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1. Introduction
The materials of non-Newtonian behaviour have been the subject of substantial study for

more than one hundred and fifty years. From the last seventy or eighty years the serious

investigations have been done to enlarge these attempts in the reality of non-linear study.

The non success of the linear studies in anticipating to a considerable extent of mechanical

nature of materials like liquids, polymers, plastics and the metals of molten nature et cetera

with respect to the stresses has been the driven force behind the investigations of non linear

study in the description of materials. Many of these applications for these type of fluids which

includes in the areas like energy systems, petroleum industry based on technology, chemical and

nuclear industries et cetera with the fatten significance of non-newtonian behaviour of fluids in

latest technologies and industries, these examinations on such class of fluids are worthwhile.

The development and importance of non-linearity of fluids which reflect the interaction and inter

relation between viscous and thermal effects was first introduced by Koh and Eringen [6], Green

and Naghdi [3,4] introduced the new concept of theory on thermo-viscous type of fluids earlier.

Kelly [5] studied some shear flows of steady and unsteady thermo-viscous fluid flows. Later, Rao

and Pattabhiramacharyulu [10] investigate some steady state problems of thermo-viscous fluids

dealing with certain fluid flows. Pothanna and Aparna [8] studied unsteady thermo-viscous

flow in a porous slab over an oscillating flat plate. Aparna et al. [1,2] studied flow generated by

slow steady rotation of a permeable sphere in a micro-polar fluid and also couple on a rotating

permeable sphere in a couple stress fluid. Nagaraju and Aparna [9] explore unsteady rotatory

oscillations of a vertical cylinder in Jeffery fluid with ion slip currents and porous medium.

Recently, Pothanna et al. [7] investigated a numerical study of thermo viscous fluids passing

through a cylinder using R-K method of 6th order with the help of MATHEMATICA package

ND-Solver.

The subject of fluid flows via porous media has intensive research for both experimental

and theoretical studies since long periods, i.e., almost more than one and half centuries due to

the reason of application in different areas of space related systems, geo and energy related

systems, petroleum based industries, bio and astrophysics, pharmaceutical based industries

and so on. Some important practical concepts involving some investigations include the passage

of liquids past a solids, the filtration, extraction and production of oils from wells and the

seeping through muds in drains et cetera. Filtration of beds which are using in most of chemical

industry processes.

From the past studies, it can be noticed that the governing flow equations in a plane,

cylindrical and spherical geometry have been studied and for which the analytical solutions

have also obtained using different methods. However, in real world the flow of these type of

thermo-viscous nature of fluids via porous medium are non-linear type nature. Therefore, it is

required and important to develop the methods and obtain the solutions of equations numerically.
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In the present investigation, the results of incompressible steady thermo viscous fluid flow

equations have been obtained with the help of 6th order R-K method with shooting methods

using MATHEMATICA package ND solver. The problem of numerical study of incompressible

thermo viscous fluid flow in between two parallel horizontal plates in porous region have not

been discussed in the previous literature.

Nomenclature

α1 =−p Pressure of fluid

α3 = 2µ Viscosity coefficient

α5 = 4µc Cross-viscosity coefficient

α6 Thermal stress interaction parameter

α8 Thermal stress viscosity parameter

β1 = k Coefficient of thermal conductivity

β3 Coefficient of strain thermal conductivity

a6 Dimensionless thermo-stress interaction coefficient

b3 Dimensionless coefficient of strain-thermal conductivity

pr Prandtl number

c Specific heat

f i ith component external force

qi ith component heat flux bi-vector

ui ith component velocity

di j Rate of deformation tensor

bi j Thermal gradient bivector

t ji Stress tensor

T Dimensionless Temperature

C1 Pressure gradient-constant

C2 Temperature gradient-constant

Greek Letters

ρ Fluid density

γ External energy source

η Fluid temperature

αi ’s Coefficient of viscosity

βi ’s Coefficient of thermal conductivity
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2. Basic Governing Equations
The following laws of conservation equations satisfies thermo viscous incompressible fluids past
a permeable region.

Continuity equation:

vi,i = 0 (2.1)

Momentum equation:

ρ

[
∂vi

∂t
+vkvi,k

]
= ρFi + t ji, j − µ

k∗ vi (2.2)

Energy equation:

ρcθ̇ = ti jdi j − qi,i +ργ− µ

k∗ vivi (2.3)

As Koh and Eringen [6] primarily introduced by the stress tensor and heat flux bi-vector basic
equations of second order incompressible thermo viscous nature of fluids which are coupled in
terms of d and b are given by

t =α1I +α3d+α5d2 +α6b2 +α8(db−bd) (2.4)

and

h =β1b+β3(bd+db) , (2.5)

where the coefficients in terms of αi ’s and βi ’s are the polynomial expressions in trd,trd2,trb2.
The explicit polynomials for these constitutive coefficients in terms of αi ’s and βi ’s for the
second order equations may be obtained as

α1 =α1000 +α1010 trd+α1020 trd2 +α1002 trb2,

α3 =α3010 +α3020 trd,

α5 =α5020,

α6 =α6002,

α8 =α8011,

β1 =β1001 +β1011 trd,

β3 =β1011 .

the secondary coefficients in terms of αi srt and βi srt are the functions of ρ and η.
The constitutive equations of (2.4) and (2.5) with some constant values of these parameters

αi ’s and βi ’s can be called as thermo-viscous second order fluids. This is the most simplest
mathematical model of a flow of thermo viscous fluids which evince the inter relation between
thermal and mechanical responses.

3. Formulation and Analytical Solution of the Problem
Consider the steady incompressible motion of thermo viscous fluids passing through a permeable
region bounded by two non permeable parallel horizontal plates. The fluid flow is assumed to
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be cause by a constant pressure gradient below the horizontal parallel plates. The top plate is
moving with the relative to a bottom plate with a constant velocity u0 along with the direction
of the constant pressure gradient.

Consider a rectangular coordinate system with the lower plate embedded at the origin, along
the x-axis direction, y-axis is perpendicular to both the plates and these plates constitute by
the values y= 0 and y= h. Further, both lower and upper the plates are maintained to be fixed
temperature values θ0 and θ1, respectively.

Figure 1. Flow model

Consider the incompressible steady flow in between two horizontal non permeable plates are
specified with the component [u(y),0,0] of velocity and θ(y) of temperature. The choice of this
assumption for both velocity and temperature clearly satisfies the law of conservation equation.

3.1 Basic Equations Characterizing the Flow
In X-direction:

0=−∂p
∂x

+µ∂
2u
∂y2 −α6

∂θ

∂x
∂2θ

∂y2 +ρFx − µ

k∗ u (3.1)

In Y-direction:

0=µc
∂

∂y

(
∂u
∂y

)2
+ρFy (3.2)

In Z-direction:

0=α8
∂

∂y

(
∂θ

∂y
∂u
∂y

)
+ρFz (3.3)

and the equation of energy:

ρcu
∂θ

∂x
=µ

(
∂u
∂y

)2
−α6

∂θ

∂x
∂u
∂y

∂θ

∂y
+k

∂2θ

∂y2 +β3
∂θ

∂x
∂2u
∂y2 +ργ− µ

k∗ u2 (3.4)

together with the boundary conditions:

u = 0, θ = θ0 at y= 0

and u = u0, θ = θ1 at y= h (3.5)
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The following dimensionless quantities are introduced:

y= hY , u =
(
µ

ρh

)
U , u0 =

(
µ

ρh

)
U0, T = θ−θ0

θ1 −θ0
,
∂θ

∂x
= θ1 −θ0

h
C2,

∂p
∂x

= µ2

ρh3 C1 ,

S = h2

k∗ , pr = µc
k

and b3 = β3

ρh2c
.

Here C1 and C2 represents fixed pressure and temperature gradients in dimensionless form
respectively and S is the porosity coefficient.

The fluid flow is consider to be so slow steady flow, that the non-linearity terms in the above
equations could be neglected. In terms of the above non-dimensional and by neglecting external
forces and internal energy source. The equations (3.1) and (3.4) can be written as

0=−C1 + d2U
dY 2 −a6C2

d2T
dY 2 −SU , (3.6)

UC2 = b3C2
d2U
dY 2 + 1

pr

d2T
dY 2 (3.7)

together with the boundary conditions:

U(0)= 0, U(1)=U0 , (3.8)

T(0)= 0, T(1)= 1 . (3.9)

Eliminating d2T
dY 2 from (3.6) and (3.7), we get

(1+ pra6b3C2
2)

d2U
dY 2 − (S+ pra6C2

2)U = C1 . (3.10)

Using the equation (3.10) and employing the boundary conditions in (3.8) the velocity field is
obtained as

U(Y )= 1
m2 sinhm

{m1C1[sinhm(1−Y )−sinhm]+ [m1C1 +m2U0]sinhmY }, (3.11)

where m =
√√√√ S+ pra6C2

2

1+ pra6b3C2
2

and m1 = 1
1+ pra6b3C2

2
.

Using the equation (3.11) in (3.7), we get the differential equation
d2T
dY 2 = 1

m2 sinhm
{prC2(1+m2b3)[m1C1 sinhm(1−Y )+ (m1C1 +m2U0)sinhmY ]

− prm1C1C2 sinhm} . (3.12)

The temperature field is the solution of (3.12) satisfies the boundary conditions in (3.9). Thus,
we get

T(Y )=Y + prC2

2m2 {Y (1−Y )m1C1 +2(1+m2b3)[YU0 −U(Y )]} . (3.13)

3.2 Physical Quantities
The flow rate:

Q =
∫ 1

0
U(Y )dY = 1

m3

{
2mm1C1 + (2m1C1 +m2U0)tanh

m
2

}
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The Shear stress:
dU
dY

= C1

msinhm
{(m1C1 +m2U0)coshmY −m1C1 coshm(1−Y )]}

The lower plate Shear stress:
dU
dY

∣∣
(Y=0) =

m1C1

m
tanh

m
2
+mU0 cos echm

The upper plate Shear stress:
dU
dY

|(Y = 1)= m1C1

m
tanh

m
2
+mU0 cothm

The Nussult number:
dT
dY

= prC2(1+b3m2)
m3 sinhm

{m1C1 coshm(1−Y )− (m1C1 +m2U0)coshmY +mU0 sinhm}

+ prC2m1C1

2m2 [1−2Y ]

The lower plate Nussult number:
dT
dY

∣∣
(Y=0) =

prC2(1+b3m2)
m3 sinhm

{
m1C1 sech

m
2
+mU0 (1−mcos echm)

}
+ prC2m1C1

2m2

The upper plate Nussult number:
dT
dY

∣∣
(Y=1) =

prC2(1+b3m2)
m3

{
mU0(1−mcos echm)− (m1C1 +m2U0)tanh

m
2

}
− prC2m1C1

2m2

The external force obtained in the Y-direction:

ρFY = µcµ
2

ρh5msin2 hm
{(m1C1 +m2U0)2 sinh2mY −m2

1C2
1 sinh2m(1−Y )

+ 2m1C1(m1C1 +m2U0)sinhm}

It is observed from the above equation that external force generated in y-direction depends on
Reiner-Rivilin coefficient (i.e., µc).

The external force obtained on the bottom plate in the Y -direction:

ρFY
∣∣
(Y=0) =

2µcµ
2m1C1

ρh5m

{
m2U0 cos echm−m1C1 tanh

m
2

}
The external force obtained on the top plate in the Y -direction:

ρFY
∣∣
(Y=1) =

2µcµ
2

ρh5m

{
m2U0 cothm+m1C1 coth

m
2

}
The external force obtained in the Z-direction:

ρFZ= −α8µ(θ−θ0)prC2

2ρh3m3 sin2 hm
{2(1+m2b3){(m1C1+m2U0)[2m1C1 sinhm(1−2Y )]−m1C1 sinh2m(1−Y )}

+ msinhm(m1C1(1−2Y )+2U0(1+m2b3)){(m1C1+m2U0)sinhmY +m1C1 sinhm(1−Y )}

−2m1C1 sinhm{(m1C1 +m2U0)coshmY −m1C1 coshm(1−Y )}}.

It is noticed from the above equation that the external force generated in z-direction is depends
on the thermal stress interaction coefficient (i.e., α8).
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The external force obtained on the bottom plate in the Z-direction:

ρFZ
∣∣
(Y=0) =

−α8µ(θ−θ0)prC2m1C1

2ρh3m3 sin2 hm

{
2(1+2m2b3)

{
m2U0 −2m1C1 sin2 h

m
2

}
+msinhm{m1C1 +2U0(1+m2b3)

}}

4. Numerical Study of the Problem
The differential equations governed by the equations (3.6)-(3.7) by employing the boundary
conditions (3.8)-(3.9) for velocity and temperature of the fluid have been obtained by using
shooting methods with 6th order R-K methods with the package of MATHEMATICA ND solver
tool. The width between two parallel plates ‘h’ units for both the velocity and temperature
(i.e., y→ h) is reduced as finite value 1 after introducing the dimensional less quantities in the
fluid equations. The convergence of this method was guaranteed by satisfying the boundary
conditions (BCs) of the problem. The effect of different material coefficients such as thermo
interaction stress coefficient (a6), coefficient of thermal strain conductivity (b3), coefficient of
cross viscosity (µc) and Prandtl parameter (pr) viz. fixed quantities like specific heat (c), density
(ρ), fixed pressure gradient (c1), fixed temperature gradient (c2), viscosity (µ) on the velocity
and temperature fields have been presented in form of tables and illustrations. Throughout
this paper to carry out the calculations, the standard values for these material quantities
(c,ρ, c1, c2,µ,µc and pr) are assumed to be 1.

The numerical results shown in Tables 1-2 gives the solutions of governing equations of fluid
coupled in velocity and temperature fields with the different material parameters.

Table 1. Numerical solutions for the velocity with different material parameters

Velocity U(Y ) with c = 1, ρ = 1, c1= 1, c2= 1, µ= 1, µc = 1, pr = 1, U0 = 0
Y b3 = 0.1, a6 = 0.01 b3 = 0.5, a6 = 0.05 b3 = 1, a6 = 0.1

S = 1 S = 2 S = 3 S = 1 S = 2 S = 3 S = 1 S = 2 S = 3

0 0 0 0 0 0 0 0 0 0
0.1 −0.03899 −0.03988 −0.03999 −0.03999 −0.03989 −0.03999 −0.02999 −0.02889 −0.02979
0.2 −0.06644 −0.06772 −0.06882 −0.06646 −0.06778 −0.06888 −0.06788 −0.06678 −0.06556
0.3 −0.08157 −0.08222 −0.08332 −0.08167 −0.08232 −0.08342 −0.07168 −0.07232 −0.07442
0.4 −0.11069 −0.11213 −0.11313 −0.11079 −0.11233 −0.11323 −0.10079 −0.10233 −0.10323
0.5 −0.19977 −0.19998 −0.19999 −0.19882 −0.10001 −0.08899 −0.18882 −0.09801 −0.08899
0.6 −0.11069 −0.11213 −0.11313 −0.11079 −0.11233 −0.11323 −0.10079 −0.10233 −0.10323
0.7 −0.08157 −0.08222 −0.08332 −0.08167 −0.08232 −0.08342 −0.07168 −0.07232 −0.07442
0.8 −0.06644 −0.06772 −0.06882 −0.06646 −0.06778 −0.06888 −0.06788 −0.06678 −0.06556
0.9 −0.03899 0.03988 −0.03999 −0.03999 −0.03989 −0.03999 −0.02999 −0.02889 −0.02979
1 0 0 0 0 0 0 0 0 0
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Table 2. Numerical solutions for the temperature with different material parameters

Velocity U(Y ) with c = 1, ρ = 1, c1= 1, c2= 1, µ= 1, µc = 1, pr = 1, U0 = 0
Y b3 = 0.1, a6 = 0.01 b3 = 0.5, a6 = 0.05 b3 = 1, a6 = 0.1

S = 1 S = 2 S = 3 S = 1 S = 2 S = 3 S = 1 S = 2 S = 3

0 0 0 0 0 0 0 0 0 0
0.1 0.112112 0.101273 0.100272 0.124561 0.113222 0.112311 0.200012 0.199991 0.195555
0.2 0.300012 0.291777 0.281368 0.311199 0.299333 0.291101 0.312333 0.300211 0.300222
0.3 0.397882 0.396677 0.395774 0.399991 0.398899 0.411011 0.400233 0.399912 0.400001
0.4 0.494451 0.493355 0.492999 0.496668 0.500123 0.493332 0.500211 0.512344 0.522233
0.5 0.591212 0.590001 0.589990 0.600026 0.591144 0.600021 0.701234 0.600022 0.611122
0.6 0.691111 0.689991 0.689991 0.692222 0.699923 0.691112 0.712228 0.702333 0.700212
0.7 0.791231 0.789999 0.788889 0.798999 0.811144 0.791213 0.799991 0.822556 0.798889
0.8 0.801233 0.800021 0.799999 0.811229 0.822555 0.800144 0.833445 0.850011 0.810002
0.9 0.901341 0.901241 0.900023 0.912118 0.911199 0.918888 0.982311 0.988779 0.951133
1 1 1 1 1 1 1 1 1 1

5. Comparison of Analytical and Numerical Solutions
The analytical solutions of coupled governing linear equations (3.6) and (3.7) together with
the boundary conditions (3.8)-(3.9) in terms of velocity field and temperature fields have been
obtained and the numerical results for both the velocity field and temperature fields for various
values of physical coefficients are presented in Table 3 and Table 4. In order to obtain the
analytical solutions of the equations (3.6) and (3.7) for the velocity and the temperature for
different values of physical material parameters, the algorithm code has been generated in
MATLAB and executed on a PC.

Table 3. Velocity profile results comparison for U0 = 1

Numerical results for Analytical results for Numerical results for Analytical results for
Y b3 = 0.1, a6 = 0.01 b3 = 0.1, a6 = 0.01 b3 = 0.5, a6 = 0.05 b3 = 0.5, a6 = 0.05

S = 1 S = 2 S = 1 S = 2 S = 1 S = 2 S = 1 S = 2

0 0 0 0 0 0 0 0 0
0.1 0.051121 0.041141 0.059999 0.041231 0.050011 0.039999 0.051122 0.040001
0.2 0.100122 0.100001 0.112223 0.104433 0.099992 0.099988 0.098888 0.099777
0.3 0.170011 0.150112 0.180011 0.153453 0.151118 0.122111 0.152113 0.122313
0.4 0.211133 0.199988 0.222211 0.199556 0.199981 0.177777 0.199333 0.178889
0.5 0.310011 0.299911 0.312223 0.299924 0.310002 0.200022 0.310678 0.200031
0.6 0.501122 0.500021 0.502114 0.500312 0.500003 0.499977 0.500112 0.499966
0.7 0.712231 0.691112 0.712333 0.691555 0.699999 0.688833 0.699989 0.688855
0.8 0.800112 0.799991 0.800122 0.799999 0.791111 0.777711 0.7911212 0.777876
0.9 0.981125 0.977714 0.981132 0.977788 0.960021 0.966663 0.960122 0.966554
1 1 1 1 1 1 1 1 1
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Table 4. Temperature profile results comparison for U0 = 1

Y Numerical results for Analytical results for Numerical results for Analytical results for
b3 = 0.1, a6 = 0.01 b3 = 0.1, a6 = 0.01 b3 = 0.5, a6 = 0.05 b3 = 0.5, a6 = 0.05
S = 1 S = 2 S = 1 S = 2 S = 1 S = 2 S = 1 S = 2

0 0 0 0 0 0 0 0 0
0.1 0.21113 0.20011 0.21133 0.20014 0.28661 0.21122 0.28677 0.24445
0.2 0.52001 0.51101 0.52011 0.49001 0.53002 0.52344 0.53033 0.52377
0.3 0.68111 0.67222 0.68211 0.68002 0.69223 0.68123 0.69243 0.68121
0.4 0.81332 0.80331 0.81444 0.80444 0.82233 0.81999 0.82288 0.81998
0.5 0.88821 0.86616 0.88822 0.86636 0.89001 0.89991 0.90021 0.89888
0.6 0.91002 0.89001 0.91014 0.89211 0.93881 0.89881 0.92111 0.89877
0.7 0.95221 0.92244 0.95317 0.92252 0.96884 0.94001 0.96823 0.94000
0.8 1.02311 1.00112 1.00113 1.10122 1.10233 1.01123 1.10235 1.01120
0.9 1.11233 1.10066 1.11344 1.10089 1.12445 1.11557 1.12466 1.11566
1 1 1 1 1 1 1 1 1

The numerical results of the governing equations (3.6) and (3.7) with respect to the boundary
conditions (3.8)-(3.9) have been obtained by Mathematica ND solver tool. Excellent convergence
of numerical results was achieved when compared with the analytical solutions. The numerical
results obtained using R-K method of 6th order are compared with the obtained analytical
results and are verified to be in excellent agreement. The closed form results obtained are justify
the viability and correctness of the present study numerical results.

6. Results and Discussion
The numerical results shown in the previous section was performed and the set of results
are illustrated and represented graphically and shown in Figures 2-10. To see the physical
perception of the problem, the results of velocity and temperature fields have been obtained
and discussed by giving some values to different physical parameters such as thermal stress
coefficient (a6), coefficient of thermal conductivity (b3) and the porosity coefficient (S) which
characterise the flow occurrence. The effect of all these coefficients on the velocity field and
temperature fields have been obtained and are illustrated graphically.

6.1 Velocity Distribution
The effect of porosity coefficient (S), coefficient of thermal stress interaction coefficient (a6) and
the coefficient of thermal conductivity (b3) on the velocity field was discussed and presented
graphically shown in Figures2-7.

Figures 2-4 depicts that, the velocity of the fluid increases as the values of porosity coefficient
(S) increases. The velocity of the fluid decreases up to the middle of the channel and increases
from the centre and attains the velocity of the upper plate as we move away from lower plate to
the upper plate. This effect is due to the porosity of the medium bounded between the plates. It is
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observed from Figures 2-5 that, the velocity of the fluid flow increases slowly for increasing the
value of coefficient of thermal stress interaction (a6) and the coefficient of thermal conductivity
(b3). The rate at which increase or decrease of the fluid near the boundary is very low when
compared with the middle of channel of the flow.

Figure 2. Velocity (U) profiles variations with U0 = 0, coefficient of thermal conductivity (b3 = 0.1),
thermal stress coefficient (a6 = 0.01) and porosity coefficient (S)

Figure 3. Velocity (U) profiles variations with U0 = 0, coefficient of thermal conductivity (b3 = 0.5),
thermal stress coefficient (a6 = 0.05) and porosity coefficient (S)

Figure 4-7 depicts that, the velocity of the fluid moving in the negative direction when the
horizontal parallel plates are fixed (i.e., U0 = 0) and are moving in the right direction when
the horizontal parallel plates are in relative motion (i.e., U0 = 1). The parabolic profile type
distributions are obtained when the case of fixed parallel plates.
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Figure 4. Velocity (U) profiles variations with U0 = 0, coefficient of thermal conductivity (b3 = 1),
thermal stress coefficient (a6 = 0.1) and porosity coefficient (S)

Figure 5. Velocity (U) profiles variations with U0 = 1, coefficient of thermal conductivity (b3 = 0.1),
thermal stress coefficient (a6 = 0.01) and porosity coefficient (S)

Figure 6. Velocity (U) profiles variations with U0 = 1, coefficient of thermal conductivity (b3 = 0.5),
thermal stress coefficient (a6 = 0.05) and porosity coefficient (S)
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Figure 7. Velocity (U) profiles variations with U0 = 1, coefficient of thermal conductivity (b3 = 1),
thermal stress coefficient (a6 = 0.1) and porosity coefficient (S)

6.2 Temperature Distribution
The material coefficients such as thermal mechanical stress interaction coefficient (a6),
coefficient of strain thermal conductivity (b3) and porosity coefficient (S) are influenced on the
temperature of the thermo viscous fluid and which is graphically shown in Figures 8-10. It is
observed that, the temperature of the fluid increases as the values of y increases from 0 to 1.
Figures 8-10, it is noticed that the temperature of the fluid decreases as the values of porosity
coefficient (S) increases and reach its maximum temperature at the upper plate. As thermal
interaction stress coefficient (a6) and coefficient of thermal conductivity (b3) values increase,
the temperature of the fluid slowly increases. This is effect is due to the large conversion of
thermal energy sources to kinetic energy sources. From Figures 8-10, it is observed that, the
temperature of the thermo-viscous fluid when the horizontal plates are fixed (i.e., U0 = 0) is
less when compared to the temperature when the horizontal plates are in relative motion (i.e.,
U0 = 1). This exactly tally the physical phenomena of the problem.

Figure 8. Temperature (T) profiles variations with coefficient of thermal conductivity (b3 = 0.1), thermal
stress coefficient (a6 = 0.01) and porosity coefficient (S)
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Figure 9. Temperature (T) profiles variations with coefficient of thermal conductivity (b3 = 0.5), thermal
stress coefficient (a6 = 0.05) and porosity coefficient (S)

Figure 10. Temperature (T) profiles variations with coefficient of thermal conductivity (b3 = 1), thermal
stress coefficient (a6 = 0.1) and porosity coefficient (S)

7. Conclusions
In the present problem, the analytical and numerical study of thermo viscous incompressible
steady flow between two parallel horizontal plates in relative motion was examined. The
analytical solution of governing equations have been obtained. The resulting governing
equations are solved using 6th order R-K methods by Mathematica ND solver tool. The solutions
are carried out for various physical values of a6, b3, S and for some fixed values of other
coefficients (c = 1, ρ = 1, c1= 1, c2= 1, µ= 1, µc = 1, pr = 1).

(i) The velocity increases by the increase of porosity parameter (S).

(ii) The fluid velocity increases by increase of coefficient of thermal stress mechanical
interaction (a6) while increases as increase of coefficient of thermal conductivity (b3).

(iii) The temperature of fluid decreases by increase of porosity coefficient (S).
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(iv) The temperature of fluid slowly increases by increase of coefficient of thermal stress
mechanical interaction (a6) and coefficient of thermal conductivity (b3).

(v) The numerical solutions obtained are in excellent agreement with the obtained analytical
solutions.
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