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Abstract. The (4,2)-labeling of a graph G is a function f : V (G) → Z+ such that | f (x)− f (y)| ≥ 4 if
d(x, y)= 1 and | f (x)− f (y)| ≥ 2 if d(x, y)= 2, for any x, y ∈V (G). In this paper, we label different types
of graphs such as paths, cycles, complete and complete bipartite graphs, star graphs and ladder graphs
to study the bounds of the span λ of these graphs.
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1. Introduction
Graph labeling has found application in various fields like astronomy, coding theory, database
management, circuit design and radio frequency assignment among others. A graphical model
of the frequency assignment problem was introduced in the year 1980 by Hale [3] with the
vertices of the graph denoting stations and the edges denoting their proximity.

In the year 1992, Griggs and Yeh [2] introduced the L(2,1)-labeling of a graph G as a
function f : V (G)→Z+ such that | f (x)− f (y)| ≥ 2 if d(x, y)= 1 and | f (x)− f (y)| ≥ 1 if d(x, y)= 2,
for any x, y ∈V (G). One can find literature on L(2,1)-labeling of graphs in [6–9].

The L(0,1)-labeling of a graph G is a function f : V (G) → Z+ such that | f (x)− f (y)| ≥ 0 if
d(x, y) = 1 and | f (x)− f (y)| ≥ 1 if d(x, y) = 2, for any x, y ∈ V (G). One can find literature on
L(0,1)-labeling of graphs in [5,10–12].
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In the year 2016, Ghosh and Pal [1] introduced the L(3,1)-labeling of a graph G as a function
f : V (G) →Z+ such that | f (x)− f (y)| ≥ 3 if d(x, y) = 1 and | f (x)− f (y)| ≥ 1 if d(x, y) = 2, for any
x, y ∈V (G).

In this paper, we introduce L(4,2)-labeling of a graph G as a function f : V (G) →Z+ such
that | f (x)− f (y)| ≥ 4 if d(x, y) = 1 and | f (x)− f (y)| ≥ 2 if d(x, y) = 2, for any x, y ∈ V (G). Here
we apply L(4,2)-labeling technique to label paths, cycles, complete graphs, complete bipartite
graphs, star graphs and ladder graphs.

Definition 1.1. Let G be a graph having vertex set V and edge set E. A function f : V (G)→Z+

is said to admit a (4,2)-labeling of G if for all u,v ∈ V , | f (x)− f (y)| ≥ 4 if d(x, y) = 1 and
| f (x)− f (y)| ≥ 2 if d(x, y)= 2.

Definition 1.2 ([5]). The difference between the largest and the smallest values of f , for every
possible value of f , is called the span of the labeling and is denoted by λ.

Definition 1.3 ([3]). A path is a trail where all the vertices (except the starting and
the terminating vertices) are distinct. A path having n vertices and n−1 edges is denoted
by Pn.

Definition 1.4 ([3]). A simple graph G with n vertices and n edges is said to be a cycle graph if
all its edges form a cycle of length n. A cycle graph of length n is denoted by Cn.

Definition 1.5 ([3]). A graph G is said to be a complete graph if all its vertices are adjacent to
each other. A complete graph on n vertices is denoted by Kn.

Definition 1.6 ([3]). A graph G is said to be a complete bipartite graph if its vertices can be
partitioned into two subsets V1 and V2 such that each vertex of V1 is adjacent to each vertex
of V2, but no two vertices on the same subset are adjacent. A complete bipartite graph with
|V1| = m and |V 1| = n is denoted by Km,n.

Definition 1.7 ([3]). A star graph on n vertices, denoted by Sn, is a graph with one vertex
having degree n−1 and the other n−1 vertices having degree 1.

Definition 1.8 ([3]). The ladder graph Ln is a planar, undirected graph obtained as
the Cartesian product of two path graphs, one of which has only one edge. A ladder graph
contains 2n vertices and 3n−2 edges.

2. Main Results
In this section, we label some special classes of graphs and obtain the span of the (4,2)-labeling
of these graphs. We begin this section with the (4,2)-labeling of paths.

Proposition 2.1. λ(P2)= 4.
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Proof. For a path P2 with vertices v0 and v1, if we label v0 by 0, then other vertex must be
labeled by at least 4 and so λ(P2)= 4.

Lemma 2.1. For any subgraph H of G, λ(H)≤λ(G).

Proof. Let f : V (G)→ {0,1,2, . . . ,k} and let λ (G)= k. Then the function g : V (H)→ {0,1,2, . . . ,k}
defined by g(v)= f (v), ∀ v ∈V (H), is a labeling of the vertex set of H that uses no label greater
than k. Therefore, λ(H)≤ k =λ(G).

Proposition 2.2. (a) λ(P3)= 6.

(b) λ(P4)= 6.

Proof. (a) Since λ(P2)= 4, using Lemma 2.1, λ(P3)≥ 4=λ(P2).
Let P3 be a path having vertices v0, v1 and v2 such that v0 is adjacent to v1 and v1 is

adjacent to v2. Since d(v0,v1)= d(v1,v2)= 1 and d(v0,v2)= 2, so there are three possibilities of
labeling these vertices:

(i) Let v0 = a. Then v1 = a+4 and v2 = a+8. Therefore λ(P3)≤ 8.

(ii) Let v0 = a. Then v2 = a+2 and v1 = a+6. Therefore λ(P3)≤ 6.

(iii) Let v1 = a. Then v0 = a+4 and v2 = a+8. Therefore λ(P3)≤ 8.
In view of these possibilities, λ(P3)= 6.

(b) Since P3 is a subgraph of P4, so by Lemma 2.1, λ(P4) ≥ 6 = λ(P3). Let P4 be a path with
vertices, v0, v1, v2 and v3 such that v0 is adjacent to v1, v1 is adjacent to v2 and v2 is adjacent
to v3. One of the possible labeling options for these four vertices is given below:

v0 = 4, v1 = 0, v2 = 6 and v3 = 2 .

So λ(P4)≤ 6. Consequently, λ(P4)= 6.

Proposition 2.3. λ(Pn)= 8, ∀ n ≥ 5.

Proof. Let n = 5. Since P4 is a subgraph of P5, so by Lemma 2.1, λ(P5)≥ 6=λ(P4). Let v0–v1–
v2–v3–v4 be the vertices of P5. As in Proposition 2.2(b), one of the possible labeling options of
P5 is given below:

v0 = 4, v1 = 0, v2 = 6, v3 = 2 and v4 = 8 .

Thus λ(P5)= 8.
For n > 5, the same set of labels can be repeated all over again (4,0,6,2,8,4,0,6,2,8,4,0,6, . . .).

Thus λ(Pn)= 8, ∀ n ≥ 5.

Example 2.1. Figure 1 shows the (4,2)-labeling of the paths P2, P3, P4, P5 and P6.
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Figure 1. (4,2)-labeling of the paths P2, P3, P4, P5 and P6

Proposition 2.4. For any cycle Cn, λ(Cn)= 8, ∀ n ≥ 3.

Proof. For n < 5, the result is easy to verify. For n > 5, the cycle Cn contains the path P5 as a
subgraph. Therefore, by Lemma 2.1, λ(Cn)≥ (P5)= 8.
Let u0,u1,u2, . . . ,un−1 be the vertices of the cycle Cn.

We look at the following three cases:

Case 1: n ≡ 0(mod 3).
For ui ∈V (Cn), the vertices of the cycle Cn can be labeled by the following function:

f (ui)=


0, if i ≡ 0(mod 3),
4, if i ≡ 1(mod 3),
8, if i ≡ 2(mod 3).

Case 2: n ≡ 1(mod 3).
For ui ∈V (Cn), the vertices of the cycle Cn can be labeled by the following function:

f (ui)=



0, if i = n− (3k+1), where 1≤ k ≤ n−1
3 ,

4, if i = n−3k, where 2≤ k ≤ n−1
3 ,

8, if i = n−1 or i = n− (3k+2), where 1≤ k ≤ ⌊n−2
3

⌋
,

2, if i = n−2,
6, if i = n−3.

Case 3: n ≡ 2(mod 3).
For ui ∈ V (Cn), the vertices of the cycle Cn can be labeled by the following function:

f (ui)=



0, if i = n− (3k+2), where 1≤ k ≤ n−2
3 ,

4, if i = n− (3k+1), where 2≤ k ≤ n−2
3 ,

8, if i = n−3k, where 1≤ k ≤ n−2
3 ,

2, if i = n−2,
6, if i = n−1.

In view of these three cases, we find that λ(Cn)= 8.
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Example 2.2. Figure 2 shows the (4,2)-labeling of the cycles C7, C9 and C10.

Figure 2. (4,2)-labeling of the cycles C7, C9 and C10

Proposition 2.5. For any complete graph Kn, λ(Kn)= 4(n−1).

Proof. Each vi ∈ Kn can be labeled by the function f : V (Kn) → {0,4,8, . . . ,4(n−1)} defined by
f (vi)= 4i, for 0≤ i ≤ n−1. Clearly, λ(Kn)= 4(n−1).

Proposition 2.6. For any complete bipartite graph Km,n, λ(Km,n)= 2(m+n).

Proof. Let V1 and V2 be the two vertex sets of Km,n such that |V1| = m and |V2| = n. Since
d(u,v)= 2, ∀ u,v ∈V1, we can label the vertices of V1 with a,a+2,a+4, . . . ,a+2(m−1).

Similarly, the vertices of V2 can be labeled with a+2(m−1)+4,a+2(m−1)+4+2,a+2(m−1)
+4+4, . . . ,a+2(m−1)+4+2(n−1). Taking a = 0 gives us the minimum integers. Therefore,
λ(Km,n)= 2(m−1)+4+2(n−1)= 2(m+n).

Example 2.3. Figure 3 shows the (4,2)-labeling of the complete bipartite graph K3,4.

Figure 3. (4,2)-labeling of the complete bipartite graph K3,4

Proposition 2.7. For any star graph graph Sn, λ(Sn)= 2+2n.

Proof. Since the star graph Sn is a complete bipartite Km,n with m = 1, thus by Proposition 2.6,
λ(Sn)= 2(1+n)= 2+2n.

Proposition 2.8. For the ladder graph Ln, λ(Ln)= 10, for all n ≥ 2.
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Proof. Let V = {ui : 1≤ i ≤ n}∪ {v j : 1≤ j ≤ n} be the vertex set of Ln. Since Ln contains the cycle
C4 and λ(C4)= 8, thus by Lemma 2.1, λ(Ln)≥ 8=λ(C4).

We define a function f : V (Ln)→Z+ such that for i ≡ 1(mod 3),

f (ui)= 0, f (ui+1)= 8, f (ui+2)= 4

and

f (vi)= 6, f (vi+1)= 2, f (vi+2)= 10 .

We now proceed to claim that the edges of Ln conform to the adjacency rules for L(4,2)-
labeling:

(1) | f (ui)− f (ui+1)| ≥ 4, for all i ≡ 1(mod 3),

(2) | f (ui+1)− f (ui+2)| ≥ 4, for all i ≡ 1(mod 3),

(3) | f (vi)− f (vi+1)| ≥ 4, for all i ≡ 1(mod 3),

(4) | f (vi+1)− f (vi+2)| ≥ 4, for all i ≡ 1(mod 3),

(5) | f (ui)− f (vi+1)| ≥ 2, for all i ≡ 1(mod 3),

(6) | f (ui+1)− f (vi)| ≥ 4, for all i ≡ 1(mod 3).
From (1)-(6), it can be seen that Ln admits a (4,2)-labeling and λ(Ln)= 10.

Example 2.4. Figure 4 shows the (4,2)-labeling of the ladder graph L9.

Figure 4. (4,2)-labeling of the ladder graph L9

3. Conclusion and Future Scope
The (4,2)-labeling of different classes of graphs including paths, cycles, complete and complete
bipartite graphs, star graphs and ladder graphs have been studied to investigate the bounds of
the span λ of these graphs. Labeling other classes of graphs and studying their bounds leaves
ample scope for future research on this topic.
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