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Abstract. Aim of this paper is to investigate the Hyers-Ulam stability of generalized quartic functional
equation
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1. Introduction
In 1940, Ulam [20] posed the stability problems of functional equation in group homomorphisms.
Next year, Hyers [6] gave an affirmative reply to Ulam’s problem for additive groups. After that,
many authors e.g., Aoki [2], Czerwol [3], Gajda [4], Gavruta [5], Hyers [6], Hyers et al. [7], Jun
and Kim [9], Jung [11], Rassias [14], Rassias et al. [15], Rassias [16,17], Rassias and Šemrl [18],
and Tamilvanan et al. [19] extended the stability theory of functional equations.
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Recently, the stability of many functional equations in various spaces like Banach spaces,
modular spaces, fuzzy normed spaces and random normed spaces etc. have been established by
Alessa et al. [1], Aoki [2], Jin and Lee [8], Uthirasamy et al. [21], and Vijaykumar et al. [22].
Now, in this paper, the Hyers-Ulam stability of quartic function equation,
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introduced by Uthirasamy et al. [21], obtain in random normed spaces.
The usual terminology, notions and conventions of the theory of Random normed spaces are

adopted as in [1].
Throughout, ∆+ denotes the distribution functions spaces, i.e., the space of all mapping

f : R∪(−∞,∞)→ [0,1] such that f is left continuous and increasing on R, f (0)= 0 and f (+∞)= 1.
D+ subset of ∆+ consisting of all functions V of ∆+for which ℓ−V (+∞)= 1 where ℓ− f (s) denotes
ℓ− f (s) = lim

t→s−
f (t). The space ∆+ is partially order by usual wise ordering of functions, i.e.,

f = g ⇐⇒ f (s) = g(s), s ∈ R. The maximal element for ∆+ in this order is the distribution

function ϵ0(s)=
{

0, if s = 0,
1, if s > 0.

Definition 1.1 ([1], t-norm). T : [0,1]× [0,1] → [0,1] is a continuous triangular norm (briefly
t-norm) if T satisfies the following conditions:

(i) T is commutative and associative;

(ii) T is a continuous;

(iii) T(x,1)= x, for all x ∈ [0,1];

(iv) T(x, y)≤ T(z,w), whenever x ≤ z and y≤ w, for all x, y, z,w ∈ [0,1].

Examples of continuous t-norm are T(x, y) = xy, T(x, y) = max{x+ y−1,0} and T(x, y) =
min(x, y).

Definition 1.2 ([1]). A random normed space (RN-space) is a triple (V ,Ψ,T), where V is a
vector space, T is a continuous t-norm and Ψ : V → D+ satisfying the following conditions:
(R1) Ψv(t)= ϵ0(t), for all t > 0 if and only if v = 0,

(R2) Ψav(t)=Ψv
( t
|a|

)
, for all v ∈V , t ≥ 0 and a ∈ R with a ̸= 0,

(R3) Ψv+u(t+ s)≥ T(Ψv(t), Ψu(s), for all v,u ∈V and t,u ≥ 0.

Definition 1.3 ([1]). Let (V ,Ψ,T) be a RN-space:
(i) A sequence {vn} in V is said to be convergent to v ∈ V if, for every t > 0 and λ > 0,

there exists a positive integer N such that Ψvn−v(t)> 1−λ whenever n ≥ N and write as
lim

n→∞Ψvn−v(t)= 1, t > 0.
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(ii) A sequence {vn} in V is said to be Cauchy sequence if, for every t > 0 and λ > 0, there
exists a positive integer N such that Ψvn−vm(t)> 1−λ whenever n ≥ m ≥ N and write as
lim

n→∞Ψvn−vm(t)= 1, t > 0.

(iii) A RN-space (V ,Ψ,T) is complete if every Cauchy sequence in V is convergent to a point
in V .

For notational handiness, denote (V ,Ψ,T), and (W ,Ψ,T) are complete RN spaces and define a
mapping ; : V →W by

D;(v1,v2, . . . ,vn)=
n∑

i=1
;
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−vi +
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for all v1,v2, . . . ,vn ∈V . (1.2)

2. Hyers-Ulam Stability
Theorem 2.1. If an even mapping ; : V → W with ;(0) = 0 for which there exists a mapping
Φ : V n → D+ for some 0<α< 8,

Φ3v1,3v2,...,3vn(ε)≥Φv1,v2,...,vn

( ε
α

)
(2.1)

and

lim
t→∞Φ3tv1,3tv2,...,3tvn(34tε)= 1, (2.2)

for all v1,v2, . . . ,vn ∈V and all ε> 0 such that

ΨD;(v1,v2, . . . ,vn)(ε)≥Φv1,v2,...,vn(ε). (2.3)

Then, there exists a unique quartic mapping Q4 : V →W satisfying the functional equation (1.1)
with

ΨQ4(v)−;(v)(ε)≥Φv,0,...,0((34 −α)2ε), (2.4)

for all v ∈V and all ε> 0. The mapping Q4 : V →W is defined by

ΨQ4(v)(ε)= lim
t→∞Ψ;(3tv)

34t
(ε), (2.5)

for all v ∈V and all ε> 0.

Proof. Replace (v1,v2, . . . ,vn) by (v,0, . . . ,0) in (2.3), we have

Ψ;(3v)−34φ(v)(ε)≥Φv,0,...,0(ε),

Ψ;(3v)
34 −φ(v)(ε)≥Φv,0,...,0(34ε). (2.6)
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Replace v by 3tv in (2.6), we have

Ψ;(3t+1v)
34 −φ(3tv)

(ε)≥Φ3tv,0,...,0(34ε),

Ψ;(3t+1v)
34(t+1) −φ(3tv)
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(ε)≥Φ3tv,0,...,0(34(t+1)ε)
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αt

)
, (2.7)

for all v ∈V and all ε> 0. Since
φ(3mv)
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m−1∑
i=0
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34i . (2.8)

From (2.7) and (2.8), we have
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(
2ε∑m+n−1

i=n
αi
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)
→ 1 as m →∞ then

{
φ(3nv)
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}
is a Cauchy

sequence in (W ,Ψ,T). Since (W ,Ψ,T) is complete RN-space, thus sequence
{
φ(3nv)

34n

}
converges

to some Q4(v) ∈W , i.e., Q4(v)= lim
n→∞

φ(3nv)
34n .

Fix v ∈V and put n = 0, we obtain

Ψ;(3mv)
34m −φ(v)(ε)≥Φv,0,...,0

( 2ε∑m−1
i=0

αi

34(i+1)

)
and so, for every δ> 0, we get

ΨQ4(v)−φ(v)(ϵ+δ)= T
(
Ψ

Q4(v)−φ(3mv)
34m

(δ),Ψφ(3mv)
34m −φ(v)

(ε)
)

≥ T
(
Ψ

Q4(v)−φ(3mv)
34m

(δ),Φv,0,...,0

( 2ε∑m−1
i=0

αi

34(i+1)

))
, (2.10)

for all v ∈V and all ∆,δ> 0. Taking the limit m →∞,

ΨQ4(v)−φ(v)(ϵ+δ)≥Φv,0,...,0(2(34 −α)ε), (2.11)

for all v ∈V and all ε,δ> 0. Since δ was arbitrary, taking δ→ 0,

ΨQ4(v)−φ(v)(ϵ)≥Φv,0,...,0(2(34 −α)ε), (2.12)

for all v ∈ V and all ε > 0. Replacing (v1,v2, . . . ,vn) by (3tv1,3tv2, . . . ,3tvn) in (2.3),
ΨD;(3tv1,3tv2,...,3tvn)(ε) ≥Φ3tv1,3tv2,...,3tvn(34tε). Since lim

t→∞Φ3tv1,3tv2,...,3tvn(34tε) = 1, so Q4 satisfies
the functional equation (1.1). To prove the uniqueness of quartic mapping Q4. Assume that
there exists another quartic mapping Q′

4, which satisfies inequality (2.12). Fix v ∈V . Clearly,
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Q4(3tv)= 34tQ4(v) and Q′
4(3tv)= 34tQ′

4(v), for all v ∈V , we have

ΨQ4(v)−Q′
4(v)(ε)= lim

t→∞ΨQ4(3tv)
34t −Q′4(3tv)

34t
(ε).

Consider,

ΨQ4(3tv)
34t −Q′4(3tv)

34t
(ε)≥ T

(
ΨQ4(3tv)

34t −;(3tv)
34t

(ε
2

)
,Ψ;(3tv)

34t −Q′4(3tv)
34t

(ε
2

))
≥Φ3tv,0,...,0(34t(34 −α)ε)

≥Φv,0,...,0

(34t(34 −α)ε
αt

)
, (2.13)

for all v ∈ V and ε> 0. Since lim
t→∞

34t(34−α)ε
αt =∞, we have lim

t→∞Φv,0,...,0

(
34t(34−α)ε

αt

)
= 1. Therefore,

ΨQ4(v)−Q′
4(v)(ε)= 1, for all v ∈V and ε> 0. So, Q4(v)=Q′

4(v).

Theorem 2.2. If an even mapping ; : V → W with ;(0) = 0 for which there exists a mapping
Φ : V n → D+ for some 0<α< 81,

Φ v1
3 , v2

3 ,..., vn
3

(ε)≥Φv1,v2,...,vn(αε)

and

lim
t→∞Φ

v1
3t , v2

3t ,..., vn
3t

( ε

34t

)
= 1,

for all v1,v2, . . . ,vn ∈V and all ε> 0 such that

ΨD;(v1,v2,...,vn)(ε)≥Φv1,v2,...,vn(ε).

Then, there exists a unique quartic mapping Q4 : V →W satisfying the functional equation (1.1)
with

ΨQ4(v)−;(v)(ε)≥Φv,0,...,0

( ε

(34 −α)2

)
,

for all v ∈V and all ε> 0. The mapping Q4 : V →W is defined by

ΨQ4(v)(ε)= lim
t→∞Ψ34t;( v

3t )(ε),

for all v ∈V and all ε> 0.

Corollary 2.3. If an even mapping ; : V →W with ;(0) = 0 for which there exists a mapping
Φ : V → D+ satisfying

ΨD;(v1,v2,...,vn)(ε)≥Φ∑n
i=1 ∥vi∥θ (ε).

Then, there exists a unique quartic mapping Q4 : V →W satisfying the functional equation (1.1)
with

ΨQ4(v)−;(v)(ε)≥Φ∥v∥θ ((3
4 −3p)2ε),

for all v ∈V , where p < 4 and all ε> 0.

We take α= 3p−4 and v1,v2, . . . ,vn =∑n
i=1 ∥vi∥θ in Theorem 2.1.
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3. Conclusion
The Hyers-Ulam stability of generalized quartic functional equation is proved in Random
Normed space. To get ideas from this equation, researchers can extended and introduced new
functional equations and their stability.
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