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Abstract. We defined the concept of π-coloring of graphs and incident vertex π coloring of graphs.
The incident vertex π coloring number (IVπCN) of graphs is different from all existing coloring
techniques. The IVπCN of complete graph (Kn) is n. IVπCN of wheel, star, double star graph are
(n+1). Also, IVπCN of friendship, diamond and fan graphs are ∆+1. The IVπCN of double fan graph
is ∆+2. The IVπCN of complete bipartite graphs Km,n is (m+n). The IVπCN of bipartite graph is
bounded. Moreover, some results associated to enumeration of the number of graphs having equal
incident vertex π chromatic number of few families are proved.
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1. Introduction
Graph theory was started with the famous Seven Bridges of Königsberg problem. The problem
was to start at any point, walks through all seven bridges on the Pregel river only one time and
come back to beginning point. In 1936, Leonhard Euler [12] gave the solution to this problem
with the help of the graph. There is no such closed walk that exists for this problem. Hence the
concept of the Eulerian circuit was introduced in the Graph theory. “The graph is Eulerian if
and only if the degree of all vertices in a connected graph is an even”, this was the first paper
considered and the development of Graph theory started.

Later, Euler gave the planer graph formula based on the invariant of polyhedron in algebraic
topology (Richeson [21]). A polyhedron having a,b, c vertices, edges and closed regions, then
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a+ c−b is invariant and for planar graphs, a+ c−b = 2. Euler indeed gave great contributions
to the field of mathematics and physics, especially for the start of developing Graph theory.

Graph theory came into focus with the very famous problem, four color conjecture in 1850.
This was an open challenging problem unsolved for almost 127 years. Many mathematicians
and researchers worked on this problem but they not did succeed. Finally, in 1977 the proof
of this problem was given by Appel and Haken [1, 2], and Appel et al. [3] with the help of
1200 hours of computer time. In the 20th century Graph theory started to develop with major
concepts because Graph theory has many applications in the field of sciences, engineering,
medical sciences, economics, and psychology. Hence in 21st century Graph theory is identified
as one independent subject of mathematics.

Now-a-days many mathematicians and researchers are making an effort for searching new
concepts with their real-time applications in various fields. We observe that many researchers
worked on graph coloring such that adjacent vertices should have different color, but no one has
worked to avoid repeating patterns while proper coloring of vertices. This paper defines new
vertex coloring method to avoid the repeating patterns while proper coloring of graph’s vertices.

1.1 Basics of Graph
Definition 1.1. A graph H is an order pair of sets (V ,E), such that V is vertex-set of non-empty
components and E is an edge set containing unordered couples of vertices from vertex set,
recognized as edges of H (Deo [10], Harary [15], and West [25]).

If uv is an edge then vertices u,v are adjacent. Total number of edges at a vertex u is known
as degree, denoted by d(u). If degree is zero and one then it is a pendent vertex and isolated
vertex, respectively. The degree of a graph means highest degree vertex number and it is
denoted by ∆. The order of graph means cardinality of set V . All vertices nearby vertex u, is
known as neighbor-set, it is represented as N(u) and also called an open neighborhood. Closed
neighborhood means a vertex u and it’s all nearby vertices, represented as N[u]. Null graph
means a graph that has n vertices but no edges (Nn). Complete graph (Kn) is one in which for
every vertex u, N[u] is vertex set of graph. Friendship graph (Fn) is formed by connecting n
duplicates of cycle C3 to a common vertex. A star graph (K1,n) formed by connecting n pendent
vertices to a common vertex. The double star graph (K1,n,n) is formed by connecting n duplicates
of path P2 to a common vertex. Reader may refer books of Bondy and Murthy [9], Deo [10],
Harary [15], Hond et al. [17], Kuble [19], Tremblay and Manohar [24], West [25], and Wilson [27]
for more details about basic concepts of graph and its applications.

2. Literature Review
2.1 Coloring of Graphs
Graph coloring problem started with famous four color conjecture in 1850, which states that
two countries with common borders should be colored differently. Francis Guthrie (1831-
1899 AD) predicted this problem when he was tried to color a map of England’s countries;
observed that four colors are sufficient. He discussed this problem with brother Fredrick
Guthrie (1833-1886 AD). Fredrick asked question to his teacher De Morgan, Is this true for
all maps? Morgan was unable to respond to his question. De Morgan wrote letter to Cayley
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Arthur and W. R. Hamilton in 1852. In 1879, Cayley Arthur published first time 4CC in London
Royal Mathematical Society (Kubale [19]). Kempe [18] provided the first proof of 4CC in 1879.
However, in 1890, Heawood [16] discovered a flaw in his proof and proved the theorem for five
colors. In the meantime, work on coloring graph elements in progress. Appel and Haken [1,2],
and Appel et al. [3] used a computer with 1200 hours of computer-time to finally prove the
Four-Color problem in 1977. The famous mathematics problem was solved comprehensively
for the first time in history using a computer. Following this, many mathematicians proved
4CC in various ways. Ore and Stemple [20] demonstrated 4CC for maps with fewer than 40
countries using a numerical method. 4CC was demonstrated by Robertson et al. [22] using 633
unavoidable reducible configurations. Bhapkar and Salunke [7] demonstrated 4CC by using
PNR (Pivot Region Number) of a graph.

In 2012, Birkhoff [8] introduced chromatic polynomial based on Gauss [13] fundamental
theorem of algebra, each polynomial with complex coefficient of m degree has precisely m roots.
For colors {1,2,3, . . . ,k} with k ≥ χ(H), this polynomial provides numbers of ways of proper
k-coloring. It has (χ(H)−1) zeros; 1,2, . . . , (χ(H)−1). Birkhoff [8], Whitney [26], Rota [23], and
other researcher contributed many result on chromatic polynomial. Some of the results are,
chromatic polynomial is alternate in signs, coefficient of xn is 1, coefficient of xn−1 is −m,
that is number of edges, P(H,χ) ̸= 0, constant term in polynomial P(H, x) is always zero, for
planar graph H, P(H, x) ̸= 0 is equitant to 4CC. Thus, Birkhoff attempted to solve the graph
theory coloring problem using an algebraic method. Based on this, more than 550 papers have
been published by many researchers since the advent to the chromatic polynomial till today.
Benzer [5] identified the linear structure of the DNA molecule in 1955; as a result, Hajnal and
Surányi [14] introduced and studied interval graphs, a subclass of chordal graphs, in 1958.
In 1975, it was noticed that chordal graphs contain all of the roots from the set {1,2, . . . , (χ(H)−1)}.
Dmitriev [11] discovered that not only chordal graphs have this property, so the ultimate form
of the characterization is: a graph H is chordal if and only if all the roots of the chromatic
polynomial for every induced subgraph H′ are integers from the set {1,2, . . . , (χ(H)−1)}, the zeros
of chromatic polynomial.

In graph theory, graph coloring is a subset of graph cataloging; the assignment of tags
commonly referred as colors to the graph’s elements subject to certain restrictions (Bondy and
Murthy [9], Deo [10], Harary [15], Kuble [19], West [25], and Wilson [27]).

2.2 Basic Types of Colorings
Definition 2.1 (Vertex Coloring). A technique for coloring of vertices so that two nearby vertices
are colored differently is known as vertex coloring. The smallest number is chromatic number χ,
of a graph (Harary [15], and Kubale [19]).

Definition 2.2 (Edge Coloring). A technique for coloring of edges so that two nearby edges are
colored differently is known as edge coloring. The smallest number is chromatic index χ′, of a
graph (Harary [15], and Kubale [19]).
Commonly vertex coloring was used to introduce graph coloring, because many coloring problems
are straightaway converted into vertex coloring. A graph’s edge coloring is basically its line
graph’s vertex coloring. A plane graph’s face coloring is basically its dual graph’s vertex coloring.
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Definition 2.3 (Face Coloring or Region Coloring). A technique for coloring of plane graph’s faces
so that two contiguous faces are colored differently is known as region coloring. The smallest
number is region chromatic number of a graph (Appel and Haken [1], and Kubale [19]).

Definition 2.4 (Total Coloring). The coloring to edges and vertices together of a graph with
any two nearby elements are colored differently known as total coloring adjacent. Vertices,
edges, or edges and their end-vertices are assigned the same color. The smallest number is total
chromatic number χ′′. This coloring technique was pioneered by Behzad [4] in 1965.

Definition 2.5 (Perfect Coloring). The perfect coloring is a proper coloring to all elements of a
planar graph in the sense that two nearby components colored differently. Such number of least
possible colors necessary is known as perfect chromatic number χP (H). This coloring technique
was developed by Bhange and Bhapkar [6], who collaborated to discover the kinds of perfect
coloring.
There are many other coloring types that are defined by enforcing different condition while
proper coloring of graph elements. But we observed that the focus is only on proper coloring
with color patterns maybe repeats any number of times while coloring of graph elements.

2.3 Literature Gap
In the literature, the work of graph coloring is only the discussion of graph coloring with nearby
vertices receiving different colors or labels and related aspects. No one has worked on estimating
the proper vertex coloring of graph with different patterns of color sets for incident vertices at
every edge.

3. Main Results
The quotient of perimeter to diameter of circle is called ‘pi’, denoted by Greek latter π. It is
remains constant for any size of the circle. The decimal place numbers never ends and do not
repeat themselves, hence it is irrational number. The concept of “decimal places numbers differ
in the pattern” is used to define the new coloring of the graphs as incident-vertex π-coloring of
graphs (IVπCG).

3.1 π-Coloring
Definition. Let H be a simple graph and set X = {X1, . . . , Xr} is a set of distinct subsets of some
common characteristics or properties of H. Let set K having s distinct colors and P(K) is its
power set.
If there exists function f : X → P(K) such that assign different set of colors to each X i that
satisfies the condition, f (X i) ̸= f (X j), for all i, j, i ̸= j, with some conditions. Such types of
colorings are called π-coloring of graphs. The smallest value of s is named as π-chromatic
number of graph H corresponding to function f . It is denoted by π f (H) or π(H).
There are various functions f depending upon the different properties of the graph and so, there
are different types of the π coloring.
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3.2 Incident Vertex π Coloring of the Graph
In this coloring type, we assign different colors to an incident vertex of the edges, resulting in a
properly colored graph with different pattern.

Definition. Let H be a simple graph, X = {H1, . . . ,Hr} is collection of distinct two element
subsets of vertex set of H where Hi = {e i = (u,v) | u,v in V , e i in E}, P(K) is the power set for a
set K having s distinct colors.
If there exists function f : X → P(K), such that assign proper colors to an incident vertices that
satisfies the condition, f (Hi) ̸= f (H j), for each i, j, i ̸= j. This is called incident vertex π coloring
of graph H. The least value of s is called incident vertex π chromatic number of H corresponds
to f , and represented by IVπCN(H).

Example. Let H be a graph and X = {H1, . . . ,H8}. Define, H1 = {h1,h2}, H2 = {h1,h3},
H3 = {h2,h3}, H4 = {h2,h4}, H5 = {h3,h5}, H6 = {h4,h5}, H7 = {h4,h6}, H8 = {h5,h6}.

Now, allot colors to each vertices of graph H (see Figure 1). h1 → 1, h2 → 2, h3 → 3, h4 → 4,
h5 → 5 and h6 → 1.

Figure 1. Graph H

As the result,

f (H1)= {1,2}, f (H2)= {1,3}, f (H3)= {2,3}, f (H4)= {2,4}, f (H5)= {3,5},

f (H6)= {4,5}, f (H7)= {1,4}, f (H8)= {1,5}.

Here, all f (Hi) are distinct with minimum number of colors required 5. Therefore, the incident
vertex π chromatic number of H is 5. That means IVπCN(H)= 5.

Note. For graph H, chromatic number is χ(H)= 3 and edge chromatic number is χ′(H)= 3. Both
are different from the incident vertex π chromatic number of H, IVπCN(H)= 5. So, the concept
of incident vertex π chromatic number is different.

Theorem 3.1. For path Pn if IVπCN(Pn)= m, then

max(n)=
{m2−2m+4

2 , if m is even,
m(m−1)

2 , if m is odd.

Proof. Case I: m is even.
The number of ways for selecting two elements from m elements is mC2 ways. In mC2, each
color appears (m−1)-times, which is odd. In any path graph Pn, we can use odd number of colors
only twice in Hi for the two pendent vertices and for intermediate (non-pendent) vertices, use
even number of times. Use any two colors for pendent vertices, and (m−2) colors to remaining
vertices (m−2)-times each.
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Therefore, the number of edges is = (m−2)(m−2)+2(m−1)
2 = 2−2m+m2

2 .

Hence, maximum value of n is = 2−2m+m2

2 +1= m2−2m+4
2 .

Case II: m is odd.

Each color appears (m−1)-times, which is even. Therefore, use any two colors with pendent
vertices (m−2)-times and remaining (m−2) colors to remaining vertices (m−1)-times each.

Thus, the number of edges is = 2(m−2)+(m−2)(m−1)
2 = −2−m+m2

2 .

Hence, maximum value of n is = −2−m+m2

2 +1= m(m−1)
2 .

Theorem 3.2. There are N graphs having IVπCN(Pn)= k, where N =
{ k

2 +1, if k is even,
3k−7

2 , if k is odd.

Proof. Let IVπCN(Pn)= k. There are two cases for k is either even or odd as given below.

Case I: k is an even number.

If k = 2r, by Theorem 3.1, maximum value of n is N1 = 4−2k+k2

2 . Now k−1 = 2r −1 which
is an odd number. Therefore, maximum number of vertices having IVπCN(Pn) = k − 1, is
N2 = (k−1)2−(k−1)

2 = 2−3k+k2

2 .

Hence, N1 −N2 = 4−2k+k2

2 − 2−3k+k2

2 = 1
2 k+1.

Case II: k is an odd number.

If k = 2r+1, by Theorem 3.1, maximum value of n is N3 = k2−k
2 . Here k−1= 2r, hence maximum

number of vertices with IVπCN(Pn)= k−1 is N4 = (k−1)2−2(k−1)+4
2 = 7−4k+k2

2 .

Thus, N3 −N4 = k2−k
2 − 7−4k+k2

2 = 3k−7
2 . Hence theorem is proved.

Theorem 3.3. The incident vertex π chromatic number of K1,n is n+1.

Proof. The star graph K1,n, as shown in Figure 2.

Figure 2. Star graph K1,n

In star graph there are n+1 vertices, V (K1,n)= {u1,u2,u3, . . . ,un+1} and there are n number of
edges. In view of that, the set X = {H1, . . . ,Hn}, where Hi = {u1,ui+1}, for i = 1 to n.
Define, f : X → P(K), such that assign different colors to incident vertices as: u1 → 1, . . . ,un+1 →
n+1.
Here color set K = {1,2, . . . } with its power set is P(K).
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Observe that, f (Hi)= {1, i+1}; i = 1 to n. Hence we needed (n+1) different colors to color the
sets of X such that f (Hi) ̸= f (H j); for i, j with i ̸= j. As a result, IVπCN(K1,n)= n+1.

Theorem 3.4. The incident vertex π chromatic number of K1,n,n is n+1.

Proof. There are (2n+1) vertices and 2n edges in double star graph. Let us denote central vertex
by v and vertices adjacent to v are u1,u2, . . . ,un and the vertices w1,w2, . . . ,wn are adjacent
to u1,u2, . . . ,un, respectively (Figure 3). Therefore, X = {H1,H2, . . . ,Hn,Hn+1, . . . ,H2n}, where
Hi = {v,ui}, i = 1,2 . . . ,n and Hn+ j = {u j,w j}, j = 1,2 . . . ,n.
Define, f : X → P(K), such that assign different colors to incident vertices as follows.
v → 1, u1 → 2, u2 → 3, . . . , un → n+1, w1 → 3, w2 → 4, w3 → 5, . . . , wn−1 → n+1, and wn → 2.

Figure 3. Double star graph K1,n,n

Here, f (Hi)= {1, i+1}; i = 1,2 . . . ,n; f (Hn+ j)= { j+1, j+2}, j = 1,2 . . . ,n−1 and f (H2n)= {n+1,2}.
As a result, f (Hp) ̸= f (Hq), for all p and q, p ̸= q. Thus, IVπCN(K1,n,n)= (n+1).

Theorem 3.5. The incident vertex π chromatic Number of complete graph is n.

Proof. In complete graph, every vertex adjacent to remaining all, so there are nC2 edges.
Let V (Kn) = {v1, . . . ,vn} is vertex set and X = H(Kn) = {H1,H2, . . . ,Hr}, where r = nC2. Hi =
{(u,v)/u,v in V }. Also, set K = {1,2, . . . ,n} of distinct colors with its power set is P(K).
Thus, we have f : X → P(K), is a function that assign different colors to incident vertices as:
vi → i, i = 1,2, . . . ,n. Here, f (Hi) ̸= f (H j), for all i, j, i ̸= j.
Therefore, an incident vertex π chromatic number of Kn is n. That means IVπCN(Kn)= n.

Theorem 3.6. The incident vertex π chromatic number of friendship graph Fn is ∆+1.

Proof. Let v is central vertex and u1, . . . ,u2n are remaining vertices of Fn as shown in Figure 4.
Therefore, X = {H1, . . . ,H3n}, where Hi = {v,ui}, for i = 1, . . . ,2n and H2n+ j = {u2 j−1,u2 j}, for
j = 1, . . . ,n.
Define f : X → P(K), such that assign different colors to incident vertices as: v → 1, ut → (t+1),
for t = 1,2, . . . ,2n.
Here, f (Hi)= {1, i+1} for i = 1,2, . . . ,2n; f (H2n+ j)= {2 j,2 j+1}, for j = 1,2, . . . ,n.
Therefore, f (Hp) ̸= f (Hq), for all p and q, p ̸= q.
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Figure 4. Friendship graph Fn

Hence, number of colors required are 1+2n = 1+∆, where ∆= 2n = maximum degree of Fn.
Thus, IVπCN(Fn)=∆+1.

Theorem 3.7. The incident vertex π chromatic number of wheel graph Wn+1, is n+1.

Proof. Wn is a wheel graph with v is a centered vertex and u1,u2, . . . ,un be remaining vertices
as shown in Figure 5.

Figure 5. Wheel graph Wn+1

Therefore, X = {H1,H2, . . . ,Hn, . . . ,H2n}, where, Hp = {up,up+1}, for p = 1,2, . . . ,n− 1, Hn =
{un,u1}, and Hn+q = {uq,v} for q = 1,2, . . . ,n.
Define function f : X → P(K), such that assign different colors to incident vertices as: v → 1,
u1 → 2, u2 → 3, . . ., un → n+1. Here, f (Hp)= {p+1, p+2} for p = 1,2, . . . ,n−1, f (Hn)= {n+1,2}
and f (Hn+q)= {q+1,1} for q = 1,2, . . . ,n.
Therefore, f (Hp) ̸= f (Hq), for p and q, p ̸= q. Thus, IVπCN(Wn+1)= (n+1).

Theorem 3.8. The incident vertex π chromatic number of fan graph F1,n is ∆+1.

Proof. F1,n is fan graph where vertex v of degree n, and u1, . . . ,un be remaining vertices as
shown in Figure 6.
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Figure 6. Fan graph F1,n

For graph F1,n, ∆(F1,n) = n. Therefore, X = {H1,H2, . . . ,Hn, . . . ,H2n−1}, where Hi = {ui,ui+1},
i = 1, to n−1 and Hn+ j = {u j+1,v}, j = 0, . . . ,n−1.
Define f : X → P(K), such that allot different colors to incident vertices as: u1 → 1, u2 →
2, . . . ,un → n, and v → n+1.
Here, f (Hi)= {i, i+1}, i = 1,2 . . . ,n−1; f (Hn+ j)= { j+1,n+1}, j = 0,1, . . . ,n−1.
Therefore, f (Hp) ̸= f (Hq), for all p and q, p ̸= q. Thus, n+1 color needed for incident vertex π
coloring. Hence, IVπCN(F1,n)=∆+1.

Theorem 3.9. The incident vertex π chromatic Number of double fan graph is ∆+2.

Proof. Consider double fan graph F2,n having vertices u,v with d(u) = d(v) = n, and
u1,u2, . . . ,un be remaining vertices. There are (3n−1) edges in F2,n as shown in Figure 7.

Figure 7. Double fan graph F2,n

For double fan graph F2,n, ∆ = n. Let X = {H1,H2, . . . ,Hn, . . . ,H3n−1}, where Hi = {ui,ui+1},
i = 1, . . . ,n−1, Hn+ j = {u j+1,u}, j = 0,1, . . . ,n−1 and H(2n)+k = {v,uk+1}, k = 0,1, . . . ,n−1.
Define f : X → P(K), such that allot different colors to incident vertices as: u1 → 1, u2 →
2, . . . ,un → n, u → n+1, v → n+2. Here, f (Hi)= {i, i+1}, i = 1,2, . . . ,n−1, f (Hn+ j)= { j+1,n+1},
j = 0,1, . . . ,n−1 and f (H2n+k)= {n+2,k+1}, k = 0,1, . . . ,n−1.
Therefore, f (Hp) ̸= f (Hq), for all p and q, p ̸= q. Thus, n+2 colors needed for incident vertex π
coloring. Hence, IVπCN(F2,n)=∆+2.
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Theorem 3.10. For bipartite graph Km,n, IVπCN(Km,n)= m+n.

Proof. Consider bipartite graph Km,n, with the partition of vertex sets are A = {u1,u2, . . . ,um}
and B = {v1,v2, . . . ,vn} and V = A∪B.
Let X = {Hi j = {ui,v j}, i = 1,2, . . . ,m and j = 1,2 . . . ,n}, K = {1,2 . . . ,m+n}.
Define, f : X → P(K), such that assign different colors to incident vertices as: ui → i,
i = 1,2, . . . ,m and v j → m + j, j = 1,2, . . . ,n thus we observe that f (Hi j) = {i,m + j}, and
f (Hp) ̸= f (Hq), for all p and q, p ̸= q. Thus, IVπCN(Km,n)= m+n.

Theorem 3.11. ∆≤ IVπCN(Bm,n)≤ m+n, where ∆ maximum degree of bipartite graph.

Proof. Consider bipartite graph Bm,n, its vertex set is V = A∪B, where A = {u1, . . . ,um} and
B = {v1, . . . ,vn} and edge set E having edges with end vertices of each edge are from set A and
B. Let v be any vertex with largest degree ∆. Since v has ∆ different neighbors, so we needed
minimum ∆+1 different color for incident vertex π coloring. Also, by Theorem 3.10, we required
atmost (m+n) color for incident vertex π coloring.
Thus ∆≤ IVπCN(Bm,n)≤ m+n. Hence result proved.

Theorem 3.12. The highest value of n for cycle graph Cn with IVπCN(Cn)= k, is 2r(r−1), if
k = 2r and r(2r+1), if k = 2r+1.

Proof. We will prove theorem with two cases for k.

(I) k is even i.e. k = 2r.
In kC2, each color repeated (k−1)-times means odd number of times. But in cycle graph Cn, each
color contributes to even number of edges. As (k−1) is odd, every color used atmost (k−2)-times
for IVπC, and so, maximum number of vertices in corresponding Cn is N1 = k(k−2)

2 = 2r(r−1).

(II) k is odd, k = 2r+1.
In kC2, each color repeated (k−1)-times means even number of times. As (k−1) is even, every
color contributes atmost (k−1)-times in IVπC. Therefore, maximum number of vertices in
corresponding Cn is N2 = k(k−1)

2 = (2r+1)(2r+1−1)
2 = r(2r+1).

Theorem 3.13. The number of Cn graphs having IVπCN(Cn)= k, are r−1 if k = 2r and 3r if
k = 2r+1.

Proof. There are two cases for integer k as below.

(I) If k is even, k = 2r.
By Theorem 3.12, the highest Cn graph is at N1 = 2r(r−1). For k−1= 2r−1, greatest value of
n is at N2 = (r−1){2(r−1)+1}= (r−1)(2r−1).
Hence, the required numbers of graphs are N1 −N2 = (r−1).

(II) If k is odd, k = 2r+1.
Again by Theorem 3.12, the highest Cn graph is at N3 = r(2r+1). For (k−1)= 2r, the maximum
value of n is at N4 = 2r(r−1).
Hence, the required numbers of graphs is N3 −N4 = 3r.

Theorem 3.14. If Hn is n copies of K2 graph and IVπCN(Hn) = k, then (k−1)C2 +1 ≤ n ≤ kC2,
where k > 2.
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Proof. The theorem is proved by induction.
Let us denote L = (k−1)C2 +1 is a least values and G = kC2 greatest value.
For k = 3, L =G = 3. So, n = 3. Thus theorem is true k = 3.
Consider now theorem is true for k = r. Therefore, IVπCN(Hn) = r, if (r−1)C2 +1 ≤ n ≤ rC2.
Moreover, the greatest (G) and least values (L) of n are rC2 and (r−1)C2 +1.
Let Hp be a graph with IVπCN(Hp)= k = r+1.
Now, add one K2 graph to Hp , we get one more color set color {1, r+1}. The smallest value of p
is L = rC2 +1. Continuously, adding K2 graphs, we obtain color sets {t, r+1}, for t = 2,3, . . . , r.
So, greatest value of p will be G = rC2 + r = r+1C2. Thus, rC2 +1≤ p ≤ r+1C2.
Henceforth by induction method theorem is true for all values of k.

Theorem 3.15. If Hn is n copies of K2 graph, then IVπCN(Hn)=
⌊

3+p8n−7
2

⌋
, where n ≥ 1.

Proof. If IVπCN(Hn)= k, then the smallest and the greatest values of n is L = (k−1)C2 +1 and
G = kC2, respectively. There are (k−1) graphs having IVπCN(Hn)= k.
At L = n = (k−1)C2+1, the value of k =

⌊
3+p8n−7

2

⌋
is integer. Now increasing n continuously up

to G = kC2. We get,
⌊

3+p8n−7
2

⌋
= k.xyz.

This is a fraction value and its integer part is k. Hence k =
⌊

3+p8n−7
2

⌋
.

Theorem 3.16. If Hn is n copies of K2 graph, then IVπCN(Hn)=
⌈

1+p8n−1
2

⌉
, where n ≥ 1.

Proof. Suppose IVπCN(Hn)= k, at n = kC2, the value of
⌈

1+p8n−1
2

⌉
is an integer. Now, reduce

n successively by 1 up to (k−1)C2 +1, we get,
⌈

1+p8n−1
2

⌉
= (k−1).xyz . . . and its greatest integer

part is k. Hence, k =
⌈

1+p8n−1
2

⌉
.

Theorem 3.17. The IVπCN of diamond graph Dn for n = 4,6,8 . . . , is ∆(Dn)+1.

Proof. The diamond graph Dn has n vertices namely {u,v, x1, x2, . . . , xn−2} and there are (2n−3)
edges as shown in Figure 8.

Figure 8. Diamond graph Dn
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Let Hi = {u, xi}, i = 1,2 . . . , (n−2), H(n−2)+ j = {x j,v}, j = 1,2 . . . , (n−2), and H2n−3 = {u,v}. So,
X = {H1,H2, . . . ,Hn, . . . ,H2n−3}, and K = {1,2, . . . ,n}.
Define f : X → P(K), such that assigns different colors to incident vertices.
u → 1, v → 2, xi → 2+ i, where i = 1,2 . . . , (n−2).
Here, f (Hi) = {1, i + 2}, i = 1,2 . . . , (n − 2), f (H(n−2)+ j) = { j + 2,2}, j = 1,2 . . . , (n − 2), and
f (H2n−3)= {1,2}.
Therefore, f (Hp) ̸= f (Hq), for all p and q, p ̸= q. Thus, IVπCN(Dn)= n and ∆(Dn)= n−1.
Hence, IVπCN(Dn)=∆(Dn)+1.

Theorem 3.18. The IVπCN of the maximal planar graph H is ∆(H)+1.

Proof. It is the particular case of Dn. We can apply Theorem 3.17, to prove this result.

Algorithm 3.19. An algorithm for finding incident vertex π chromatic number of the path Pn.
Consider path Pn having n edges as shown in Figure 9.
Then its vertex set is V (Pn)= {p1, p2, . . . , pn+1} and
Edge set is E(Pn)= {e1, e2, . . . , en}, where e i = (pi, pi+1), i = 1,2, . . . ,n.

Figure 9. Path Pn

Let X = {X t = e t | t = 1 to n} and K = {1,2, . . . ,m} is a set having m distinct colors.
For incident vertex π chromatic number of path Pn use following steps for algorithm:

Step 1: Define F : X → P(K) such that assign different colors to incident vertices for each edge
with F(X p) ̸= F(Xq), for all p and q, p ̸= q.

Step 2: Start to assign colors 1,2, . . . , from set K with X1 = {p1, p2}= {1,2}, X1 = {p2, p3}= {2,3}
etc., and denote color set K3 = {1,2,3}.

Step 3: Now color next set Xq with available color from set K3 and check F(X p) ̸= F(Xq), for all
p = {1,2,3}< q, if yes then use color from K3 otherwise go to next step.

Step 4: If F(X p)= F(Xq), for existing available colors from K3 then select new color from set K ,
add it to K3 becomes now K4 and start to colors with Step 3.

Step 4: If all set X p are colored with F(X p) ̸= F(Xq), for all p and q, p ̸= q with the color set is
used Kr = {1,2,3, . . . , r} and Stop.

Thus, we will get minimum number of colors and that is IVπCN(Pn).

4. Conclusion
We introduced incident vertex π coloring (IVπCN). For some standard graph’s families, IVπCN
are computed. We have obtained the IVπCN bounds for some families. Also, worked on
enumeration for some graph’s families with their IVπCN is fixed.
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