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Abstract. In this study, we compare the complex Morlet wavelet’s time-frequency resolution to that of
a proposed complex continuous wavelet. The proposed complex continuous wavelet has a substantially
lower time resolution than the complex Morlet wavelet. As a result, the proposed complex continuous
wavelet is appropriate for applications requiring high time resolution. The efficiency of the proposed
complex wavelet over the complex Morlet wavelet in evaluating the QRS complex and R-peak in ECG
signals is demonstrated.

Keywords. Continuous wavelet transform, Time-frequency resolution, The electrocardiogram (ECG),
R-peak detection

Mathematics Subject Classification (2020). 42C40, 65T60

Copyright © 2022 Gaddam Narsimulu and B. Krishna Reddy. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

1. Introduction
In recent years, the wavelet transform has gained popularity as a strong time-frequency
analysis and signal coding technique for investigating complex non-stationary signals ([4,5,10]).
The wavelet transformations provide a time-frequency decomposition of the signal, which allows
for more effective separation of distinct signal components.
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The continuous wavelet transform is a powerful tool to accurate locate signal features under
the condition of choosing a good mother wavelet [4,5]. There are many wavelets in the literature,
but different applications require different wavelets.

The electrocardiogram (ECG) is a test that determines how active the heart is electrically.
Detecting the QRS complex, T wave and P wave in an ECG remains a challenge for those
working in the field due to the signal’s time-varying shape under physiological parameters
and the presence of noise. Over time, a number of wavelet-based techniques for detecting
these features have been proposed. Wavelet transformations’ capacity to recognise and describe
solitary heart beats was investigated by Senhadji et al. [9] and Addison [1]. Sahambi et al. [8]
employed a wavelet that was a first-order derivative of the Gaussian function to characterise
ECG waveforms. They detected and measured numerous features of the signal using wavelet
analysis based on modulus maxima, including the location of the QRS complex’s onset and
offset, as well as the P and T waves.

We recently proposed a family of complex continuous wavelets [6, 7] and effectively
applied them to signal processing and reconstruction by identifying several relevant signal
reconstruction parameters. The reconstruction abilities were also compared to those of known
wavelets like Morlet, Pual, and DOG.

Due to its low time resolution, the proposed complex wavelet is used in this research to
analyse the QRS complex and R-peak detection in the ECG signal more efficiently than the
complex Morlet wavelet in [2].

2. Continuous Wavelet Transformation (CWT)
The continuous wavelet transform of a signal f (x) ∈ L2(R) using the wavelet function ξs,τ(x) ∈
L2(R) is defined as [1,3–5]

Wf (s,τ)= 〈 f ,ξs,τ〉

=
∫ ∞

−∞
f (x)ξ∗s,τ(x)dx , (2.1)

where the wavelet function ξs,τ(x) are constructed by dilation with scale s(s > 0) and translating
in time parameter τ. i.e.

ξs,τ(x)= 1p
s
ξ
( x−τ

s

)
(2.2)

Hence, the equation (2.1) as

Wf (s,τ)=
∫ ∞

−∞
f (x)

1p
s
ξ∗

( x−τ
s

)
dx. (2.3)

The equation (2.3) is converted to the frequency domain using the Fourier-Parseval formula

Wf (s,τ)= 1
2π

∫ ∞

−∞
f̂ (ω)ξ̂∗s,τ(ω)dω . (2.4)

The discrete form of the continuous wavelet transformation of a signal f (x) defined as [10]

Wf (s,n)=
N−1∑
a′=0

fa′ξ∗
[

(a′−n)δx
s

]
, (2.5)

where δx is sampling period and the number of samples in time domain is N .
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2.1 The Complex Morlet Wavelet (CMW)
The Complex Morlet Wavelet (CMW) is composed of a sinusoidal wave that has been modified by
a Gaussian envelope [4,5,11], i.e.,

ξ(x)= Ceiηxe−
x2

2σ2 , (2.6)

where σ is the shape parameter, η is the center frequency and C = 1
(πσ2)1/4 is the normalization

constant.
The Fourier transform of complex Morlet wavelet defined in equation (2.6) is

ξ̂(ω)= C
√

2πσ2e−
σ2(ω−η)2

2 . (2.7)

2.2 The Proposed Complex Continuous Wavelet (PCCW)
The proposed complex continuous family of wavelets are successive derivatives of cauchy’s
distribution function γ(x)= e−ix

1+x2 ([6,7]), i.e.

ξ j(x)= (−1)k√
C j

d j

dx j (γ(x)), (2.8)

where

k =
{ j

2 , j is even,
j+1
2 , j is odd.

In equation (2.8), the constant C j is normalization constant such that ∥ξ j(x)∥2 = 1 and
defined as

C j =
∫ ∞

−∞

∣∣∣ d j

dx j γ(x)
∣∣∣2dx. (2.9)

The Fourier transform of the proposed complex wavelet ξ j(x) is

ξ̂ j(ω)= (−1)kπ√
C j

(iω) j e−|ω+1| . (2.10)

3. Time-Frequency Resolution
The wavelet transform can be used to analyze time domain function with non-stationary power
at varies frequencies. In the time and frequency plane (x,ω), it can be characterized by a
region whose location and width are dictated by the time and frequency spread of wavelet ξ(x).
For evaluating the performance of different wavelets, resolutions in the time and frequency
domains are crucial. The time resolution in the time domain σx and the frequency resolution in
the frequency domain σω of continuous wavelet transform can be characterized as follows [5]:

σ2
x =

∫ ∞

−∞
(x−u)2|ξ(x)|2dx, (3.1)

σ2
ω = 1

2π

∫ ∞

0
(ω−ζ)2|ξ̂(ω)|2dω , (3.2)

where

u =
∫ ∞

−∞
x|ξ(x)|2dx ,
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ζ= 1
2π

∫ ∞

0
ω|ξ̂(ω)|2dω .

In the time and frequency plane (x,ω), the time and frequency resolution of ξ(x) is
represented by a centred at (u,ζ) with a width of σx along time and σω along frequency.

The adjustment between the width in time domain and the width in frequency domain
determines the resolution of a wavelet function. A narrow wavelet function in time domain has
excellent time resolution but low frequency resolution, whereas a broad (in time) function has
poor time resolution but excellent frequency resolution.

Table 1. Comparison of time and frequency resolution of CMW and PCCW ( j = 4)

Wavelet σx σω σx ·σω
Complex Morlet Wavelet 1.0606 0.4455 0.4725

Proposed Complex Wavelet ( j = 4) 0.3798 0.6258 0.2377

The proposed complex wavelet ( j = 4) has a narrower (in time) function than the complex
Morlet wavelet, as shown in comparison Table 1. As a result, in time-dependent applications,
the proposed complex wavelet is extremely useful.

Let us take an example to understand it more clearly, consider a non-stationary synthetic
signal f (x)

f (x)=
{

sin(2π30x), 0< x ≤ 0.5,
sin(2π60x), otherwise.

(3.3)

Figure 1. A synthetic signal f (x)

In comparison to the complex Morlet wavelet, the proposed complex wavelet ( j = 4) appears
to resolve time localization quite well, as shown in the Figures 2 and 3.
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Figure 2. Absolute values of wavelet transformation coefficients of Signal f (x) using CMW

Figure 3. Absolute values of wavelet transformation coefficients of Signal f (x) using PCCW ( j = 4)

4. The electrocardiogram (ECG)
Depolarization is a term used to describe the electrical changes that occur during muscle
contraction. The electrocardiogram (ECG) is a test that measures the electrical activity of the
heart. Electrical changes connected with activation of the two small heart chambers, the atria,
and then the two bigger heart chambers, the ventricles, produce the ECG, which is monitored
at the body surface. The ‘P ’ wave in the ECG represents the contraction of the atria, whereas
the ‘QRS ’ complex represents the contraction of the ventricles. The ‘T ’ wave is produced when
the ventricular mass returns to a resting condition (repolarization). Because of the signal’s
time-varying shape and the presence of noise, it is subject to physiological parameters, detecting
the QRS complex, T wave and P wave in an ECG signal is still an issue that has to be solved
by those working in the field. Several wavelet-based approaches for detecting these features
have been proposed over time. Senhadji et al. [9] examined wavelet transformations’ ability
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to distinguish and describe solitary heart beats (based on three different wavelets: Morlet,
Daubechies and spline). Sahambi et al. [8] employed a first-order derivative of the Gaussian
function as a wavelet to characterise ECG wave forms. They detected and measured numerous
features of the signal using wavelet analysis based on modulus maxima, including the position
of the QRS complex’s onset and offset, as well as the T and P waves. The procedure was then
repeated for signals with more baseline drifting and high-frequency noise. They also analysed
intra-beat time intervals to figure out the position relative of the ECG’s components, which are
critical for assessing the heart’s electrical activity.

Figure 4. An ECG signal

An ECG signal is obtained from record a01m in the apnea database1. Both complex wavelets
are used to compute the wavelet transforms. Figure 5 shows the modulus plots of the coefficients.
The QRS complex of the ECG signal emerges more distinctly in time location with the proposed
complex wavelet ( j = 4) than the complex Morlet wavelet.

Figure 5. Absolute values of wavelet transform coefficients of ECG signal using with (a)CMT and (b)
PCCW ( j = 4)

1Physiobank [Online], http://www.physionet.org/physiobank/database/apnea-ecg.
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5. R-peak Detection
Due to the time varying morphology of the signal responsive to physiological parameters and
the presence of noise, developing an algorithm for detecting the QRS complex, T wave and P
wave in an ECG signal is a difficult problem [1].

For the study of ECG signals, R wave detectors are particularly useful. They are used to
compute the R-R time series on which a number of heart rate variability (HRV) measures can
be derived, as well as to determine the fiducial points utilised in ensemble averaging analytic
methods.

We took the following steps to automatically select a scale sα for detecting R peaks:

Step I: The analyzed ECG signal is taken from record a01m in the apnea database1 and the
wavelet transform coefficients Wa01m(s,n) were calculated.

Step II: The maximum of absolute values of Wa01m(s,n) at each time point was collected and
stored in a vector Vm, as shown in Figure 7 in the simulation of this stage.

Step III: We found all the scales that corresponded to the peaks of Vm by computing them. The
selected scale, sα is obtained by taking the average of these scales.

Step IV: The value corresponding to this scale sα gives R-peak.

Analyzed ECG Signal

Calculation of CWT Coefficients

The maximum of absolute
values of CWT Coefficients

Scale argument selection
for detecting R-peaks

R-peak detection

Figure 6. The analyzed ECG signal

Figures 10 and 11 shows that the R-peaks recognised using the proposed complex wavelet
( j = 4) are sharper in time than those detected using the complex Morlet wavelet, which needs a
threshold point and sliding window [2].
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Figure 7. The maximum of absolute values of PCCW transform coefficients

Figure 8. Selected scale(red line) for R peak detection

Figure 9. The absolute values of PCCW transform coefficients at selected scale sα
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Figure 10. R peak detection using Proposed complex wavelet ( j = 4)

Figure 11. R peak detection using Complex morlet wavelet

6. Conclusion
The proposed complex wavelet (PCCW) is more successful at detecting QRS complex in
ECG signals since it has a lower time resolution than the complex Morlet wavelet (CMW).
Furthermore, detecting R-peaks with a CMW necessarily requires numerous computations,
such as finding the threshold point and sliding window, whereas the PCCW does not require all
of these parameters and still provides sharper time resolution for R-peaks than the CMW.
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