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1. Introduction
Let M be a connected manifold of n-dimension. We endow M with a Riemannian metric
g = (g jk), the pair (M, g) is called Riemannian manifold. In this paper, we present some
important theorems in Spectral theory of Schrödinger operator P = −h2

2 ∆g +V . P is a linear
unbounded operator on the set of smooth compact supports real valued functions C∞

c (M) ⊂
L2(M), where h denotes the Planck constant, let h =p

2 and V is a potential function on M.
In Riemannian geometry, we use Laplace Beltrami operator ∆g which is the generalization of
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Laplace operator ∆Rn :

∆g f = 1p
g

n∑
j,k=1

∂

∂x j

(p
gg

jk ∂ f
∂xk

)
, (1.1)

where (x1, x2, . . . , xn) are local coordinates, g = det(g jk), g jk is the inverse matrix to (g jk) and
f :M→R a smooth function.
The main object of our paper is the Schrödinger operator

P =−∆g +V . (1.2)

We describe the analytic and geometric aspects of spectrum of several classes of Schrödinger
operator. Let us give here some classes of (1.2) by giving different potentials:
Free motion potential V = 0 the operator is just the Laplace-Beltram operator which is used in
Riemannian geometry.
The hydrogen atom potential V = −k

∥x∥ (k > 0).

The harmonic oscillator V = ∥x∥2

2 .
We define the discrete spectrum of self adjoint operator A as σdisc(A) the set of eigenvalues
(λk) of A having finite multiplicity and being isolated points of the spectrum. The essential
spectrum of A is the set σess(A) = σ(A) \σdisc(A). The spectrum behaviour on Riemannian
manifold (M, g) under topological perturbation has been the subject of a vast literature over
the last two decades. Kac [16], Rauch and Taylor [22] were the first who studied the spectrum
of ∆Rn ; they showed that the spectrum of ∆Rn in a compact set M of Rn is invariant under
topological excision of a compact subset with a Newtonian capacity zero. Chavel and Feldman
[5,6] dealt with Riemannian manifold case. In [13], Gesztesy and Zhao investigated the case of a
Schrödinger operator in Rn with Dirichlet boundary condition. Lablée (1) focused on Eigenvalues
for a Schrödinger operator on a closed Riemannian manifold with holes.

This paper is organized as following: In Section 2 we start the paper from the spectral theory
background for Multidimensional Schrödinger operator P = −∆Rn +V . In Section 3 we give
the concept of Sobolev space on Riemannian manifold and describe in details the spectrum
properties of Schrödinger operator on Riemannian manifold. The way to discover the geometry
of Riemannian manifold from spectral data is detailed in Section 4. We refer to [4], [18] for more
details of self-adjointness of Schrödinger operator. The references [5, 6, 10, 13, 16, 22] covers
many results of spectral theory on manifolds. In this paper, we will assume that (M, g) is a
manifold of bounded geometry. We mention that a closed manifold means compact manifold
without boundary.

2. Spectral Problem Background for Schrödinger Operator
Definition 2.1. In order to state the results we have to define some spaces:

C(U)= {u : U →R | u is continuous},

1O. Lablée, Eigenvalues for a Schrödinger operator on a closed Riemannian manifold with holes, arXiv preprint,
arXiv:1301.6909 (2013), URL: https://arxiv.org/pdf/1301.6909.pdf.
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Ck(U)= {u : U →R | u is k-times continuously differentiable},

C∞(U)= {u : U →R | u is indefinitely differentiable},

Ck
c (U)= { f ∈ Ck(U) with compact support}.

We said that V is compactly contained in U if there is a compact set K such that V ⊂ K ⊂U ,
we denoted it by V ⋐U .

Lp
loc(U)= {u : U →R | u ∈ Lp(V ) for V ⋐U}.

We define −∆Rn as a positive self adjoint operator on the Sobolev space

H2(Rn)= { f ∈ L2(Rn) : ∂α f ∈ L2(Rn) for all |α| ≤ 2}.

For multidimensional Schrödinger operator, consider P =−∆Rn +V as a perturbation of −∆Rn

by the potential V with domain D(P)= H2(Rn)∩ { f ∈ L2(Rn) : f V ∈ L2(Rn)} such that V is locally
bounded on Rn, real valued function. We will discuss two classes:

(i) V (x)→∞ as x →∞,

(ii) V (x)→ 0 as x →∞.
For the case lim

|x|→∞
V (x) =∞ the most important example is the harmonic oscillator for which

V (x)= |x|2k, k ∈N∗. We also give some important spectral results for Schrödinger operator in
the case of lim

|x|→0
V (x)=∞, we focus in particular on the Coulomb potential.

Lemma 2.1. If V ≥ 0 is a non-negative potential and W is multiplication by a bounded function
of compact support, then W is P-compact, i.e., W(I +P)−1 is compact operator on L2(Rn).

Proof. We have −∆Rn is positive self adjoint operator on H2(Rn) thus I +P is positive operator,
then (I +P)−1 is bounded on L2(Rn).

Furthermore, W(I+P)
−1
2 =W(I+P

1
2
0 )−1(I+P

1
2
0 )(I+P)

−1
2 , P0 =−∆Rn . We know that the product of

two factors one is compact and second is bounded. So, W(I+P)
−1
2 is compact. Now, if we multiply

by the bounded operator (I +P)
−1
2 on the right, we conclude that: W(I +P)

−1
2 is compact.

Theorem 2.1. Let V :Rn →R such that V (x)→∞ as |x|→∞, then σess(−∆Rn +V ) is empty.

Proof. For any E ∈ R, write V − E = f − g where f ≥ 0 and g has compact support. By
Lemma 2.1, g is (−∆Rn + f )-compact, so by virtue of perturbation theorem of Weyl, we
have σess(−∆Rn + f ) = σess(P − E). Since f ≥ 0, we know that σess(P − E) ⊂ [0,∞[ and then
σess(P)⊂ [E,∞[. Since this is true for all E, we get that σess(P) is empty.

Theorem 2.2. Let V :Rn →R be continuous with V (x)→∞ as |x|→∞ then the spectrum σ(P) of
P is an increasing sequence (λk)⊂R of eigenvalues of finite multiplicity and λk →∞ for k →∞,
i.e. σ(P)=σdisc(P) and σess(P)=φ. The associated eigenfunctions form an orthonormal basis of
the Hilbert space L2(Rn).
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Proof. (P + I) : D(P)→ L2(Rn) is bijective with compact inverse (P + I)−1. We conclude that σ(P)
is either empty or σdisc(P) contains countably many eigenvalues λk . The results in this theorem
is due to [12]. If σ(P) is infinite, then λk is an increasing sequence of eigenvalues of finite
multiplicity and |λk| →∞ as k →∞. For all λk ∈ σ(P) the range R(λk −P) of λk −P is closed,
dim N(λk −P)= codimR(λk −P), the eigenfunctions of (P + I)−1 form an orthonormal basis of
L2(Rn), where N(λk −P) denotes the kernel of (λk −P). Clearly, σess(P)=φ.

For the case V (x) → 0 as |x| → ∞, we show that under certain conditions, the essential
spectrum of P =−∆Rn +V : D(P)→ L2(Rn) is in fact exactly the set of non-negative real numbers.
For example Schrödinger operators with Coulomb potentials V (x)= γ

|x| , γ> 0.

Theorem 2.3. Let V :Rn →R is locally bounded and V (x)→ 0 as |x|→∞. Then σess(P)= [0,∞[.

Proof. Theorem 2.2 allows to show that P can have only isolated eigenvalues of finite
multiplicity on ]−∞,0[. It remains for us to show that [0,∞[ ⊂ σ(P). Let λ ≥ 0 be fixed.
We shall construct a Weyl sequence (ϕk)⊂ H2(Rn) of P and λ. We have −∆Rn eiζx =λeiζx, where
ζ ∈ Rn, |ζ| = p

λ. Moreover, letψ ∈ C∞
c (Rn) such that ψ≥ 0, ψ(x) = 1 for |x| ≤ 1

2 and ψ(x) = 0 for
|x| ≥ 2.
Let ψk(x)=ψ

(
x−kp

k

)
, k ∈N∗, then:

suppψk ⊂ {x ∈N, |x−k| ≤
p

k} and lim
k→∞

sup
x∈suppψk

V (x)= 0.

Suppose ϕk =ψkeiζx, k ∈N∗

∥ϕk∥2 =
∫
Rn

|ψk(x)|2dx = k
n
2 ∥ψ∥2 . (2.1)

Then Pϕk = (−∆Rnψk)eiζx − (∇ψk)(−∇eiζx)+|ζ|2ψk(x)eiζx +V (x)ψk(x)eiζx, and

(P −λ)ϕk = eiζx(Pψk − iζ∇ψk). (2.2)

We have |∇ψk| ≤ ∥ψ∥2
p

k
, |∆Rnψk| ≤ ∥ψ∥2

k , k ∈N∗. We conclude from lim
k→∞

sup
x∈Rn

|(P −λ)ϕk| = 0, we get

lim
k→∞

∥(P−λ)ϕk∥2

k
n
2

= 0 and then we deduce lim
k→∞

∥(P−λ)ϕk∥2

∥ϕk∥ = 0 implies that σess(P)= [0,∞[.

Theorem 2.4. Let V : Rn → R be piece-wise continuous with V (x) → 0 as x →∞. Assume that
the multiplication operator by V is relatively bounded with respect to −∆Rn with relative bound
< 1. Then P = −∆Rn +V : D(P) = H2(Rn) → L2(Rn) is self-adjoint and σess(−∆Rn) = σess(P) =
[0,∞[.

Example 2.1. We focus in particular on the Coulomb potential V (x) = −1
|x| , x ∈ R3\{0}. P =

−∆R3 − 1
|x| in L2(R3) is the Schrödinger operator of the hydrogen atom. Hardy’s inequality

implies that the Coulomb potential in R3 is relatively bounded with respect to −∆R3 with
relative bound 0 and the perturbation theorem of Kato and Rellich shows that P is self-adjoint
on H2(R3), we have also σess(P)=σess(−∆R3)= [0,∞[.
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For all ψ ∈ H2(R3) we first prove that Vψ ∈ L2(R3). Let φ= F−1ψ ∈ L2(R3), so ψ= F φ where
F and F−1 are the Fourier transform and inverse Fourier transform, respectively on L2(R3).
As the functions of H2(R3) are continuous and tend to zero at infinity, we deduce that ψ is
essentially-bounded on R3:

∥ψ∥∞ = esssup
x∈R3

|ψ(x)|

= sup
x∈R3

∣∣∣∣(2π)
−3
2

∫
R3

e−ixξφ(ζ)dζ
∣∣∣∣

≤ (2π)
−3
2

∫
|ξ|≤1

|φ(ζ)|dζ+ (2π)
−3
2

∫
|ξ|>1

|ξ|−2(|ξ|2|φ(ζ)|).
Hence, by applying the Cauchy-Schwarz inequality we obtain:

∥ψ∥L∞(R3) ≤ c1∥ψ∥L2(R3) + c2∥|ξ|2|φ|∥L2(R3),

where c1 = (2π)
−3
2

(4π
3

) 1
2 , c2 = (2π)

−3
2

(∫
|ξ|>1

dζ
|ξ|4

) 1
2 , ψ ∈ H2(R3) then ∆R3ψ ∈ L2(R3), and |ζ|2φ =

F−1(−∆R3ψ) ∈ L2(R3).
We know that Fourier transform is unitary operator on L2(R3), we obtain

∥ψ∥L∞(R3) ≤ c1∥ψ∥L2(R3) + c1∥∆R3ψ∥L2(R3) (2.3)

for all ε> 0

∥Vψ∥L2(R3) =
∫

r=|x|≤ε
r−2|ψ(x)|2dx+

∫
r>ε

r−2|ψ(x)|2dx

or

∥Vψ∥L2(R3) ≤ ∥ψ∥L∞(R3)

√∫
r≤ε

r−2dx+ε−1∥ψ∥L2(R3),

we have by using (2.3)

∥Vψ∥L2(R3) ≤ a∥∆R3ψ∥L2(R3) +b∥ψ∥L2(R3) , (2.4)

where a = c2

√∫
r≤ε r−2dx and b = ε−1 + c1

√∫
r≤ε r−2dx. Thus, V is ∆-bounded with relative

bound a, make a small enough by choosing ε→ 0. For the Coulomb potential in R3 one obtains
an infinite sequence of negative eigenvalues. As V (x)=−1

x is spherically symmetric, V (x)=V (r),
with |x| = r, the main idea is to separate P = −∆R3 − 1

|x| in spherical coordinates to obtain
the negative eigenvalues and the associated eigenfunctions. For any x ∈R3\{0}, x = rω where
ω= x

|x| ∈ S2 the unit sphere of R3.
The operator −∆R3 on S2, has compact resolvent and purely discrete spectrum 0 = v0 <

v1 < . . . < vk → ∞ as k → ∞, the associated eigenspaces to vk have a basis of C∞-functions
ψk,l : S2 → R, l = 1, . . . ,mk called the spherical harmonics, where mk = k(k+1), k ∈N∗, is the
dimension of the eigenspace.

Using separation of variables u(x)= f (r)ψk,l for the eigenfunctions u and eigenvalues λ of
P =−∆R3 − 1

|x| in the Hilbert space L2(R3) = L2( ]0,∞[, r2dr)⊕L2(S2,dσ2), leads to the Bessel
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differential equation for f :

−˝f (r)− 2
r

f́ (r)− 1
|x| f (r)+ vk

r2 f (r)=λ f (r), r ∈ ]0,∞[ .

We remark that one can show by power-series methods that for any k ∈ N∗, there exists a
solution f = fk ∈ L2( ]0,∞[, r2dr) and an infinite sequence λk of negative eigenvalues of P ,
λk = −1

4k2 , k ∈ N∗ (see Landau and Lifshitz [19]). So, we see that the hydrogen atom has an
infinite number of bound states below the essential spectrum σess(P)⊂ [0,∞[, which accumulate
at zero.

3. Spectrum of Schrödinger Operator on Riemannian Manifold
Let (M, g) be a smooth, connected compact Riemannian manifold with boundary ∂M. For a
function f ∈ C2(M), we define the Laplace Beltrami operator by ∆g f :−divgrad f .

In local coordinates {xi}, the Laplace Beltrami reads

∆g f = 1p
g

n∑
j,k=1

∂

∂x j

(p
gg

jk ∂ f
∂xk

)
.

We present a class of eigenvalue problems as follows:

Closed problem ∆g f =λ f in M ∂M=φ
Dirchlet problem ∆g f =λ f in M f |∂M = 0

Neumann problem ∆g f =λ f in M
∂ f
∂N

∣∣
∂M = 0

where N is outward oriented unit vector field normal to boundary. Let us motivate the paper by
introduce the definition of Sobolev space on Riemannian manifold (M, g).

Definition 3.1. The space of all smooth functions u ∈ C∞(M) such that |∇ku| ∈ Lp(M) is denoted
by Cp

k (M)

Cp
k (M)=

{
u ∈ C∞(M)

∣∣∣ ∫
M
|∇ku|pdVg <∞

}
dVg =

√
det(g i j)dx, dx is the Lebesgue’s volume element of Rn.

The completion of Cp
k (M) with respect to the norm

∥u∥ =
(

k∑
i=0

∫
M
|∇ku|pdVg

) 1
p

, 1≤ p <∞

is called Sobolev space Hk,p(M) on Riemannian manifold. Note that we use covariant derivative
as the case when use weak derivative for Sobolev space over Rn. In particular, in the case of
P = 2 we denote to Sobolev space by Hk(M).

Theorem 3.1. Hk,p(M) is reflexive Banach space (1< p <∞).

Proof. The closed subspace of a reflexive Banach space is also reflexive.Hk,p(M) is closed
subspace of Lp(M)×Lp(M) and since Lp(M) is a reflexive Banach space for (1< p <∞), thus
the finite Cartesian product space is reflexive space. Hence we get Hk,p(M) is reflexive space.
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Corollary 3.1. Hk(M) is Hilbert space with the norm

∥ f ∥Hk =
√√√√ k∑

i=0

(∫
M
|∇k f |2dVg

)
.

Proof. We can easily check the following conditions:
(i) 〈u+v,w〉 = 〈u,w〉+〈v,w〉,

(ii) 〈αu,w〉 =α〈u,w〉,
(iii) 〈u,w〉 = 〈w,u〉,
(iv) 〈u,u〉 = 0 if u = 0,

for u ∈ Hk, if 〈u,u〉 = 0 then,

〈u,u〉 =
k∑

m=0

∫
M

(gi1 j . . . gim jm(∇mu)i1...im(∇mu) j1... jm)dVg = 0

for m = 0, we get
∫

M(U)2dVg = 0. Hence, u = 0 a.e. on M. We get that Hk(M) is inner product
space.

In general, let us prove that Hk,p(M) is complete space, the scalar product 〈·〉 associated to
∥ ·∥ is defined by

〈u,v〉 =
k∑

m=0

∫
M

(gi1 j . . . gim jm(∇mu)i1...im(∇mu) j1... jm)dVg .

Any Cauchy sequence in (Cp
k (M),∥ · ∥Hk,p ) is a Cauchy sequence in the Lebesgue space

(Lp(M),∥ ·∥p). We can look at Hk,p as a subspace of Lp(M) made of functions u ∈ Lp(M) which
are limits in (Lp(M),∥ ·∥p) of a cauchy sequence (um) in (Cp

k (M),∥ ·∥Hk,p ) and define ∥u∥Hk,p as
before, where (∇ ju), 0≤ j ≤ k, is now the limit in (Lp(M),∥ ·∥p) of the Cauchy sequence (∇ jum)
so Hk,p(M) is complete space. So, Hk is Hilbert space.

The main question about spectrum is self-adjointness of the Schrödinger operator P =
−∆g +V , recall that an unbounded linear operator P essentially self-adjoint if its closure P̄ is
self-adjoint. In the case of M=Rn with standard metric, Cartier [4] showed that if the function
V is locally bounded and if there exists C such that V ≥ C on M, then the Schrödinger operator
H is essentially self-adjoint. Later, Kato [18] proved that it is possible to replace the hypothesis
V ∈ L∞

loc(R
n) by V ∈ L2

loc(R
n). Next, in the works of Oleinik [21] we can find a general theorem

with complex hypotheses on V as following:

Theorem 3.2. Let (M, g) be a complete connected manifold of dimension n ≥ 1 and V ∈ L∞
loc(M)

be a potential such that for all x ∈M, V (x) ≥ C, where C is a real constant. Then the operator
P =−∆g +V (x) on (M, g) is essentially self-adjoint.

Determination of spectrum under topological perturbation has been studied by Kac [16]
later, for the case of ∆Rn , Rauch and Taylor [22] proved that spectrum is invariant in a compact
subset of Rn. Then, Chavel and Feldman [5,6] used the technique of complex probabilistic for
Riemannian manifold. Courtois [10] dealt with ∆g on (M, g).
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The following theorem deals with discrete spectrum in case of compact setting for (M, g) be
a compact connected manifold of dimension n ≥ 1.

Theorem 3.3. Let (M, g) be a compact connected manifold of dimension n ≥ 1, V ∈ L∞
loc(M)

the spectrum of P = −∆g +V (x) is discrete. Not only that it consists of an infinite increasing
sequence of eigenvalues with finite multiplicity,

inf
x∈M

V (x)≤λ1 ≤λ2 ≤ . . .≤λk ≤ . . .+∞
associated with eigen functions (ek) which forms a Hilbert basis of the space L2(M).

For non-compact case we have the theorem:

Theorem 3.4. Let (M, g) be a complete connected Riemannian manifold of dimension n ≥ 1 and
let V ∈ L∞

loc(M) be a potential such that lim
|x|→∞

V (x) =∞. Then, the spectrum of P = −∆g +V (x)

is discrete. Specifically, its a set of an infinite increasing sequence of eigenvalues with finite
multiplicity

inf
x∈M

V (x)≤λ1 ≤λ2 ≤ . . .≤λk ≤ . . .+∞ .

Moreover, the associated eigenfunctions (ek) which forms a Hilbert basis of the space L2(M).
The most important example in the case of lim

|x|→∞
V (x)=∞ is Harmonic oscillator.

Example 3.1. The one-dimensional harmonic oscillator is the Schrödinger operator −d2

dx2 + x2

on the manifold R. Consider the set Y := { f ∈ H1(R), xf ∈ L2(R)} this set is subset of H1(R) and
equipped with the scalar product

〈 f , g〉Y = 〈 f , g〉L2 +〈 f́ , ǵ〉L2 +〈xf , xg〉L2 .

Y is dense in L2(R). Moreover, by a classical argument of functional analysis, the canonical
inclusion of Y in L2(R)is compact. Consider the unbounded operator A : D(A) → L2(R) with
domain D(A)=Y .

A is defined by A f := f́ + xf .
Using the integration by parts formula (and the fact that if f ∈Y then lim

|x|→∞
x| f (x)|2 = 0 we

get for all f ∈Y

∥A f ∥2
L2 =−∥ f ∥2

L2 +∥ f́ ∥2
L2 +∥xf ∥2

L2 .

For all f ∈Y , thus we obtain

2∥ f ∥2
L2 +∥A f ∥2

L2 = ∥ f ∥2
Y .

Consequently, the norms ∥ · ∥A and ∥ · ∥Y are equivalent on Y . Therefore, the set Y = D(A) is
complete for the norm ∥ ·∥A . It follows that the operator A : D(A)→ L2(R) is closed.

A∗ : D(A∗)→ L2(R),

A∗ f =− f́ + xf ,
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we called A∗ the creation operator. Now we consider the operator

P = AA∗+ I

with domain D(P)= { f ∈Y : A f ∈Y }. In fact, we have

D(P)= { f ∈ H2(R), x2 f ∈ L2(R)}

and for all f ∈ D(P)

AA∗ f =−(A f )′+ x(A f )=− f ′′+ x2 f − f .

Hence

P f =− f ′′+ x2 f .

In particular, we have for all f ∈ D(P) such that ∥ f ∥2
L2 = 1

〈P f , f 〉L2 = 〈AA∗ f , f 〉L2 +∥ f ∥2
L2 = ∥A f ∥2

L2 +1≥ 1 .

Let Θ(P) be the numerical range, we have Θ(P)⊂ [1,∞[. We see that the set C−Θ(P) has just
one connected component and the map

d :

{
C→N∪∞
λ→ dim(ker(P∗−λI))

is constant on C−Θ(P) i.e. for all λ ∈C−Θ(P)

d(λ)= d(i)= d(−i)

(because i,−i ∈C−Θ(P)). But since P is self-adjoint

(ker(P∗−λI))= 0

thus d(i)= d(−i)= 0, and so d(λ)= 0 for all λ ∈C−Θ(P). In other words, C−Θ(P)⊂ ρ(P) so we
get Spec(P)⊂ ρ(P)⊂Θ(P) because the spectrum of P is discrete. We conclude that

spec(P)⊂ [1,∞[ .

By a simple computation

[A, A∗] f = AA∗ f − A∗A f = 2 f .

For all f ∈ D(P). Next, if a vector ϕ = D(P) satisfies Pϕ = λϕ (where λ is a scalar), then
Aϕ ∈ D(P), A∗ϕ ∈ D(P), and we have

P(Aϕ)= A∗AAϕ+ Aϕ

= AA∗Aϕ−2Aϕ+ A

= A(Pϕ−ϕ)− Aϕ

= A(λϕ−ϕ)− Aϕ

= (λ−2)Aϕ .

On the other hand,

∥Aϕ∥2
L2 = 〈Aϕ, Aϕ〉L2
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= 〈A∗Aϕ,ϕ〉L2

= 〈Pϕ−ϕ,ϕ〉L2

=λ∥ϕ∥2
L2 −∥ϕ∥2

L2

= (λ−1)∥ϕ∥2
L2 .

Similarly,

P(A∗ϕ)= (λ+2)A∗ϕ, ∥A∗ϕ∥2
L2 = (λ+1)∥ϕ∥2

L2 .

Now, we want to show that spec(P) ⊂ {(2n+1), n ∈ N}. For the moment we only know that
spec(P)⊂ [1,∞[. If λ is an eigenvalue of P in the interval ]1,3[ there exist ϕ ̸= 0 in D(P) such
that Pϕ=λϕ thus we have P(Aϕ)= (λ−2)Aϕ and

∥Aϕ∥2
L2 = (λ−1)∥ϕ∥2

L2 > 0

hence Aϕ ̸= 0. Consequently λ−2 ∈ spec(P) therefore λ−2 ∈ ]−1,1[ which is a contradiction. So

spec(P)⊂ {1}∪ [3,∞[ .

Using the same argument by induction we get easily that

spec(P)⊂ {(2n+1), n ∈N}

as claimed. To finish, using the Hermite family {en}n∈N

en(x)= (2nn)= (2nn
p
π)

−1
2 e

−x2
2 Hn(x),

where Pn(x)= (−1)nex2 dn

dxn (e−x2
) which form a Hilbert basis of the space L2(R), we have

A∗en =
p

2n+2en+1

and for any n

Aen =
p

2nen−1

so for any n

Pen = (2n+1)en .

Consequently, the spectrum of the operator P is

spec(P)= {(2n+1), n ∈N}

and the associated eigenvectors are given the Hermite’s family.

4. Application in Spectral Geometry
In the past decade, there has been a flurry of work at intersection of spectral theory and
Riemannian geometry. In this section, we will briefly present some of recent results in abstract
spectral theory depending on Laplace-Beltrami operator on compact Riemannian manifold.
Also, we will emphasize the interplay between spectrum of operator and geometry of manifolds
by discussing two main problems (direct and inverse problems) with an eye towards recent
developments.
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Definition 4.1. The relationship between geometric structure of manifolds and spectrum of
differential operators created a new concept which is spectral geometry. In the case of Laplace-
Beltrami operator on closed Riemannian manifold this field sets two problems:

(i) Direct problem.

(ii) Inverse problem.

Direct problem. Given a compact Riemannian manifold (M, g) can we find the spectrum
{λk(M)}{k≥0} of M, this question comes under Direct problem. In fact, we can discern that the
explicit computation of spectrum is not easy task, there are few examples where the spectrum
of manifold is known, like (sphere, flat tori, balls), for this reason some of estimates of spectrum
is introduced (we refer to Cheng [7]).

Inverse problem. Inverse problem seeks to identify features of geometry from information
about Laplace’s spectrum, some results are appeared when Milnor [20] answer of the question
that Kac posted (see [15]), the analogy of this question is “Is the spectrum of associated on
smooth function Laplacian determine the shape of manifold?”. Sunada rise to give examples
which clarifies iso-spectral manifolds (see [25]). In general, the data of spectrum does not
determine the shape of manifold however, some of positive results as the geometric effect that
we can take out from spectral invariant is shown in [14].

5. Conclusion
We covered most important analytic theorems of Schrödinger operators on manifold.
The geometric aspects of spectrum also play a very significant role in mathematical physics and
still a very active field of research till now.
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