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1. Introduction
The free convective flow of nanofluids has numerous well-known applications in a variety of
sectors. It enhances the heat dissipation capability of electrical equipment. It significantly
improves the cooling rate of automotive and heavy-duty engines by increasing efficiency,
reducing weight, and simplifying thermal management systems. The use of nanofluids in
industrial cooling, nuclear power plant cooling, and solar collectors significantly increases energy
savings and pollution reductions. Transient natural convection flow of nanofluids controlled by
a magnetic field has captivated the attention of many researchers due to their applications in
contemporary materials processing, where magnetic fields are known to achieve exceptional
manoeuvrability and control of electrically conducting materials. Magnetohydrodynamic (MHD)
convective nanofluid flows also have significant uses in renewable energy devices, such as MHD
power generators and nuclear reactor transport operations, where the magnetic field is used
to control the rate of heat transfer. Given these uses, much research has been conducted on
free convective nanofluid flows to examine heat transfer enhancement; a few of these are listed
below (Loganathan et al. [14], Rajesh et al. [20,21], Aziz et al. [1]). Das et al. [6] acknowledge
other research on nanofluid convection fluxes, as do Wang and Mujumdar [29–31], Kakaç and
Pramuanjaroenkij [11], Kasaeian et al. [12], and Lin and Yang [13].

Numerous experiments have been conducted using two different types of nanoparticles
suspended in a base fluid dubbed “Hybrid Nanofluid”, an advanced nanofluid. The primary
advantage of hybrid nanofluid is that, by carefully selecting a good combination of nanoparticles,
one may regulate it to enhance the favourable characteristics of each particle type and
compensate for the disadvantages of employing them separately due to their synergistic effect.
Apart from their high effective thermal conductivity, hybrid nanofluids can provide enormous
benefits when nanoparticles are disseminated properly. Nanofluid flow is well-known for its
improved heat transfer rate compared to conventional fluid flow. To improve it further, the
hybrid nanofluid is pioneered. These hybrid nanofluids may represent a novel class of nanofluids
with several potential applications in all disciplines of heat transfer, including microfluidics,
manufacturing, transportation, defence, medicine, naval structures, and acoustics. Given these
considerations, Suresh et al. [25] investigated the two-step production of Al2O3–Cu/water hybrid
nanofluids and described their thermophysical properties. Later, Suresh et al. [24] studied the
heat transfer properties of an Al2O3–Cu/water hybrid nanofluid. Nine et al. [18] described
a highly productive method for production and thermal characterization of well-dispersed
Cu2O and Cu/Cu2O nanoparticles. Momin [16] conducted experimental research of mixed
convection using water–Al2O3 and a hybrid nanofluid in an inclined tube for laminar flow.
Nimmagadda and Venkatasubbaiah [17] investigated microchannel conjugate heat transfer
employing innovative hybrid nanofluids (Al2O3 + Ag/water). Sarkar et al. [22] discussed the
history of hybrid nanofluids and their applications. Several other studies on hybrid nanofluids
are discussed by Takabi et al. [26]; Devi and Devi [7]; Ranga Babu et al. [2], Olatundun and
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Makinde [19], Gorla et al. [9], Mehryan et al. [15], Chamkha et al. [5], Hayat and Nadeem [10],
and Tayebi and Chamkha [27].

Motivated by the aforementioned papers and applications in engineering and industry, the
purpose of this paper is to investigate the two-dimensional unsteady free convective laminar
boundary layer flow of a viscous incompressible electrically conducting Cu–Al2O3/water hybrid
nanofluid caused by a moving semi-infinite vertical cylinder. The purpose of this study is to
investigate the effects of Lorentz force, internal heat generation, Grashof number, and fluid
type on the Nusselt number, skin friction coefficient, temperature, and velocity profiles.

Nomenclature

t = Dimensionless time;

Pr = Prandtl number;

Gr = Thermal Grashof number;

g = Acceleration due to the gravity (m s−2);

κ = Thermal conductivity (J m−1 K−1);

θ∗∞ = Temperature of the fluid far away from the cylinder;

θ∗ = Temperature of the fluid (K);

θ∗w = Temperature of the cylinder;

Cp = Specific heat at constant pressure (J kg−1 K−1);

δ2 = Solid volume fraction of Al2O3 nanoparticles;

C f = Skin friction coefficient;

r0 = Radius of the cylinder (m);

r∗ = Radial coordinate normal to the cylinder (m);

Nux = Local Nusselt number;

µ = Dynamic viscosity (Pa s);

u1 = Dimensionless velocity component in the x-direction;

u2 = Dimensionless velocity component in the r-direction;

r = Dimensionless radial coordinate normal to the cylinder;

δ1 = Solid volume fraction of Cu nanoparticles;

n1 = Empirical shape factor for the nanoparticle;

Al2O3 = Aluminium oxide;

β = Volumetric thermal expansion coefficient (K−1);

u∗
1 = Velocity component in the x-direction (m s−1);

u∗
2 = Velocity component in the r-direction (m s−1);

t∗ = Time (s);

x∗ = Spatial coordinate along the cylinder (m);

ν = Kinematic viscosity (m2 s−1);
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∆t = Grid size in the time;

∆r = Grid size in the radial direction;

∆x = Grid size in the axial direction;

θ = Dimensionless temperature;

x = Dimensionless spatial coordinate along the cylinder;

ρ = Density (kg m−3);

Cu = Copper

Subscripts

w = Conditions on the wall;
s2 = Solid nanoparticles of Al2O3;
nf = Nanofluid;
hnf = Hybrid nanofluid;
i = Grid point along the x-direction;
j = Grid point along the r-direction;
∞ = Free stream condition;
s1 = Solid nanoparticles of Cu;
f = Base fluid

Superscripts

n = Grid point along the t-direction

2. Mathematical Model
The physical model and coordinate system used in this work are depicted in Figure 1. Both
the cylinder and the fluid are initially stationary and have a free stream temperature of
θ∗∞ at t∗ ≤ 0. Following that, at time t∗ > 0, the cylinder begins to move with a uniform
velocity u0. The temperature at the surface is increased to θ∗w. We assume that a constant
magnetic field of intensity B0 acts in the radial direction and that the resultant induced
magnetic field is insignificant, which is feasible when the magnetic Reynolds number is
low. It is assumed that the viscous dissipation, Ohmic heating, ion-slip, and Hall effects
are negligible. Copper (Cu) and aluminium oxide Al2O3 nanoparticles with water as the
base fluid are investigated in this analysis. Initially, in this problem, a Cu/water nanofluid
is generated by scattering Cu nanoparticles with a volume fraction of 0.1 vol. solid (which
remains constant throughout the problem) into the base fluid, i.e., water. Then, varied volume
fractions of Al2O3 nanoparticles are distributed in Cu/water nanofluid to create the desired
hybrid nanofluid Cu–Al2O3/water. The system is axisymmetric. Table 1 summarises the
nanoparticles’ thermophysical characteristics. According to Tiwari and Das’s [28] nanofluid
model and Boussinesq approximation [23], the governing equations that control the flow are as
follows:
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Continuity equation:
∂(r∗u∗

1)
∂x∗

+ ∂(r∗u∗
2)

∂r∗
= 0 (2.1)

Momentum equation

∂u∗
1

∂t∗
+u∗

1
∂u∗

1

∂x∗
+u∗

2
∂u∗

1

∂r∗
= νhnf

1
r∗

∂

∂r∗

(
r∗
∂u∗

1

∂r∗

)
+

(
ρβ

)
hnf

ρhnf
g(θ∗−θ∗∞)− σhnf B2

0u∗
1

ρhnf
(2.2)

Energy equation
∂θ∗

∂t∗
+u∗

1
∂θ∗

∂x∗
+u∗

2
∂θ∗

∂r∗
= κhnf

(ρCp)hnf

1
r∗

∂

∂r∗

(
r∗
∂θ∗

∂r∗

)
+ Q0

(ρCp)hnf
(θ∗−θ∗∞) (2.3)

Figure 1. The physical model and coordinate system

The initial and boundary conditions are

t∗ ≤ 0 : u∗
1 = 0, u∗

2 = 0, θ∗ = θ∗∞ for all x∗ ≥ 0 and r∗ ≥ 0

t∗ > 0 : u∗
1 = u0, u∗

2 = 0, θ∗ = θ∗w at r∗ = r0

u∗
1 = 0, θ∗ = θ∗∞ at x∗ = 0 and r∗ ≥ r0

u∗
1 → 0, θ∗ → θ∗∞ as r∗ →∞ (2.4)

For hybrid nanofluid, the expressions of density ρhnf , dynamic viscosity µhnf , heat capacity
(ρCP)hnf , thermal expansion coefficient (ρβ)hnf , thermal conductivity κhnf , electrical
conductivity σhnf are respectively given by

ρhnf = [(1−δ2){(1−δ1)ρ f +δ1ρs1}]+δ2ρs2 ,

µhnf =
µ f

(1−δ1)2.5 (1−δ2)2.5 ,

(ρCP )hnf = [(1−δ2){(1−δ1)(ρCP ) f +δ1(ρCP )s1}]+δ2(ρCP )s2 ,

(ρβ)hnf = [(1−δ2){(1−δ1)(ρβ) f +δ1(ρβ)s1}]+δ2(ρβ)s2 ,

κhnf = κbf
κs2 + (n1 −1)κbf − (n1 −1)δ2(κbf −κs2)

κs2 + (n1 −1)κbf +δ2(κbf −κs2)
.
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where

κbf = κ f
κs1 + (n1 −1)κ f − (n1 −1)δ1(κ f −κs1)

κs1 + (n1 −1)κ f +δ1(κ f −κs1)
,

σhnf =σbf

[
σs2(1+2δ2)+2σbf (1−δ2)
σs2(1−δ2)+σbf (2+δ2)

]
,

wherein

σbf =σ f

[
σs1(1+2δ1)+2σ f (1−δ1)
σs1(1−δ1)+σ f (2+δ1)

]
. (2.5)

Table 1. Thermophysical properties of water and nanoparticles

ρ (kg/m3) Cp (J/kg K) κ (W/m K) σ (s/m) β (1/K)

H2O( f ) 997.1 4179 0.613 5.5×10−6 21×10−5

Al2O3(s2) 3970 765 40 35×106 0.85×10−5

Cu(s1) 8933 385 401 59.6×106 1.67×10−5

Using the following transformations

u1 =
u∗

1

u0
, u2 =

u∗
2r0

ν f
, x = x∗ν f

u0r2
0

, r = r∗

r0
, t = t∗ν f

r2
0

, θ = θ∗−θ∗∞
θ∗w −θ∗∞

(2.6)

into equations (2.1), (2.2) and (2.3) we get
∂u1

∂x
+ ∂u2

∂r
+ u2

r
= 0 , (2.7)

∂u1

∂t
+u1

∂u1

∂x
+u2

∂u1

∂r
= E2

E1

1
r
∂

∂r

(
r
∂u1

∂r

)
+ E3

E1
Grθ− E4

E1
Mu1 , (2.8)

∂θ

∂t
+u1

∂θ

∂x
+u2

∂θ

∂r
= E6

E5

1
Pr

1
r
∂

∂r

(
r
∂θ

∂r

)
+ Q

E5
θ . (2.9)

The corresponding initial and boundary conditions are

t ≤ 0 : u1 = 0, u2 = 0, θ = 0 for all x and r

t > 0 : u1 = 1, u2 = 0, θ = 1 at r = 1

u1 = 0, θ = 0 at x = 0

u1 → 0, θ→ 0 as r →∞ (2.10)

where

Pr= ν f

α f
(Prandtl number),

Gr = gβ f r2
0(θ∗w −θ∗∞)
u0ν f

(Grashof number),

M = σ f B2
0r2

0

ρ f ν f
(Magnetic parameter),
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Q = Q0r2
0

(µCp) f
(Heat generation parameter),

and

E1 =
[
(1−δ2)

{
(1−δ1)+δ1

ρs1

ρ f

}]
+δ2

ρs2

ρ f
, E2 = 1

(1−δ1)2.5(1−δ2)2.5 ,

E3 =
[
(1−δ2)

{
(1−δ1)+δ1

(ρβ)s1

(ρβ) f

}]
+δ2

(ρβ)s2

(ρβ) f
,

E4 =
σbf

σ f

[
σs2(1+2δ2)+2σbf (1−δ2)
σs2(1−δ2)+σbf (2+δ2)

]
,

E5 =
[
(1−δ2)

{
(1−δ1)+δ1

(ρCp)s1

(ρCp) f

}]
+δ2

(ρCp)s2

(ρCp) f
,

E6 =
κbf

κ f

[κs2 + (n1 −1)κbf − (n1 −1)δ2(κbf −κs2)]
[κs2 + (n1 −1)κbf +δ2(κbf −κs2)]

. (2.11)

3. Numerical Method and its Validation
The equations (2.7)-(2.9) with conditions(2.10) are solved using an unconditionally stable finite-
difference numerical approach of the Crank-Nicolson type. The associated finite-difference
equations are as follows:[

(u1)n+1
i, j − (u1)n+1

i−1, j + (u1)n
i, j − (u1)n

i−1, j + (u1)n+1
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i, j−1 − (u1)n

i−1, j−1

4∆x

]

+
[

(u2)n+1
i, j − (u2)n+1

i, j−1 + (u2)n
i, j − (u2)n

i, j−1

2∆r

]
+

[
(u2)n+1

i, j

1+ ( j−1)∆r

]
= 0 , (3.1)[

(u1)n+1
i, j − (u1)n

i, j

∆t

]
+ (u1)n

i, j

[
(u1)n+1

i, j − (u1)n+1
i−1, j + (u1)n

i, j − (u1)n
i−1, j

2∆x

]

+ (u2)n
i, j

[
(u1)n+1
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i, j−1 + (u1)n
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]

= E3
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2
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i, j]+

E2
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[
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]
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[
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i, j+1 − (u1)n
i, j−1

4[1+ ( j−1)∆r]∆r

]
− E4

E1

M
2

[(u1)n+1
i, j + (u1)n

i, j] , (3.2)[
θn+1

i, j −θn
i, j
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i, j−1 −2θn+1
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i, j +θn
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Rajesh et al. [20] and Ganesan and Rani [8] provide details on solving the finite difference
equations for velocity and temperature profiles using the Thomas technique [3]. Additionally,
during this early transient regime, the heat transfer process is dominated by pure heat
conduction. Thus, the early temperature distribution is analogous to the transient conduction
problem in a semi-infinite material. The transient temperature distribution in a semi-infinite
material is given by the following equation (Schlichting and Gersten [23], and Carslaw and
Jaeger [4])

θ = r−1/2 erfc
(

r−1

2
p

t/Pr

)
(3.4)

with the initial and boundary conditions:

t ≤ 0 : θ = 0 for all r

t > 0 : θ = 1 at r = 1 (3.5)

To support the current investigation, Figure 2 compares transient temperature profiles
generated using eq. (3.4) to the current profiles in the absence of the heat generation parameter
(where δ1 = 0, δ2 = 0) at two distinct early periods. They are shown to be in great agreement,
demonstrating the validity of the present numerical technique for this class of unsteady flow
problems.

Figure 2. Comparison of temperature profiles

4. Engineering Quantities
Numerous physical quantities are relevant in industrial materials processing, for example,
the skin friction coefficient C f and the local Nusselt number Nux, which are defined as follows:

C f =
τw

ρ f u2
0

, Nux = qwx∗

κ f (θ∗w −θ∗∞)
. (4.1)
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Here, τw denotes skin friction and qw denotes the rate of heat transfer from the cylinder’s
surface, which are defined as follows:

τw =µhnf

(
∂u∗

1

∂r∗

)
r∗=r0

, qw =−κhnf

(
∂θ∗

∂r∗

)
r∗=r0

. (4.2)

Using non-dimensional variables (2.6), we get

ReC f =
1

(1−δ1)2.5(1−δ2)2.5

(
∂u1

∂r

)
r=1

, Re−1 Nux =−κhnf

κ f
x
(
∂θ

∂r

)
r=1

. (4.3)

Here Re = u0r0
ν f

is the Reynolds number. In eq. (4.3), the derivatives are evaluated using a
five-point approximation formula.

5. Results and Discussion
To visualise the physics of the problem, Figures 3-22 depict a graphical study of the flow and heat
transfer characteristics for various regulating factors. The current study addressed spherical
nanoparticles (n1 = 3). The basic fluid’s Prandtl number, Pr, is maintained constant at 6.2.
When δ2 = 0, the present model simplifies to the governing equations for the Cu/water nanofluid.
When both δ1 = 0 and δ2 = 0 are present, the model is reduced to the governing equations for a
standard viscous fluid, i.e., nanoscale properties are eliminated. Figure 3 illustrates the effect of
the magnetic parameter (M) on the velocity field. Lorentz force is produced when a transverse
magnetic field interacts with an electric field during the motion of an electrically conducting
fluid. It is discovered that as the magnetic field intensity increases for both nanofluid and
hybrid nanofluid, the retarding force increases and, as a result, the velocity decreases along
with the thickness of the momentum boundary layer. However, the magnetic parameter (M)
has a minor effect on the temperature field, as illustrated in Figure 4. According to Figure 5, as
the flow velocity is reduced due to the building magnetic field, the skin friction decreases for
both nanofluid and hybrid nanofluid. As the magnetic parameter increases, the Nusselt number,
which represents the non-dimensional heat transfer rate, decreases, as illustrated in Figure 6.

Figure 3. Effect of M on velocity profiles
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Figure 4. Effect of M on temperature profiles

Figure 5. Effect of M on skin friction coefficient

Figure 6. Effect of M on Nusselt number
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Figures 7 and 8 illustrate the effect of the Grashof number on the velocity and temperature
distributions, respectively. As the Grashof number increases, the thermal buoyancy force
increases, hence increasing the velocity, as illustrated in Figure 7. As illustrated in Figure 8, an
increase in Gr results in a decrease in temperature because an increase in buoyant force results
in a decrease in thermal diffusion. As the flow velocity increases due to the increasing Grashof
number, the skin friction coefficient increases as well, as illustrated in Figure 9. Additionally,
as the Grashof number increases, the non-dimensional heat transfer rate increases for both the
hybrid nanofluid and nanofluid.

Figure 7. Effect of Gr on velocity profiles

Figure 8. Effect of Gr on temperature profiles
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Figure 9. Effect of Gr on skin friction coefficient

Figure 10. Effect of Gr on Nusselt number

Figures 11 and 12 illustrate how the regulation of heat generation affects the velocity and
temperature distributions. When heat is generated, the buoyancy force increases, resulting
in increased boundary layer velocities. As a result, the velocity of fluid flow increases in
proportion to the increasing heat generation parameter, as illustrated in Figure 11 for both
hybrid nanofluid and nanofluid. When heat is generated in the fluid, one would predict an
increase in the temperature of the thermal boundary layer. This is demonstrated in Figure 12,
where temperatures increase as the heat generation parameter increases for both hybrid
nanofluid and nanofluid. Because the velocity of the flow increases as the heat generation
parameter is increased, the skin friction coefficient increases for both hybrid nanofluid and
nanofluid, as illustrated in Figure 13. Additionally, as illustrated in Figure 14, the rate of heat
transmission decreases dramatically for both the hybrid nanofluid and nanofluid when the heat
generating parameter is increased.
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Figure 11. Effect of Q on velocity profiles

Figure 12. Effect of Q on temperature profiles

Figure 13. Effect of Q on skin friction coefficient
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Figure 14. Effect of Q on Nusselt number

Figures 15 and 16 show the velocity and temperature curves with increased time for both
hybrid nanofluid and nanofluid. As time progresses, velocity increases for both hybrid nanofluid
and nanofluid, along with the thickness of the momentum boundary layer, as illustrated in
Figure 15. As with the velocity field, it is apparent from Figure 16 that the temperature and its
boundary layer thickness increase with rising time. Additionally, it is apparent from Figure 17
that as time progresses, the skin friction coefficient increases. This is due to the fact that velocity
increases with time. The rate of non-dimensional heat transmission is observed to decrease
with increasing time, as illustrated in Figure 18.

Figure 15. Development of velocity profiles with a time
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Figure 16. Development of temperature profiles with a time

Figure 17. Effect of time t on the skin friction coefficient

Figure 18. Effect of time t on Nusselt number
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Figures 19 and 20 compare the velocity and temperature distributions of pure water,
nanofluid (Cu/water), and hybrid nanofluid (Cu–Al2O3/water). As illustrated in Figure 19,
the hybrid nanofluid (Cu–Al2O3/water) flow has a lower velocity than nanofluid (Cu/water)
and pure water flows. As illustrated in Figure 20, the hybrid nanofluid (Cu–Al2O3/water)
obtains a greater temperature than purewater and nanofluid (Cu/water). Due to the slower
flow velocity of the hybrid nanofluid, the skin friction coefficient is discovered to be less than
that of nanofluid and pure water, which is transparent in Figure 21. Additionally, Figure 22
demonstrates that the non-dimensional heat transfer rate through Cu–Al2O3/water is greater
than the rate through (Cu/water). A similar occurrence is felt when the magnetic parameter,
the Grashof number, the heat generation parameter, and also the time parameter are increased,
as illustrated in Figures 6, 10, 14, and 18. Thus, the necessary heat transfer rate can be
accomplished by selecting diverse and suitable nanoparticle proportions in hybrid nanofluid.

Figure 19. Velocity profiles of water, nanofluid and hybrid nanofluid

Figure 20. Temperature profiles of water, nanofluid and hybrid nanofluid
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Figure 21. Skin friction coefficients of water, nanofluid and hybrid nanofluid

Figure 22. Nusselt numbers of water, nanofluid and hybrid nanofluid

6. Conclusions
The article analyses numerically the effect of MHD and internal heat generation on the
transient free convective flow of a hybrid nanofluid (Cu–Al2O3/water) past a moving vertical
cylinder. The dimensionless flow and heat transfer regulating equations are solved using a finite
difference technique of the Crank-Nicolson type. The following closing remarks are derived from
the graphical representation:

(1) As the magnetic parameter is increased, the hybrid nanofluid (Cu–Al2O3/water) flow
velocity decreases, as does the thickness of the momentum barrier layer.

(2) As the magnetic parameter is increased, the skin friction coefficient and rate of heat
transfer of the hybrid nanofluid (Cu–Al2O3/water) decrease.
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(3) Increasing the Grashof number decreases the temperature of the hybrid nanofluid
(Cu–Al2O3/water) and increases its velocity.

(4) The skin friction coefficient and the rate of heat transfer via the hybrid nanofluid
(Cu–Al2O3/water) increase as the Grashof number increases.

(5) As the heat generation parameter increases, the velocity and temperature of the hybrid
nanofluid (Cu–Al2O3/water) flow magnify.

(6) As the heat generating parameter increases, the skin friction coefficient increases
while the rate of heat transfer decreases dramatically for the hybrid nanofluid
(Cu–Al2O3/water).

(7) By using Cu–Al2O3/water as the working fluid, it is possible to obtain higher temperatures
and lower velocities than those associated with Cu/water.

(8) By using Cu–Al2O3/water as the working fluid, it is possible to achieve a higher heat
transfer rate and a lower skin friction coefficient than those associated with Cu/water.
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