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Abstract. Multi-item integrated inventory system and ordering cost depletion liable scheduled lead
time with carbon emission cost is established in a fuzzy situation. Multiple items can considerably
drop total inventory costs for hiring orders aimed at multiple items in single refill demand would
drop ordering costs. Owing to the inaccuracy of various parameters and objective is imprecise in
the environment. As the development of fuzzy objective is uncertain, the model is formulated as
multi-item problems were confident/suspicious profit of the objective with some uncertainty. The
model is solved via the graded mean technique with the addition of the Kuhn-Tucker method when the
fuzzy equivalent of the problem remains available. An algorithm is established to attain optimal order
quantity for each item and then find the minimum integrated total cost for a multi-item inventory
system. The evaluation of a fuzzy multi-item inventory system through the crisp multi-item inventory
system is completed over mathematical illustrations. Lastly, the graphical demonstration remains
offered toward establishing the suggested system. An ending outcome demonstrates that this fuzzy
multi-item system is perhaps moderately suitable defining optimal order quantity for each item and
then the minimum integrated total cost for the multi-item technique when the lead time is assessed.
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1. Introduction
Maximum of inventory concludes optimum strategies aimed at single items, supposing a
certain inventory strategy aimed at solitary items ensures not impact the price on inventory
and also the income of the organization. As an alternative to a single item, various firms or
retailers, or enterprises are encouraged to stock various items in their factories for further
gainful commercial circumstances. An additional source of their stimulus is to fascinate the
consumers to acquisition more than a few items in single vendor. Multiple article inventory was
initially presented by Federgruen et al. [5] who evaluated that synchronized replacements for
multiple articles can pointedly decrease entire inventory prices as hiring orders for multiple
articles in single top-up order exert modest set up prices. Moon and Silver [14] dispensed
through a multi-item news seller problematic by allowing for the restricted whole expenditure
and then resolved the typical by normal distribution, measured the min-max distribution
free methodology. Shin et al. [19] considered dual dissimilar systems arranged the origin
of principal period request supply then measured facility range constraints besides using
transportation reductions. Designed for advanced learning in the multi-items typical, person
who reads can grasp Cárdenas-Barrón et al. [2]. Vithyadevi and Annadurai [22] considered
a combined inventory typical with ordering charge decrease reliant on lead time happening
in fuzzy situation by hiring trapezoidal fuzzy quantity. Articles are getting worse at a stable
rate and retailed from varies exits in the town under an individual organization presented by
Maiti [11].

Due to the universal supply series, the shipping through consignment of goods converts a
foremost experiment surrounded by altogether companies of supply series. Owed toward this
difficulty, transport costs ought to be incorporated into the whole price to estimate the complete
supply series price. Trendy the simple supply series typical, the transport price is involved
inside the setup price or ordering price, then nowadays, worldwide supply series systems custom
a single ordering to multiple delivery strategy of transport as an alternative of single ordering
to single delivery. Through the single ordering to single delivery strategy, all goods are ordered
in one order and shipped to the vendor in one supply, then owing to the single-ordering-multi-
delivery strategy, all goods are ordered at one order, however it transports to the seller in several
transfers. For instance of an outcome, the shipping count rises. Accordingly, stable shipping
costs beside through inconstant shipping costs are additionally more to the typical to create
additional faithful. The profit of consuming a single-ordering-multi-delivery strategy is that it
can save the ordering price of the buyer. If the synchronization is dualistic or more, then the
shipping price shows a significant part. Because of the single-ordering-multi-delivery strategy,
the shipping counts rises, this affects the climate through the substance of carbon emission. For
instance alike per shipping costs, the shipping counts rises which indicates a growing ratio of
carbon emissions. Therefore, the flexible and static carbon radiation costs are additional to the
total price. Malleeswaran and Uthayakumar [13] considered a combined seller-purchaser supply
sequence typical on behalf of backorder amount deduction and cost-related demand consuming
provision level restrictions and carbon discharge rate.
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The lead time generally contains for the subsequent modules: dealer lead time, order
planning, transport time, order shipment, and arrangement period. Malik and Sarkar [12]
measured multi-item unremitting assessment inventory system and indeterminate request,
eminence enhancement, structure rate drop in addition disparity resistor in principal period.
Tiwari et al. [21] examined ecological inventory organization with worsening and defective
feature matters allowing for carbon discharge. Li et al. [9] revealed a supply series holding a
retailer besides a customer through manageable principal period. It handled dual circumstances
such as whole evidence and inadequate evidence around the consumer. Kamble [7] deliberated
the perception of pentagonal fuzzy numbers. Canonical pentagonal fuzzy numbers are measured
via inner calculation processes through consuming alpha-cut processes. Fuzzy model declining
inventory articles using time changing demand and shortages in entirely backlogged conditions
remains framed by Nagar and Surana [15].

Taha [20] provided the Khun-Tucker technique used to resolve indecision issues by means
of stated in operations research. Pan and Yang [17] considered delivering a lower total cost
and smaller lead time compared to previous inventory problems. A merged inventory typical to
minimalize the entire price by enhancing lead time, order size, and the amount of distributions is
presented by Yang and Pan [24]. Fuzzy set concept presented by Zimmerman [25] concentrated
on ambiguous groups in operational research. Chen [3] deliberated arithmetic processes in fuzzy
numbers through the utility code. Maheswari et al. [10] handled a multi-product inventory
system for an industrial unit outlet in crisp and fuzzy situations framed with storage planetary
in one constraint. Das [4] developed a deteriorated multi-object inventory system in a fuzzy
situation. Here the demand frequency is persistent. Ali et al. [1] studied the supply chain outline
that grips perishability disputes in manufacture and dissemination. Investigators suggested a
multi-objective mixed-integer non-linear supply chain synchronization model in indeterminate
atmospheres to diminish the price. Joviani et al. [6] developed a multi-item inventory system
in three inventory models along stable deterioration, and partial backlogging, with different
demand functions. Nasseri et al. [16] presented a technique for ranking fuzzy quantities based on
the angle between the reference functions of the fuzzy numbers. San-José et al. [18] established
an inventory system that depends on the demands of objects is time-dependent and tracks
the power arrangements system. Lacks are permissible and entirely backlogged. Kumar and
Uthayakumar [8] investigated a two level supply chain with one producer and one seller is
established for multi goods. The seller handled with the indeterminate demand for all goods
which tracks a normal distribution.

The paper is structured by this manner: In Section 2, the notations, assumptions are
familiarized. Section 3 treaties by a mathematical system towards optimize the total cost for
multi-item, optimal order for each item. In Section 4, graded mean technique, fuzzy multiitem
inventory system designed and an algorithm framed towards determine optimum solution for
multi-item. In Section 5, arithmetical illustrations then graphical representation are offered
toward establish crisp then fuzzy multi-item inventory model. Section 6 obtains a relative
evaluation. In Section 7, the conclusion is tracked.
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2. Notations and Assumptions
The succeeding notations are presented in this inventory system.

2.1 Notations
Q i – Order quantity for i-th item for the buyer,

L i – Lead time span for i-th item of the buyer,

A i – Buyer’s ordering cost for i-th item of per order,

mi – Lots quantity for i-th item it’s manufactured goods is supplied from
the vendor to the buyer in single manufacture phase,

D i – Average demand for i-th item of per unit time on the buyer,

Pi – Manufacture rate for i-th item of the vendor Pi > D i,

Si – Vendor’s setup cost for i-th item of per arrangement,

Cvi – Production cost for i-th item of funded through vendor Cvi < Cbi,

Cbi – Buying cost for i-th item of funded by the buyer,

r i – Yearly inventory holding cost for i-th item for each dollar capitalized
in stocks,

Ri – Reorder point for i-th item of the buyer,

V ECvi – Vendor’s flexible carbon emission cost for i-th item,

FECvi – Vendor’s stable carbon emission cost for i-th item,

FTCvi – Vendor’s stable transportation cost for i-th item,

V TCvi – Vendor’s flexible transportation cost for i-th item,

ITCMI(Q i,L i,mi) – Integrated total cost for crisp multi-item inventory system,

P(IT̃CMI(Q̃ i,L i,mi)) – Integrated total cost for fuzzy multi-item inventory system.

2.2 Assumptions
The system is improved by implementing successful assumptions.

(i) The coordination comprises for single-vendor with single-buyer aimed at multi-item
inventory system.

(ii) Buyer’s order size Q i and the vendor makings miQ i using a limited manufacture ratio
Pi (Pi > D i) at single setup but transports quantity Q i towards the buyer over mi times.
The vendor sustains a i-th item of set up cost Si for each manufacture run and the buyer
sustains a i-th item of an ordering cost A i for every order of quantity Q i .

(iii) The demand of i-th item X i throughout lead time of i-th item L i charts a normal
distribution with mean µL i , standard deviation σ

√
L i .

(iv) The inventory is unceasingly studied. Upon reaching the reorder point Ri , the buyer needs
the order.

(v) The reorder point equivalents the summation of the expected demand for the period of
safety stock and lead time. The reorder point Ri = expected demand for the period of lead
time for i-th item + safety stock, therefore Ri = D iL i +kσ

p
Li where k is safety factor.
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(vi) The lead time for all items is similar and it involves of ni mutually independent modules.
The z-th module has a normal duration biz, least period aiz, and crashing cost per unit
time ciz. For suitability, ciz is organized in that way ci1 < ci2 < ci3 < . . .< cin.

(vii) The modules of lead time are crashed unique on a period beginning since the principal
module for the situation takes the least unit crashing cost also the subsequent module,
similar we get next value.

(viii) Let L i0 =∑n
j=1 bi j , and L iz be the span of lead time using modules 1,2,3, . . . , z crashed to

their least period, then L iz can be expelled as L iz = L i0 −∑z
j=1(bi j −ai j), z = 1,2,3, . . . ,n;

and the lead time crashing cost per cycle R(L i) is given by R(L i) = ciz(L i(z−1) −L i)+∑z−1
j=1 ci j(bi j −ai j), L i ∈ [L iz,L i(z−1)]. Furthermore, the distance of lead time is equivalent

of whole transport rotations, and the lead time crashing cost arises in every transport
rotation. The association among crashing cost and lead time is exposed in Figure 1.

(ix) The decrease of lead time L iz attends condensed ordering cost A i and A i is resolutely the
concave function of L iz , i.e., A′

i(L iz)> 0 and A′′
i (L iz)< 0.

(x) If additional charges remain sustained through the vendor, it will be fully shifted towards
the buyer after reduced lead time is mandatory.

Figure 1. Relationship among crashing cost and lead time
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3. Mathematical System
3.1 Crisp Multi-item Inventory System

Integrated Total Cost of Multi-Item (ITCMI). Integrated total cost of multi-item each unit
time derived here and summation for succeeding components,

Ordering cost for i-th item per unit time= A i

Q i/D i
= A iD i

Q i
, (1)

Buyer’s holding cost for i-th item per unit time is=
(Q i

2
+kσ

√
L i

)
r iCbi , (2)

Lead time crashing cost for i-th item per unit time=
(D i

Q i

)
R(L i), (3)

Vendor setup cost for i-th item per year=
( D i

miQ i

)
Si, (4)

Vendor’s average inventory for i-th item (see Figure 2)

=
{[

miQ i

(Q i

Pi
+ (mi −1)

Q i

D i

)
− m2

i Q
2
i

2Pi

]
−

[Q2
i

D i
(1+2+ . . .+ (mi −1))

]} D i

miQ i

= Q i

2

[
mi

(
1− D i

Pi

)
−1+ 2D i

Pi

]
.

So

Vendor’s holding cost for i-th item per unit time is= Q i

2

[
mi

(
1− D i

Pi

)
−1+ 2D i

Pi

]
r iCvi , (5)

Vendor annual transportation cost for i-th item= mi(FTCvi +V TCvi), (6)

Annual carbon emission cost for i-th item= miFECvi +Q iV ECvi. (7)

Affording to our assumptions and the eqs. (1) to (7) defined above, the integrated total cost
for multi-item per unit time which is the collection of above mentioned costs and then expressed
as

ITCMI(Q i,L i,mi)=
n∑

i=1

[D i

Q i

(
A i + Si

mi
+R(L i)

)
− Q ir iCvi

2

(miD i

Pi
+1

)
+ Q ir i

2

((
mi + 2D i

Pi

)
Cvi +Cbi

)
+ r iCbi kσ

√
L i

+Q iV ECvi +mi(FTCvi +V TCvi +FECvi )
]
. (8)

If a specific rate of mi and L i the integrated total cost multi-item is ITCMI(Q i,L i,mi), then
optimal order quantity Q i obtained while integrated total cost of multi-item ITCMI(Q i,L i,mi)
is minimum. Now directive to obtain minimization of ITCMI(Q i,L i,mi) we find the partial
derivative of ITCMI(Q i,L i,mi) with Q i and equate to zero, then we have

− D i

Q i
2

(
A i + Si

mi
+R(L i)

)
− r iCvi

2

(miD i

Pi
+1

)
+ r i

2

((
mi + 2D i

Pi

)
Cvi +Cbi

)
+V ECvi = 0. (9)

For a static mi and L i , the integrated total cost of multi-item ITCMI(Q i,L i,mi) is positive
definite on the point Q i . Through inspecting the sufficient situations to get minimum value
of ITCMI(Q i,L i,mi) second order partial derivatives of ITCMI(Q i,L i,mi) with respect to Q i

and obtain
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Figure 2. The inventory pattern for i-th item of the buyer and vendor

Communications in Mathematics and Applications, Vol. 14, No. 5, pp. 1693–1725, 2023



1700 Optimizing a Fuzzy Multi-Item Inventory System and Ordering Cost. . . : R. Vithyadevi and K. Annadurai

∂2ITCMI(Q i,L i,mi)
∂Q2

i
= 2D i

Q3
i

(
A i + Si

mi
+R(L i)

)
> 0. (10)

Therefore, ITCMI(Q i,L i,mi) is convex in Q i , for a static mi andL i .
Consequently, observe aimed at optimal derivatives Q∗

i decrease towards obtain a local
minimum. Henceforth, we find the optimal order quantity Q∗

i using eq. (9) is,

Q∗
i =Q i =

√√√√√√ 2D i

(
A i + Si

mi
+R(L i)

)
r i

((
mi

(
1− D i

Pi

)
−1+ 2D i

Pi

)
Cvi +Cbi

)
+2V ECvi

. (11)

4. Fuzzy Inventory System
4.1 Pentagonal Fuzzy Number By Graded Mean Integration Technique (Nagar and

Surana [15])
In Figure 3, the graded mean integration technique for α̃ is defined by α̃= (α1,α2,α3,α4,α5) as
a pentagonal fuzzy number. Then the defuzzification

P(α̃)= 1
2

∫ 1
0

h
2 [α1 +α2 + (α3 −α1)h+α4 +α5 − (α5 −α3)h]dh∫ 1

0 hdh

= 1
12

(α1 +3α2 +4α3 +3α4 +α5). (12)

Figure 3. Pentagonal fuzzy number

4.2 Fuzzy Multi-item Inventory System
All over this paper, subsequent parameters and decision variable are utilized in order to shorten
the act of fuzzy multi-item inventory system. Take D̃ i , Ã i , S̃i , r̃ i , P̃i , C̃vi , C̃bi , V ẼCbi , and
V T̃Cbi are fuzzy quantities. Currently, fuzzy multi-item inventory system is acquaint together
fuzzy parameters and fuzzy optimal order quantity Q̃ i .

The fuzzy integrated total cost of multi-item (Chen [3]) is

IT̃CMI(Q̃ i,L i,mi)=
n∑

i=1
[(D̃ i ⊘ Q̃ i)⊗ (Ã i ⊕ (S̃i ⊘mi)⊕R(L i))]

⊖ [[(Q̃ i ⊗ r̃ i ⊗ C̃vi)⊘2]⊗ [(mi ⊗ D̃ i ⊘ P̃i)+1]

+mi ⊗ (FTCvi +V T̃Cvi + (mi ⊗FECvi + Q̃ i ⊗V ẼCvi ))]. (13)
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Assume D̃ i = (D i1 ,D i2 ,D i3 ,D i4 ,D i5), Ã i = (A i1 , A i2 , A i3 , A i4 , A i5), r̃ i = (r i1 , r i2 , r i3 , r i4 , r i5),
S̃i = (Si1 ,Si2 ,Si3 ,Si4 ,Si5), P̃i = (Pi1 ,Pi2 ,Pi3 ,Pi4 ,Pi5), C̃vi = (Cvi1,Cvi2,Cvi3,Cvi4,Cvi5),
C̃bi = (Cbi1,Cbi2,Cbi3,Cbi4,Cbi5), V ẼCbi = (V ECbi1,V ECbi2,V ECbi3,V ECbi4,V ECbi5), and
V T̃Cbi = (V TCbi1,V TCbi2,V TCbi3,V TCbi4,V TCbi5) are positive pentagonal fuzzy numbers.
Furthermore we adopt the decision variable which is fuzzified affording to the pentagonal rule
as: Q̃ i = (Q i1,Q i2,Q i3,Q i4,Q i5).

Let us initiate by, fuzzy integrated total cost for multi-item IT̃CMI(Q̃ i,L i,mi) which is
given by eq. (13), that is

IT̃CMI(Q̃ i,L i,mi)

=
n∑

i=1

[(D i1

Q i5

(
A i1 + Si1

mi
+R(L i)

)
− Q i5r i5Cvi5

2

(miD i5

Pi1
+1

)
+ Q i1r i1

2

((
mi + 2D i1

Pi5

)
Cvi1 +Cbi1

)
+ r i1Cbi1kσ

√
L i1 +Q i1V ECvi1 +mi(FTCvi +V TCvi1 +FECvi)

)
·
(D i2

Q i4

(
A i2 + Si2

mi
+R(L i)

)
− Q i4r i4Cvi4

2

(miD i4

Pi2
+1

)
+ Q i2r i2

2

((
mi + 2D i2

Pi4

)
Cvi2 +Cbi2

)
+ r i2Cbi2kσ

√
L i +Q iV ECvi +mi(FTCvi +V TCvi +FECvi)

)
·
(D i3

Q i3

(
A i3 + Si3

mi
+R(L i)

)
− Q i3r i3Cvi3

2

(miD i3

Pi3
+1

)
+ Q i3r i3

2

((
mi + 2D i3

Pi3

)
Cvi3 +Cbi3

)
+ r i3Cbi3kσ

√
L i +Q i3V ECvi3 +mi(FTCvi +V TCvi3 +FECvi)

)
·
(D i4

Q i2

(
A i4 + Si4

mi
+R(L i)

)
− Q i2r i2Cvi2

2

(miD i2

Pi4
+1

)
+ Q i4r i4

2

((
mi + 2D i4

Pi2

)
Cvi4 +Cbi4

)
+ r i4Cbi4kσ

√
L i +Q i4V ECvi4 +mi(FTCvi +V TCvi4 +FECvi)

)
·
(D i5

Q i1

(
A i5 + Si5

mi
+R(L i)

)
− Q i1r i1Cvi1

2

(miD i1

Pi5
+1

)
+ Q i5r i5

2

((
mi + 2D i5

Pi2

)
Cvi5 +Cbi5

)
+ r i5Cbi5kσ

√
L i +Q i5V ECvi5 +mi(FTCvi +V TCvi5 +FECvi)

)]
. (14)

Also, the Graded mean integration representation of IT̃CMI(Q̃ i,L i,mi) is obtained by eq. (12)
as

P(IT̃CMI(Q̃ i,L i,mi))

=
n∑

i=1

[1
2

(D i1

Q i5

(
A i1 + Si1

mi
+R(L i)

)
− Q i5r i5Cvi5

2

(miD i5

Pi1
+1

)
+ Q i1r i1

2

((
mi + 2D i1

Pi5

)
Cvi1 +Cbi1

)
+ r i1Cbi1kσ

√
L i1 +Q i1V ECvi1 +mi(FTCvi +V TCvi1 +FECvi)

)
+ 3

12

(D i2

Q i4

(
A i2 + Si2

mi
+R(L i)

)
− Q i4r i4Cvi4

2

(miD i4

Pi2
+1

)
+ Q i2r i2

2

((
mi + 2D i2

Pi4

)
Cvi2 +Cbi2

)
+ r i2Cbi2kσ

√
L i +Q iV ECvi +mi(FTCvi +V TCvi +FECvi)

)
+ 4

12

(D i3

Q i3

(
A i3 + Si3

mi
+R(L i)

)
− Q i3r i3Cvi3

2

(miD i3

Pi3
+1

)
+ Q i3r i3

2

((
mi + 2D i3

Pi3

)
Cvi3 +Cbi3

)
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+ r i3Cbi3kσ
√

L i +Q i3V ECvi3 +mi(FTCvi +V TCvi3 +FECvi)
)

+ 3
12

(D i4

Q i2

(
A i4 + Si4

mi
+R(L i)

)
− Q i2r i2Cvi2

2

(miD i2

Pi4
+1

)
+ Q i4r i4

2

((
mi + 2D i4

Pi2

)
Cvi4 +Cbi4

)
+ r i4Cbi4kσ

√
L i +Q i4V ECvi4 +mi(FTCvi +V TCvi4 +FECvi)

)
+ 1

12

(D i5

Q i1

(
A i5 + Si5

mi
+R(L i)

)
− Q i1r i1Cvi1

2

(miD i1

Pi5
+1

)
+ Q i5r i5

2

((
mi + 2D i5

Pi2

)
Cvi5 +Cbi5

)
+ r i5Cbi5kσ

√
L i +Q i5V ECvi5 +mi(FTCvi +V TCvi5 +FECvi)

)]
. (15)

with 0<Q i1 ≤Q i2 ≤Q i3 ≤Q i4 ≤Q i5 . Exchange the inequality condition 0<Q i1 ≤Q i2 ≤Q i3 ≤Q i4

≤Q i5 to Q i2−Q i1 ≥ 0, Q i3−Q i2 ≥ 0, Q i4−Q i3 ≥ 0, Q i5−Q i4 ≥ 0 and Q i1 > 0, eq. (15) will remain
the same.

In the resulting steps, addition of Kuhn-Tucker process is used to get Q i1,Q i2,Q i3,Q i4, and
Q i5 to minimize P[IT̃CMI(Q̃ i,L i,mi)] in eq. (15). Then we resolve the unconstraint system
in order to find the minimization of P[IT̃CMI(Q̃ i,L i,mi)]. We find the partial derivatives of
P[IT̃CMI(Q̃ i,L i,mi)] with respect to Q i1,Q i2,Q i3,Q i4, and Q i5 are equate to zero as follows:

∂P[IT̃CMI(Q̃ i,L i,mi)]
∂Q i1

= 0,

∂P[IT̃CMI(Q̃ i,L i,mi)]
∂Q i2

= 0,

∂P[IT̃CMI(Q̃ i,L i,mi)]
∂Q i3

= 0,

∂P[IT̃CMI(Q̃ i,L i,mi)]
∂Q i4

= 0, and

∂P[IT̃CMI(Q̃ i,L i,mi)]
∂Q i5

= 0,

then
1

12

[
− D i5

Q2
i1

(
A i5 + Si5

mi
+R(L i)

)
− r i1Cvi1

2

(miD i1

Pi5
+1

)
+ r i1

2

((
mi + 2D i1

Pi5

)
Cvi1 +Cbi1

)
+V ECvi1

]
= 0 , (16)

3
12

[
− D i4

Q2
i2

(
A i4 + Si4

mi
+R(L i)

)
− r i2Cvi2

2

(miD i2

Pi4
+1

)
+ r i2

2

((
mi + 2D i2

Pi4

)
Cvi2 +Cbi2

)
+V ECvi2

]
= 0 , (17)

4
12

[
− D i3

Q2
i3

(
A i3 + Si3

mi
+R(L i)

)
− r i3Cvi3

2

(miD i3

Pi3
+1

)
+ r i3

2

((
mi + 2D i3

Pi3

)
Cvi3 +Cbi3

)
+V ECvi3

]
= 0 , (18)

3
12

[
− D i2

Q2
i4

(
A i2 + Si2

mi
+R(L i)

)
− r i4Cvi4

2

(miD i4

Pi2
+1

)
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+ r i4

2

((
mi + 2D i4

Pi2

)
Cvi4 +Cbi4

)
+V ECvi4

]
= 0 , (19)

1
12

[
− D i1

Q2
i5

(
A i1 + Si1

mi
+R(L i)

)
− r i5Cvi5

2

(miD i5

Pi1
+1

)
+ r i5

2

((
mi + 2D i5

Pi1

)
Cvi5 +Cbi5

)
+V ECvi5

]
= 0. (20)

By solving eqs. (16) to (20), we obtain the optimal order quantity for Q i1,Q i2,Q i3,Q i4, and Q i5.
They are

Q i1 =

√√√√√√ 2D i5

(
A i5 + Si5

mi
+R(L i)

)
r i1

((
mi

(
1− D i1

Pi5

)
−1+ 2D i1

Pi5

)
Cvi1 +Cbi1

)
+2V ECvi1

, (21)

Q i2 =

√√√√√√ 6D i4

(
A i4 + Si4

mi
+R(L i)

)
3
[
r i2

((
mi

(
1− D i2

Pi4

)
−1+ 2D i2

Pi4

)
Cvi2 +Cbi2

)
+2V ECvi2

] , (22)

Q i3 =

√√√√√√ 8D i3

(
A i3 + Si3

mi
+R(L i)

)
4
[
r i3

((
mi

(
1− D i3

Pi3

)
−1+ 2D i3

Pi3

)
Cvi3 +Cbi3

)
+2V ECvi3

] , (23)

Q i4 =

√√√√√√ 6D i2

(
A i2 + Si2

mi
+R(L i)

)
3
[
r i4

((
mi

(
1− D i4

Pi2

)
−1+ 2D i4

Pi2

)
Cvi4 +Cbi4

)
+2V ECvi4

] , (24)

Q i5 =

√√√√√√ 2D i1

(
A i1 + Si1

mi
+R(L i)

)
[
r i5

((
mi

(
1− D i5

Pi1

)
−1+ 2D i5

Pi1

)
Cvi5 +Cbi5

)
+2V ECvi5

] , (25)

with Q i5 ≥Q i4 ≥Q i3 ≥Q i2 ≥Q i1 > 0. Thus, the optimal solution of given in eq. (15), subject to
the following inequality constraints: Q i1 −Q i2 ≤ 0, Q i2 −Q i3 ≤ 0, Q i3 −Q i4 ≤ 0, Q i4 −Q i5 ≤ 0,
−Q i1 < 0. An optimal solution to P[IT̃CMI(Q̃ i,L i,mi)] be found by applying the Kuhn-Tucker
conditions (refer Taha [20]) subject to five inequalities as imposed situations. The conditions
are as follows:

∇P([IT̃CMI(Q̃ i,L i,mi)]−λ∇E(Q̃ i,L i,mi)]= 0,

λE[(Q̃ i,L i,mi)]= 0, E[(Q̃ i,L i,mi)]≤ 0, and λ≥ 0.

The conditions shorten towards succeeding λ1,λ2,λ3,λ4,λ5 ≥ 0,

∇P[IT̃CMI(Q̃ i,L i,mi)]−λ1(Q i1 −Q i2)−λ2(Q i2 −Q i3)−λ3(Q i3 −Q i4)

−λ4(Q i4 −Q i5)−λ5(−Q i1)= 0, (26)
1

12

[
− D i5

Q2
i1

(
A i5 + Si5

mi
+R(L i)

)
− r i1Cvi1

2

(miD i1

Pi5
+1

)
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+ r i1

2

((
mi + 2D i1

Pi5

)
Cvi1 +Cbi1

)
+V ECvi1

]
−λ1 +λ5 = 0, (27)

3
12

[
− D i4

Q2
i2

(
A i4 + Si4

mi
+R(L i)

)
− r i2Cvi2

2

(miD i2

Pi4
+1

)
+ r i2

2

((
mi + 2D i2

Pi4

)
Cvi2 +Cbi2

)
+V ECvi2

]
−λ2 +λ1 = 0, (28)

4
12

[
− D i3

Q2
i3

(
A i3 + Si3

mi
+R(L i)

)
− r i3Cvi3

2

(miD i3

Pi3
+1

)
+ r i3

2

((
mi + 2D i3

Pi3

)
Cvi3 +Cbi3

)
+V ECvi3

]
−λ3 +λ2 = 0, (29)

3
12

[
− D i2

Q2
i4

(
A i2 + Si2

mi
+R(L i)

)
− r i4Cvi4

2

(miD i4

Pi2
+1

)
+ r i4

2

((
mi + 2D i4

Pi2

)
Cvi4 +Cbi4

)
+V ECvi4

]
−λ4 +λ3 = 0, (30)

1
12

[
− D i1

Q2
i5

(
A i1 + Si1

mi
+R(L i)

)
− r i5Cvi5

2

(miD i5

Pi1
+1

)
+ r i5

2

((
mi + 2D i5

Pi1

)
Cvi5 +Cbi5

)
+V ECvi5

]
+λ4 = 0, (31)

Q i j −Q i( j+1) ≤ 0, j = 1,2,3,4, (32)

−Q i1 < 0, (33)

λ j(Q i j −Q i( j+1))= 0, j = 1,2,3,4, (34)

λ5(−Q i1)= 0, (35)

Q i j ≥ 0, j = 1,2,3,4,5, i = 1,2, . . . ,5 and λ j ≥ 0. (36)

Because Q i1 > 0, and λ5Q i1 = 0, then λ5 = 0. If λ1 = λ2 = λ3 = λ4 = 0, then Q i5 < Q i4 <
Q i3 < Q i2 < Q i1, it does not satisfy the constraints 0 < Q i1 ≤ Q i2 ≤ Q i3 ≤ Q i4 ≤ Q i5. Therefore,
Q i1 =Q i2,Q i2 =Q i3,Q i3 =Q i4,Q i4 =Q i5, that is Q i1 =Q i2 =Q i3 =Q i4 =Q i5 = Q̃∗

i . Hence, from
eqs. (27)-(36), we obtain the fuzzy i-th item’s optimal order quantity Q̃∗

i follows:

Q̃∗
i =

√√√√√√√√√√√√√√√√√√√√√√√√√√√√


2D i5

(
A i5 + Si5

mi
+R(L i)

)
+6D i4

(
A i4 + Si4

mi
+R(L i)

)
+8D i3

(
A i3 + Si3

mi
+R(L i)

)
+6D i2

(
A i2 + Si2

mi
+R(L i)

)
+2D i1

(
A i1 + Si1

mi
+R(L i)

)




[
r i1

((
mi

(
1− D i1

Pi5

)
−1+ 2D i1

Pi5

)
Cvi1 +Cbi1

)
+2V ECvi1

]
+3

[
r i2

((
mi

(
1− D i2

Pi4

)
−1+ 2D i2

Pi4

)
Cvi2 +Cbi2

)
+2V ECvi2

]
· 4

[
r i3

((
mi

(
1− D i3

Pi3

)
−1+ 2D i3

Pi3

)
Cvi3 +Cbi3

)
+2V ECvi3

]
+3

[
r i4

((
mi

(
1− D i4

Pi2

)
−1+ 2D i4

Pi2

)
Cvi4 +Cbi4

)
+2V ECvi4

]
+

[
r i5

((
mi

(
1− D i5

Pi1

)
−1+ 2D i5

Pi1

)
Cvi5 +Cbi5

)
+2V ECvi5

]



. (37)
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The optimum fuzzy integrated total cost for multi-item P[IT̃CMI(Q̃ i,L i,mi)] is obtained by
direct substitution of eq. (7) into eq. (15).

It is eminent that when the input parameters D i, A i,Si, r i,Pi,Cvi,Cbi,V ECvi , and V TCvi

are real numbers, that is D i1 = D i2 = D i3 = D i4 = D i5 = D i , A i1 = A i2 = A i3 = A i4 = A i5 = A i ,
r i1 = r i2 = r i3 = r i4 = r i5 = r i , Si1 = Si2 = Si3 = Si4 = Si5 = Si , Pi1 = Pi2 = Pi3 = Pi4 = Pi5 = Pi ,
Cvi1 = Cvi2 = Cvi3 = Cvi4 = Cvi5 = Cvi , Cbi1 = Cbi2 = Cbi3 = Cbi4 = Cbi5 = Cbi , V ECvi1 =
V ECvi2 = V ECvi3 = V ECvi4 = V ECvi5 = V ECvi , and V TCvi1 = V TCvi2 = V TCvi3 = V TCvi4 =
V TCvi5 =V TCvi Also assume that the decision variable Q i is real number, Q i1 =Q i2 =Q i3 =
Q i4 =Q i5 =Q i. Then eq. (37) condensed as eq. (11) as

Q∗
i =Q i =

√√√√√√ 2D i

(
A i + Si

mi
+R(L i)

)
r i

((
mi

(
1− D i

Pi

)
−1+ 2D i

Pi

)
Cvi +Cbi

)
+2V ECvi

. (38)

4.3 Algorithm for Inventory Systems
Multi-item order quantities are calculated using the subsequent algorithm to determine the
optimal order quantity each item and then the minimum integrated total cost for multi-item.
The optimal order quantity per item Q∗

i for the crisp situation and the minimum integrated total
cost ITCMI(Q i,L i,mi) for the multi-item set are obtained using eqs. (11) and (8) individually.
We obtain the optimal order quantity for each item Q̃∗

i and the minimum integrated total cost
for multi-item P[IT̃CMI(Q̃ i,L i,mi)] in fuzzy situations based on eqs. (37) and (15) separately.
Additionally, the relationships are specified aimed at together crisp system and fuzzy system.

Algorithm

Step 1: Compute optimal order quantity for each item and then find minimum integrated
total cost for multi-item in the crisp system for the specified crisp standards of
D i,Pi,Civ,k, r i, A i,Si,σ,L i,Ri(L),mi,FECvi,FTCvi,V ECvi , and V TCvi . At that point crisp
optimal order quantity Q∗

i for each item and crisp minimum integrated total cost for multi-item
ITCMI(Q i,L i,mi) are achieved.

Step 2: Obtain fuzzy minimum integrated total cost for multi-item utilizing fuzzy arithmetic
processes on fuzzy buyer and vendor ordering cost, fuzzy inventory holding cost, fuzzy setup
cost, fuzzy lead time crashing cost, fuzzy transportation cost and fuzzy carbon emission cost
which is taken as pentagonal fuzzy number.

Step 3: For multi-item orders, defuzzify the integrated total cost IT̃CMI(Q̃ i,L i,mi) using
graded mean integration to determine the order quantity Q̃∗

i which able to acquire by setting
the first derivative of P[IT̃CMI(Q̃ i,L i,mi)] is equal to zero.

Step 4: Utilize the Khun-Tucker technique in the direction of obtain the optimal order
quantity for each item Q̃∗

i = (Q∗
i1,Q∗

i2,Q∗
i3,Q∗

i4,Q∗
i5) in fuzzy sense, which is the distinct

method for pentagonal fuzzy number. The fuzzy optimal order quantity for i-th item’s
Q̃∗

i = (Q∗
i1,Q∗

i2,Q∗
i3,Q∗

i4,Q∗
i5) is attained by applying the first derivative of P [IT̃CMI(Q̃ i,L i,mi)]

that is equal to zero.
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Step 5: Determine the crisp optimal order quantity for i-th item’s Q∗
i obtained by derivative

method and to attain the fuzzy optimal order quantity for i-th item’s Q̃∗
i by using Graded Mean

Integration and addition of Kuhn-Tucker method.

Step 6: Analyze the integrated total cost for multi-item and optimal order quantity for each
item in crisp and fuzzy system. If IT̃CMI(Q̃ i,L i,mi)> P[IT̃CMI(Q̃ i,L i,mi)] and Q∗

i > Q̃∗
i then

the proposed fuzzy multi-item system is optimum to find the optimal order quantity for each
item and minimum integrated total cost for multi-item, else Q∗

i < Q̃∗
i and IT̃CMI(Q̃ i,L i,mi)<

P[IT̃CMI(Q̃ i,L i,mi)] then the crisp multi-item model is the premium to find the optimal order
quantity for each item and minimum integrated total cost for multi-item.

Step 7: Compare the minimum integrated total cost for multi-item, optimal order quantity for
each item obtained from both fuzzy, crisp multi-item inventory system and with their profit
percentages.

5. Numerical Example
Numerical cases are specified towards establish the outcome technique utilizing the suggested
algorithm. Subsequently relating that, the finest multi-item inventory system is recognised. The
results achieved through Matlab software and then suggested fuzzy multi-item inventory
system can be used in businesses such as vehicles, tires, healthcare products, computer
hardware, textiles, home appliance things (refrigerators, televisions, air conditioners, and
washing machines), massive objects like produced trip panels, and cell phones, so on. The
projected integrated multi-item inventory system is extra effective aimed at the supply chain
business progression of vendor-buyer administration.

5.1 Multi-item’s Crisp Inventory System
Example 5.1. The result demonstrate to crisp model, now we study the system with initial
input taken in Pan and Yang [17], and remaining input is made-up permitting to the problem.
Number of item i = 4; Pi = (3200,3520,3840,4160) units/year, D i = (1000,1100,1200,1300)
units/year, r i = (0.2,0.22,0.24,0.26), k = 2.33, Si=$(400,440,480,520)/setup, Cvi=(20,22,24,26)/
units, Cbi = (25,27.5,30,32.5)/units, σ= 7 units/week, FECvi = $0.2/shipment, FTCvi = $0.2/
shipment, V ECvi = $(0.1,0.11,0.12,0.13)/units and V TCv = $(0.5,0.55,0.6,0.65)/units. In exten-
sion, we consider A i = $25.00/order, $23.75/order, $22.50/order and $21.87/order, L i = 3,4,6, and
8 weeks, mi = 3,4,5, and R(L i)= $53.2,$18.2,$1.4, and $0. Using eqs. (11) and (8) respectively,
optimal order quantity for each item Q∗

i and minimum integrated total cost for multi-item
ITCMI(Q i,L i,mi) are achieved. The outcomes are presented in Table 1. The optimal standards
for crisp optimal order quantity for each item Q∗

i = (109.46,108.33,107.38,106.57) units and
crisp minimum integrated total cost for multi-item ITCMI(Q i,L i,mi)= $11059.0 when lead
time L i = 6 weeks.

5.2 Multi-item’s Fuzzy Inventory System
Example 5.2. The input exists similar for Example 5.1, but the fuzzy inputs are D i1 = (900,
990,1080,1170) units/year, D i2 = (950,1045,1140,1235) units/year, D i3 = (1000,1100,1200,1300)
units/year, D i4 = (1050,1155,1260,1365) units/year, D i5 = (1100,1210,1320,1430) units/year,
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Pi1 = (2880,3168,3456,3744) units/year, Pi2 = (3040,3344,3648,3952) units/year, Pi3 = (3200,
3520,3840,4160) units/year, Pi4=(3360,3696,4032,4368) units/year, Pi5=(3520,3872,4224,4576)
units/year, Cvi1=(18,19.8,21.6,23.4)/units, Cvi2=(19,20.9,22.8,24.7)/units, Cvi3=(20,22,24,26)/
units, Cvi4 = (21,23.1,25.2,27.3)/units, Cvi5 = (22,24.2,26.4,28.6)/units, r i1 = (0.18,0.198,0.216,
0.234), r i2 = (0.19,0.209,0.228,0.247), r i3 = (0.2,0.22,0.24,0.26), r i4 = (0.21,0.231,0.252,0.273),
r i5 = (0.22,0.242,0.264,0.286), Si1 = $(360,396,432,468)/setup, Si2 = $(380,418,456,494)/setup,
Si3 = $(400,440,480,520)/setup, Si4=$(420,462,504,546)/setup, Si5=$(440,484,528,572)/setup,
Cbi1 = (22.5,24.75,27,29.25)/units, Cbi2 = (23.75,26.125,28.5,30.875)/units, Cbi3 = (25,27.5,30,
32.5)/units, Cbi4 = (26.25,28.875,31.5,34.125)/units, Cbi5 = (27.5,30.25,33,35.75)/units, V TCvi1

= $(0.45,0.495,0.54,0.585)/units, V TCvi2 = $(0.475,0.5225,0.57,0.6175)/units, V TCvi3 = $(0.5,
0.55,0.6,0.65)/units, V TCvi4 = $(0.525,0.5775,0.63,0.6825)/units, V TCvi5 = $(0.55,0.605,0.66,
0.715)/units, V ECvi1 = $(0.09,0.099,0.108,0.117)/units, V ECvi2=$(0.095,0.1045,0.114,0.1235)/
units, V ECvi3 = $(0.1,0.11,0.12,0.13)/units, V ECvi4 = $(0.105,0.1155,0.126,0.1365)/units,
V ECvi5 = $(0.11,0.121,0.132,0.143)/units.

The proposed algorithm produces the outcome as presented in Table 1. Fuzzy order quantity
for each item Q̃ i = (Q i1,Q i2,Q i3,Q i4,Q i5) with 0 < Q i1 ≤ Q i2 ≤ Q i3 ≤ Q i4 ≤ Q i5 using eqs. (37)
and (15) respectively, fuzzy optimal order quantity for each item Q̃∗

i and fuzzy minimum
integrated total cost for multi-item P[IT̃CMI(Q̃ i,L i,mi)] are obtained. The optimal values for
fuzzy optimal order quantity for each item Q̃∗

i = (109.03,107.96,107.06,106.29) units and fuzzy
minimum integrated total cost for multi-item P[IT̃CMI(Q̃ i,L i,mi)]= $11026.0 when lead time
L i = 6 weeks.

Table 1 displays crisp situation, while L i = 3,4,6, and 8 weeks and varies ordering cost
A1 = [21.87,22.5,23.75,25]/order, A2 = [21.09,21.87,23.46,24.99]/order, A3 = [19.79,20.83,22.91,
24.99]/order, A4 = [17.25,18.81,21.93,25.05]/order, we get the optimal order quantity for each
item Q∗

i and minimum integrated total cost for multi-item ITCMI(Q i,L i,mi) which ranges
from (188.34,185.23,182.60,180.35) units to (109.46,108.33,107.38,106.57) units and from
$12368.0 to $11059.0 correspondingly. The outcomes aimed at Table 1 demonstrate while lead
time raises optimal order quantity for each item Q∗

i decreases and terminal stage slightly
increases and then minimum integrated total cost for multi-item ITCMI(Q i,L i,mi) primarily
drops and raises future.

Also, Table 1 shows fuzzy situation while L i = 3,4,6, and 8 weeks varies ordering costs
of A1, A2, A3, A4. We get the fuzzy optimal order quantity for each item Q̃∗

i decreases and
fuzzy minimum integrated total cost for multi-item P[IT̃CMI(Q̃ i,L i,mi)] which ranges
from (186.87,183.93,181.43,179.29) units to (109.03,107.96,107.06,106.29) units and from
$12336.0 to $11026.0 correspondingly. The outcomes prove that fuzzy order Q̃∗

i and total
cost P[IT̃CMI(Q̃ i,L i,mi)] primarily drop and rises far ahead after lead time rises. Also
abbreviated minimum integrated total cost for multi-item and optimal order quantity for
each item is presented in Table 2 and that remains savings whereas consuming the fuzzy
multi-item inventory system ranges from 0.26% to 0.30% and from (0.26,0.31,0.26,0.26)% to
(0.78,0.71,0.64,0.59)%, respectively. Our results specify the decision variable and total cost
results of fuzzy multi-item situation marginally vary from the results of the crisp multi-item
situation and this is presented.
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5.3 Graphical Representation

The optimal order quantity for each item dissimilar values of lead time and the ordering

cost is related mutually in the fuzzy and crisp multi-item systems, as shown in the graphical

representation of Figure 4(a)-(p). It is vibrant that optimal order quantity for each item Q∗
i

and Q̃∗
i decrease and terminal stage slightly increase while the lead time rises. That one stays

perceived the optimal order quantity each item is efficiently enhanced happening in fuzzy

multi-item system after related to the crisp multi-item system. The subsequent graphical

representation of integrated total cost for multi-item beside by the lead time and various

ordering costs are related both in the fuzzy and crisp multi-item system as exposed in Figure 5(a)-

(d). The both crisp and fuzzy integrated total cost for multi-items ITCMI(Q i,L i,mi) and

P[IT̃CMI(Q̃ i,L i,mi)] is decline primarily and then starts toward raise future while the lead

time rises. That one remains observed the integrated total cost for multi-item stays successfully

decreased in the fuzzy multi-item system after related toward the crisp multi-item system.

(a) Lead time L = 3

Figure Contd.
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(b) Lead time L = 4

(c) Lead time L = 6

Figure Contd.
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(d) Lead time L = 8

Figure 4. (a)-(d): Graphical representation of optimal order quantity for each item versus ordering cost
A1 = [21.87,22.5,23.75,25] and lead time

(e) Lead time L = 3

Figure Contd.
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(f) Lead time L = 4

(g) Lead time L = 6

Figure Contd.

Communications in Mathematics and Applications, Vol. 14, No. 5, pp. 1693–1725, 2023



1714 Optimizing a Fuzzy Multi-Item Inventory System and Ordering Cost. . . : R. Vithyadevi and K. Annadurai

(h) Lead time L = 8

Figure 4. (e)-(h): Graphical representation of optimal order quantity for each item versus ordering cost
A2 = [21.09,21.87,23.46,24.99] and lead time

(i) Lead time L = 3

Figure Contd.
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(j) Lead time L = 4

(k) Lead time L = 6

Figure Contd.
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(l) Lead time L = 8

Figure 4. (i)-(l): Graphical representation of optimal order quantity for each item versus ordering cost
A3 = [19.79,20.83,22.91,24.99] and lead time

(m) Lead time L = 3

Figure Contd.
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(n) Lead time L = 4

(o) Lead time L = 6

Figure Contd.
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(p) Lead time L = 8

Figure 4. (m)-(p): Graphical representation of optimal order quantity for each item versus ordering cost
A4 = [17.25,18.81,21.93,25.05] and lead time

(a) Ordering cost [21.87,22.5,23.75,25]

Figure Contd.
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(b) Ordering cost [21.09,21.87,23.46,24.99]

(c) Ordering cost [19.79,20.83,22.91,24.99]

Figure Contd.
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(d) Ordering cost [17.25,18.81,21.93,25.03]

Figure 5. (a)-(d): Graphical representation of minimum integrated total cost for multi-item versus
ordering cost and lead time

6. Comparative Study

In Table 1, the arithmetical outcomes of exceeding examples are specified. The optimum

standards of crisp multi-item inventory system for all four decision variables are Q∗
i =

(109.46,108.33,107.38,106.57) units, m∗
i = [3,4,5,5], A∗

4 = [17.25,18.81,21.93,25.05]/order,

L∗
i = 6 weeks and the minimized integrated total cost for multi-item is $11059.0. The

optimal values for fuzzy multi-item inventory system for all four decision variables are

Q̃∗
i = (109.03,107.96,107.06,106.29) units, m∗

i = [3,4,5,5], A∗
4 = [17.25,18.81,21.93,25.05]/order,

L∗
i = 6 weeks and the minimized integrated total cost for multi-item is $11026.0. The relative

variations for crisp and fuzzy multi-item model can be grasped in Table 1. The simultaneous

variation happening the assessment of L i , mi , and A i , whereas observances of other inputs are

stable, takes a major affect continuously in the integrated total cost and optimal order quantity.

In Table 2, the percentage variations of integrated total cost and optimal order quantity are

presented when lead time varies. Lead time optimal rate reserved at which the integrated total

cost for multi-item is smallest amongst entirely four quantities as for four quantities of lead time.

Table 3 affords comparison of optimal solution of crisp and fuzzy multi-item inventory model as
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well for saving percentage of optimal order quantity for each item (0.39%,0.34%,0.29%,0.25%)

and minimum Integrated total cost for multi-item 0.30% variations are given for the various

data of A i , and L i .

Fuzzy multi-item integrated inventory system supports the businesses manage

indeterminate inventory price parameters. Indeterminate cost parameters of inventory

management models are found to be optimistic and slightly significant. High levels of

improbability of the inventory will be difficult to control. Indeterminate cost parameters give

(0.39%,0.34%,0.29%,0.25%) and 0.30% variations in optimum order quantity for each item

besides minimum integrated total cost for multi-item separately. Indeterminate cost constraints

are optimistic as an analyst scientifically changed from nil and ensure slightly significant and

straight outcome on inventory. For that reason, administrations are capable to find optimum

solution for multi-item in beneficial manner.

Table 2. Summary of crisp and fuzzy optimal solutions

L i Ordering cost Savings (%) optimal order
quantity for each item

Savings (%) integrated total
cost for multi-item

3

A1 = [21.87,22.5,23.75,25]

(0.26, 0.31, 0.26, 0.26) 0.26

4 (0.55, 0.48, 0.44, 0.39) 0.29

6 (0.39, 0.33, 0.29, 0.26) 0.30

8 (0.39, 0.33, 0.29, 0.25) 0.29

3

A2 = [21.09,21.87,23.46,24.99]

(0.78, 0.71, 0.64, 0.59) 0.26

4 (0.55, 0.49, 0.44, 0.39) 0.28

6 (0.39, 0.34, 0.29, 0.25) 0.30

8 (0.39 ,0.33, 0.29, 0.25) 0.29

3

A3 = [19.79,20.83,22.91,24.99]

(0.78, 0.71, 0.64, 0.59) 0.26

4 (0.55, 0.49, 0.44, 0.39) 0.28

6 (0.39, 0.34, 0.29, 0.25) 0.30

8 (0.39, 0.33, 0.29, 0.25) 0.29

3

A4 = [17.25,18.81,21.93,25.05]

(0.78, 0.71, 0.64, 0.59) 0.26

4 (0.55, 0.49, 0.44, 0.39) 0.28

6 (0.39, 0.34, 0.29, 0.25) 0.30

8 (0.39, 0.33, 0.29, 0.25) 0.28
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Table 3. Summary of the comparisons

L i mi A i Comparisons Optimal order for each item
Integrated total
cost for multi-item

3 3

[17.25, 18.81,
21.93, 25.05]

This Crisp multi-item
inventory model

(109.46, 108.33, 107.38, 106.57) 11059.0
4 4

6 5 This fuzzy multi-item
inventory model

(109.03, 107.96, 107.06, 106.29) 11026.0
8 5

Savings (%) (0.39, 0.34, 0.29, 0.25) 0.3

7. Conclusion
Integrated system for multi-item and ordering cost depletion contingent on lead time with carbon

emission cost is established in fuzzy and crisp situations. In the fuzzy situation, completely

interrelated inventory inputs and decision variables are presumed through pentagonal fuzzy

quantities. On behalf of defuzzification, the graded mean technique is hired towards estimate

minimum integrated total cost for multi-item. The addition of Kuhn-Tucker technique is utilized

to obtain the optimal order quantity for each item. An analytical algorithm is trapped into

explore the special outcomes for fuzzy inputs on minimum integrated total cost for multi-item,

the optimal order quantity for each item based on suggested inventory system. Graphical

representations for the numerical examples display for the suggested fuzzy system, unique can

find a major quantity of reserves in a multi-item of integrated inventory system. Subsequently

comparing together the multi-item of the crisp and fuzzy system, it is perceived that the

multi-item of the fuzzy inventory system is better than the multi-item of the crisp inventory

system.

Further investigation on this system can arrange using inventory space limitations, setup

cost restrictions, ordering constraints, etc. Additionaly, different types of multi-level stream

sequence systems can be deliberated in a crisp situation, fuzzy situation, or together.
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