2].

Proof. The path Pm has m+1 vertices, we have m+1 copies of Kn in Kn×Pm . By Theorem 1.10,
one vertex of each copy of Kn can have at most one vertex that is not mono-indexed. Also, note
that the corresponding vertices of the i-th and (i+1)-th copies are adjacent in Kn ×Pm and
hence can not have non-singleton set-labels simultaneously. Let ui j be the i-th vertex of the
j-th copy of Kn . Then, for odd values of j, label the vertex u1 j by distinct non-singleton sets
and for even values of j, label the vertex u2 j by distinct non-singleton sets.

Now, by Theorem 1.10, each copy of Kn has 1
2 (n−1)(n−2) mono-indexed edges. Here, for

1≤ j ≤ m, the edges u1, ju1, j+1 and u2, ju2, j+1 have non-singleton set-labels. That is, there are
(n−2) mono-indexed edges connecting the j-th and ( j+1)-th copy of Kn . Therefore, the total
number of mono-indexed edges in Kn×Pm is 1

2 (m+1)(n−1)(n−2)+m(n−2)= 1
2 [m(n+1)+(n−1)]=

1
2 (n−1)[(m+1)(n+1)−2]

In the following theorem, we estimate the sparing number of the Cartesian product of a
cycle and a complete graph.

Theorem 2.8. The sparing number of the Cartesian product of a complete graph Kn and a cycle
Cm is

ϕ(Kn ×Cm)=


1
2 m(n+1)(n−2) if m is even
1
2 (n+1)[m(n−2)+2] if m is odd.

Proof. Here, we consider the following cases.

Case 1: Let m be even. Then, as mentioned in the proof of Theorem 2.7, label the vertex u1 j by
non-singleton sets, for odd values of j and label the vertex u2 j by non-singleton sets for even
values of j. Therefore, as explained in Theorem 2.7, the total number of mono-indexed edges is
m1

2 (n−1)(n−2)+m(n−2)= 1
2 m(n+1)(n−2).

Case 2: Let m be odd. Then, m−1 copies of Kn can be labeled as in Case 1 and m-th copy must
be 1-uniform. There is exactly one edge between the m-th copy and first copy of Kn as well as
the m-th copy and (m−1)-th copy of Kn , that is not mono-indexed. Therefore, the number of
mono-indexed edges in Kn ×Pn is (m−1)1

2 (n−1)(n−2)+ (m−2)(n−2)+2(n−1)+ 1
2 n(n−1) =

1
2 (n+1)[m(n−2)+2].

In the following discussions, we intend to investigate about the sparing number of the
Cartesian product of two graphs, at least one of which is a complete bipartite graph. If both the
graphs are bipartite, then their Cartesian product will also be a bipartite graph and hence its
sparing number is 0. Hence, we need not study the cases when the second graph is a path or an
even cycle. Therefore, we examine the sparing number of Km1,m2 ×Cn where n is an odd integer
in the following theorem.

Theorem 2.9. For any odd integer n and for the integers m1 ≤ m2 , the sparing number of
Km1,m2 ×Cn is m1(m2 +1).
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Proof. Let (X ,Y ) be the bipartition of Km1,m2 with |X | = m1 and |Y | = m2 . Let X i and Yi be the
corresponding bipartitions of Km1,m2 in Km1,m2 ×Cn . Now, label all the vertices of X i by distinct
singleton sets and the vertices of Yi by distinct non-singleton sets for odd values of i and label
all the vertices of X i by distinct non-singleton sets and the vertices of Yi by distinct singleton
sets for even values of i. Then, in the first n−1 copies all the corresponding vertices have
different types (singleton and non-singleton sets) of set-labels and hence have no mono-indexed
edges between them. But, the set-labels of the corresponding vertices of the n-th copy and the
first copy can not be of different type unless one of them is 1-uniform. Hence, assume that m-th
copy of Km1,m2 is 1-uniform. Therefore, besides all the edges of n-th copy of Km1,m2 , the edges
between the partitions X1 and Xn are also mono-indexed. Then, the number of mono-indexed
vertices in Km1,m2 ×Cn is m1m2 +m1 = m1(m2 +1).

We, now proceed to determine the sparing number of the Cartesian product of a complete
graph Kn and a complete bipartite graph Km1,m2 .

Theorem 2.10. The sparing number of Km1,m2 ×Kn is (n−1)m1m2 + 1
2 n[nm1 + (n−2)m2].

Proof. Let G = Km1,m2 × Kn . Then, G contains n copies of Km1,m2 with the corresponding
vertices of all copies are adjacent to each other. Then, since no two adjacent vertices can have
non-singleton set-labels, only one copy of Km1,m2 can have a partition of vertices having non-
singleton set-labels. That is, (n−1) copies of Km1,m2 are 1-uniform in G . More over, no edge of
the first copy of Km1,m2 is 1-uniform.

Let (X ,Y ) be the bipartition of Km1,m2 and let (X i,Yi) be the corresponding bipartition of
its i-th copy. Therefore, |X i| = |X | = m1 and |Yi| = |Y | = m2 , where 1≤ i ≤ n. Then, the number
of vertices in all X i is m1n and the number of vertices in all Yi is m2n. For 1≤ i ≤ n, degree
of a vertex in X i is m2 +n and the sum of degrees of vertices of X i in each copy is m1(m2 +n).
Therefore, the total degree of vertices in all X i in G is n · m1(m2 + n). Similarly, the total
degree of vertices in all Yi in G is n ·m2(m1 +n). Therefore, the total number of edges in G is
1
2 [n ·m1(m2 +n)+n ·m2(m1 +n)].

Let m1 ≤ m2 . Without loss of generality, let Y1 be the set of vertices of G having non-singleton
set-labels. Then, the number of vertices that are not mono-indexed is the sum of degrees of
vertices in Y1 . That is, number of vertices that are not mono-indexed in G is m2(m1 +n).

Therefore, the number of mono-indexed edges in G is 1
2 [n ·m1(m2 +n)+n ·m2(m1 +n)]−

m2(m1 +n)= (n−1)m1m2 + 1
2 n[nm1 + (n−2)m2].

3. Conclusion
In this paper, we have discussed about the sparing number of Cartesian products of certain
graphs which admit weak IASIs. Some problems in this area are still open. We have not studied
about the sparing number of the Cartesian product of two arbitrary graphs G1 and G2 , in our
present discussion. Uncertainty in the adjacency pattern of different graphs makes this study
complex. An investigation to determine the sparing number of the Cartesian product of two
arbitrary graphs in terms of their orders, sizes and the number of odd cycles in each of them,
seems to be fruitful. The admissibility of weak IASIs by other graph products is also worth
studying.
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