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Splines with Minimal Defect and Decomposition Matrices

A.A. Makarov

Abstract. Finite-dimensional space of twice continuously differentiable splines
on a nonuniform grid are considered. We also construct a system of linear
functionals biorthogonal to the splines and resolve an interpolation problem
generated by this system. We derive the decomposition matrices on an interval
and on a segment for the space of forth order (third degree) splines associated
with infinite and finite nonuniform grids respectively.

Introduction

Splines and wavelets are used in information theory and, in particular, for
creating effective algorithms of processing large information flows (cf. [1]). The
most important aspects of the theory of splines are related to interpolation
and approximation, as well as to the smoothness and stability of solutions of
interpolation and approximation problems.

In this paper, we regard approximation relations as a system of equations
which leads to (polynomial [2] or nonpolynomial [3]) minimal splines of maximal
smoothness of arbitrary order [9]. For twice continuously differentiable splines of
forth order (third degree) – splines with minimal defect on a nonuniform grid we
construct a system of linear functionals biorthogonal to the splines and resolve
an interpolation problem generated by this system. We derive the decomposition
matrices on an interval and on a segment for the space of fourth order (third
degree) splines associated with infinite and finite nonuniform grids respectively.
Some general approach to construction of biorthogonal systems discussed in the
paper [13]. Such representations yield the wavelet decomposition of signals with
rapidly varying characteristics (cf. [4, 5, 14]), which essentially saves resources
of computational devices. The known two-scale difference (refinement) equations
(cf., for example, [6]) is a particular case of the calibration relations obtained in
papers [10, 11].
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1. Preliminaries

Introduce the notation: Z is the set of integers, Z+
def
= { j | j ¾ 0, j ∈ Z},

R1 is the set of real numbers. The vector (linear) space of (m + 1)-dimensional
column vectors is denoted by Rm+1 . We identify vectors of this space with one-
column matrices and apply the usual matrix operations, in particular, for two
vectors a,b ∈ Rm+1 the expression aT b is the Euclidean inner product of these
vectors. Components of vectors are written in the square brackets and enumerated
by 0, 1, . . . , m, for example, a = ([a]0, [a]1, . . . , [a]m)T . The quadratic matrix
with columns a0 , a1, . . . ,am ∈ Rm+1 (in the indicated order) is denoted by
(a0,a1, . . . ,am), and det(a0,a1, . . . ,am) denotes its determinant. An ordered set

A
def
= {a j} j∈Z of vectors a j ∈ Rm+1 is called a chain. A chain is complete if

det(a j−m,a j−m+1, . . . ,a j) 6= 0 for all j ∈ Z. The set of all functions continuous
on (α,β) is denoted by C(α,β). For any S ∈ Z+ we introduce the notation

CS(α,β)
def
= {u | u(i) ∈ C(α,β) for all i = 0, 1, 2, . . . , S}, setting C 0(α,β) = C(α,β).

If the components of a vector-valued function u ∈ Rm+1 are S times continuously
differentiable on an interval (α,β), we write u ∈ CS(α,β). We use similar notation
CS[a, b] and CS[a, b] for the corresponding spaces on a segment [a, b].

2. Space of splines

On an interval (α,β)⊂ R1 , we consider a grid X
def
= {x j} j∈Z ,

X : . . .< x−1 < x0 < x1 < . . . , (2.1)

where α
def
= lim

j→−∞
x j and β

def
= lim

j→+∞
x j (the cases α = −∞ and β = +∞ are not

excluded).

We introduce the notation M
def
= ∪ j∈Z(x j , x j+1), S j

def
= [x j , x j+m+1], Jk

def
=

{k − m, k − m + 1, . . . , k}, where k, j ∈ Z. For K0 ¾ 1, K0 ∈ R1 , we denote by
X (K0,α,β) the class of grids of the form (2.1) possessing the local quasiuniformity
property (see [7] for more details)

K−1
0 ¶

x j+1 − x j

x j − x j−1
¶ K0 for all j ∈ Z.

We set hX
def
= sup

j∈Z
(x j+1 − x j).

Let X(M) be the linear space of real-valued functions on the set M . We consider
a vector-valued function ϕ : (α,β) 7→ Rm+1 with components in X(M). If a chain
of vectors {a j} is complete, then the relations

∑
j′∈Jk

a j′ω j′(t)≡ϕ(t) for all t ∈ (xk, xk+1), for all k ∈ Z,

ω j(t)≡ 0 for all t /∈ S j ∩M ,
(2.2)

uniquely determine the functions ω j(t), t ∈ M , j ∈ Z. It is clear that suppω j(t)⊂
S j .
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By the Cramer formula, from the system of linear algebraic equations (2.2) we
find

ω j(t) =
det({a j′} j′∈Jk , j′ 6= j ‖′ j ϕ(t))
det(ak−m,ak−m+1, . . . ,ak)

for all t ∈ (xk, xk+1), for all j ∈ Jk,

where ‖′ j means that the determinant in the numerator is obtained from the
determinant in the denominator by replacing a j with ϕ(t) (preserving the column
order).

The linear span of functions {ω j} j∈Z is called the space of minimal (A,ϕ)-splines
of (m+ 1)-th order (m-th degree) on the grid X and is denoted by

S(X ,A,ϕ)
def
=
�

u | u=
∑

j∈Z
c jω j for all c j ∈ R1

�
.

The conditions (2.2) are called the approximation relations, the vector-valued
function ϕ is called the generator of (A,ϕ)-splines, and the chain A is called the
defining chain for (A,ϕ)-splines.

For a vector-valued function ϕ ∈ CS(α,β) we set

ϕk
def
= ϕ(xk), ϕ(i)k

def
= ϕ(i)(xk), i = 0, 1, . . . , S, k ∈ Z.

We consider the vector-valued function Π(z0,z1, . . . ,zm−1) ∈ Rm+1 defined by
the identity

ΠT (z0,z1, . . . ,zm−1)z ≡ det
�
z0,z1, . . . ,zm−1,z

�

for all z,z0,z1, . . . ,zm−1 ∈ Rm+1 . The vector-valued function Π(z0,z1, . . . ,zm−1)
is called the m-fold vector product (cf. details in [8]) in the space Rm+1 and is
denoted by z0 × z1 × . . .× zm−1 .

For ϕ ∈ Cm−1(α,β) we consider the vectors

d j
def
= ϕ j ×ϕ′j × . . .×ϕ(m−1)

j . (2.3)

Let ϕ ∈ Cm(α,β). We introduce the Wronskian determinant

W (t)
def
= det

�
ϕ(t),ϕ ′(t), . . . ,ϕ(m−1)(t),ϕ(m)(t)

�
.

We define the following vector chain A∗
def
= {a∗j}:

a∗j
def
= −d j+1 × d j+2 × . . .× d j+m. (2.4)

Theorem 2.1. Let ϕ ∈ Cm(α,β). If |W (t)| ¾ c = const > 0 for all t ∈ (α,β) and
X ∈ X (K0,α,β) for some K0 ¾ 1, then for sufficiently small hX the space S(X ,A∗,ϕ)
lies in the space C m−1(α,β).

The proof of this theorem can be found in [9].

Corollary 2.1. Under the assumptions of Theorem 2.1, the chain {d j} j∈Z is complete
and

dT
j a∗j 6= 0, dT

j+m+1a∗j 6= 0.
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The space S(X ,A∗,ϕ) is called the space of minimal Bϕ -splines of (m + 1)-th
order (m-th degree) on the grid X , and splines of this space are referred to as
minimal splines of maximal smoothness. The difference between the degree of the
spline and the order of the highest continuous derivative is called the defect of
the spline. Minimal splines of maximal smoothness are referred to as splines with
minimal defect.

Let m = 3. We consider a vector-valued function ϕ : (α,β) 7→ R4 with
components in X(M). It is obvious that the equalities

dT
j+p a∗j = 0 for all p = 1, 2, 3, for all j ∈ Z,

hold for any p = 1, 2, 3 in view of the properties of the m-fold vector product.

Theorem 2.2. If ϕ ∈ C3(α,β), then ω j ∈ C2(α,β) and

ω j(t) =





dT
j ϕ(t)

dT
j a∗j

, t ∈ [x j , x j+1),

dT
j ϕ(t)

dT
j a∗j

−
dT

j a∗j+1

dT
j a∗j

dT
j+1ϕ(t)

dT
j+1a∗j+1

, t ∈ [x j+1, x j+2),

dT
j+4ϕ(t)

dT
j+4a∗j

−
dT

j+4a∗j−1

dT
j+4a∗j

dT
j+3ϕ(t)

dT
j+3a∗j−1

, t ∈ [x j+2, x j+3),

dT
j+4ϕ(t)

dT
j+4a∗j

, t ∈ [x j+3, x j+4).

(2.5)

The proof of this theorem can be found in [11].

Let [ϕ(t)]0 ≡ 1 for all t ∈ (α,β). If a vector chain AN def
= {aN

j } is defined by the

formula aN
j

def
= [d j+1 × d j+2 × d j+3]

−1
0 d j+1 × d j+2 × d j+3, then

∑
jω j(t) ≡ 1 for

all t ∈ (α,β). The space S(X ,AN ,ϕ) is the space of normalized Bϕ -splines of third
order on the grid X .

Corollary 2.2 (cf. [2]). For ϕ(t) = (1, t, t2, t3)T the functions ω j(t) coincide with
the known polynomial B-splines of fourth degree.

We consider finite-dimensional spaces of splines. We set a
def
= x0 , b

def
= xn ,

J3,n
def
= {−3,−2, . . . , n − 1, n}. From the infinite grid X we extract a finite grid

Xn , n ∈ N, n¾ 4,

Xn : x−3 < . . .< a = x0 < x1 < . . .< xn−1 < xn = b < . . .< xn+3,

and from the complete infinite chain A∗ ∈ A we extract a finite chain A∗n
def
=

{a∗−4,a∗−3, . . . ,a∗n}.
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We restrict all functions in the space S(X ,A∗,ϕ) onto the set [a, b]. The set of
these restrictions is the finite-dimensional linear space

S(Xn,A∗n,ϕ)
def
=
�

u | u=
∑

j∈J3,n−1

c jω j for all c j ∈ R1
�
⊂ C2[a, b].

Theorem 2.3. The function un(t)
def
=

∑
j∈J3,n−1

c jω j(t), t ∈ [a, b], is the trace of the

function u(t)
def
=
∑
j∈Z

c jω j(t), t ∈ (α,β), on the segment [a, b], belongs to the space

S(Xn,A∗n,ϕ), and is completely determined by the grid points {x j} j∈J3,n+3
, vectors

{ϕ(S)j } j∈J3,n+3
, S = 0, 1, 2, and coefficients {c j} j∈J3,n−1

.

The proof follows from the definition of the spaces S(X ,A∗,ϕ) and S(Xn,A∗n,ϕ).

Corollary 2.3. The restrictions of ω j form a linearly independent system on the
segment [a, b]; moreover, dimS(Xn,A∗n,ϕ) = n+ 3.

3. Biorthogonal system of functionals and calibration relations

We consider a linear space U over the field of real numbers and the dual space
U∗ of linear functionals f over the space U. The value of a functional f at an
element u ∈ U is denoted by 〈 f , u〉. A system of functionals { f j} j∈Z is said to be
biorthogonal to the system of functions {ω j′} j′∈Z if 〈 f j ,ω j′〉= δ j, j′ for all j, j′ ∈ Z,
where δ j, j′ is the Kronecker symbol.

We consider linear functionals { f j} j∈Z defined on C2(α,β) by the formula

〈 f j , u〉 def
= a0

j+1u(x j+1) + a1
j+1u′(x j+1) + a2

j+1u′′(x j+1),

where

a0
j+1

def
= dT

j+2ϕ
′
j+1dT

j+3ϕ
′′
j+1 − dT

j+3ϕ
′
j+1dT

j+2ϕ
′′
j+1, (3.1)

a1
j+1

def
= −(dT

j+2ϕ j+1dT
j+3ϕ

′′
j+1 − dT

j+3ϕ j+1dT
j+2ϕ

′′
j+1), (3.2)

a2
j+1

def
= dT

j+2ϕ j+1dT
j+3ϕ

′
j+1 − dT

j+3ϕ j+1dT
j+2ϕ

′
j+1. (3.3)

The result of the action of a functional f j on a function u is defined by the value
of u and its derivatives at the point x j+1 which is referred to as the support of f j

and is written as supp f j = x j+1 .

Theorem 3.1. The system of linear functionals { f j} j∈Z is biorthogonal to the system
of splines {ω j′} j′∈Z , i.e.

〈 f j ,ω j′〉= δ j, j′ , for all j, j′ ∈ Z. (3.4)

Proof. Let us prove that a system of functionals { f j} j∈Z is biorthogonal to a system
of splines {ω j′} j′∈Z if and only if

〈 f j ,ϕ〉= a∗j . (3.5)
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Indeed, applying functional f j to approximation relations (2.2), we obtain the
equality

j∑

j′= j−m

a∗j′〈 f j ,ω j′〉= 〈 f j ,ϕ〉. (3.6)

By biorthogonality (3.5) holds. Conversely, if (3.5) holds, then (3.6) implies

j∑

j′= j−m

a∗j′〈 f j ,ω j′〉= a∗j .

By the completeness of a chain a∗j′ , by location of support of functional and by
uniqueness of the last system we get biorthogonality.

By the definition (2.4), we can represent vector a∗j as symbolic determinant

a∗j =−d j+1 × d j+2 × d j+3 =

��������

ϕ j+1 ϕ′j+1 ϕ′′j+1

dT
j+2ϕ j+1 dT

j+2ϕ
′
j+1 dT

j+2ϕ
′′
j+1

dT
j+3ϕ j+1 dT

j+3ϕ
′
j+1 dT

j+3ϕ
′′
j+1

��������
.

Expanding the determinant along the first row we obtain

a∗j = a0
j+1ϕ j+1 + a1

j+1ϕ
′
j+1 + a2

j+1ϕ
′′
j+1,

where coefficients a0
j+1 , a1

j+1 , a2
j+1 defined by formulas (3.1)-(3.3); hence (3.5)

holds. Therefore (3.4) holds. ¤

We consider the interpolation problem

〈 f j , u〉= v j for all j ∈ Z, u ∈ S(X ,A∗,ϕ), (3.7)

where {v j} j∈Z is a given sequence (infinite towards both directions) of numbers.

Theorem 3.2. In the space S(X ,A∗,ϕ) there exists a unique solution to the problem
(3.7), and this solution is determined by the formula

u(t) =
∑

j∈Z
v jω j(t).

Proof. The assertion follows from Theorem 3.1. ¤

From the original grid X for fixed k ∈ Z we eliminate one grid point xk+1 . On
the obtained enlarged (sparse) grid eX , we consider splines eω j(t), j ∈ Z.

Suppose that ξ
def
= xk+1 and ex j are grid points of the new grid eX def

= {ex j | j ∈ Z} :

ex j
def
=

(
x j , j ¶ k,

x j+1, j ¾ k+ 1.

We use the tilde for denoting the above-introduced objects considered in the
new grid eX . The functions eω j(t) can be found by formula (2.5), by replacing the
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grid points of the original grid x j with ex j , j ∈ Z. It is easy to see that

d j =

(ed j , j ¶ k,
ed j−1, j ¾ k+ 2.

(3.8)

From (2.3), (2.4), and (3.8) we find

a∗j =

(
ea∗j , j ¶ k− 3,

ea∗j−1, j ¾ k+ 1.
(3.9)

It is obvious that for t ∈ (α,β)

eω j(t)≡
(
ω j(t), j ¶ k− 4,

ω j+1(t), j ¾ k+ 1.
(3.10)

We introduce infinite-dimensional column vectors with components ω j(t) and
eω j(t), j ∈ Z:

ω(t)
def
= (. . . ,ω−2(t),ω−1(t),ω0(t),ω1(t),ω2(t), . . .)T ,

eω(t) def
= (. . . , eω−2(t), eω−1(t), eω0(t), eω1(t), eω2(t), . . .)T .

Any function eωi(t) can be represented as a finite linear combination of
functions ω j(t):

eω(t) = ePω(t) ⇔ eωi(t) =
∑

j∈Z
epi, jω j(t) for all i ∈ Z, (3.11)

where eP is an infinite matrix of the form eP def
= (epi, j)i, j∈Z with entries epi, j

def
= 〈 f j , eωi〉.

The identities (3.11) are called the knot removal calibration relations, the matrix
eP is called the matrix of sparse reconstruction on (α,β) (cf. [11]).

We consider the case where the original grid X is extended by a new grid
point ξ and the splines ω j(t), j ∈ Z, are constructed on this refined grid X .

Let ξ ∈ (xk, xk+1), and let x j be grid points of the new grid X
def
= {x j | j ∈ Z}:

x j
def
=





x j , j ¶ k,

ξ, j = k+ 1,

x j−1, j ¾ k+ 2.

We use the bar for denoting the above-introduced objects considered in the new
grid X . The functions ω j(t) can be found according formula (2.5) by replacing the
points of the original grid x j with the points x j , j ∈ Z.

We introduce the infinite-dimensional column vector ω(t) with components
ω j(t), j ∈ Z:

ω(t)
def
= (. . . ,ω−2(t),ω−1(t),ω0(t),ω1(t),ω2(t), . . .)T .
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Any function ωi(t) can be represented as a finite linear combination of
functions ω j(t):

ω(t) =Pω(t) ⇔ ωi(t) =
∑

j∈Z
pi, jω j(t) for all i ∈ Z, (3.12)

where P is an infinite matrix of the form P
def
= (pi, j)i, j∈Z with entries pi, j

def
=

〈 f j ,ωi〉. The identities (3.12) are called the knot insertion calibration relations,
the matrix P is called the matrix of dense reconstruction on (α,β) (cf. [10, 11]).

4. Decomposition matrices

We consider a system of functionals {ef j} j∈Z that is biorthogonal to the system
of splines { eω j′} j′∈Z . We proceed by computing the expressions

eqi, j
def
= 〈efi ,ω j〉 for all i, j ∈ Z.

Theorem 4.1. For i, j, k ∈ Z the following relations hold:

eqi, j =





δi, j , { j ¶ k− 4, for all i ∈ Z}∪
{ j=k−3, . . . , k+1, i¶k− 3},

dT
k+3ea∗k−2

�
dT

k+3a∗k−2 − dT
k+3a∗k−3

dT
k+2a∗k−2

dT
k+2a∗k−3

�−1

, i = k− 2, j = k− 2,

dT
k−3ea∗k−2

dT
k−3a∗k−3

−
dT

k−3a∗k−2

dT
k−3a∗k−3

dT
k−2ea∗k−2

dT
k−2a∗k−2

, i = k− 2, j = k− 3,

dT
k−1
ea∗k−1

dT
k−1a∗k−1

, i = k− 1, j = k− 1,

dT
k−2ea∗k−1

dT
k−2a∗k−2

−
dT

k−2a∗k−1

dT
k−2a∗k−2

dT
k−1ea∗k−1

dT
k−1a∗k−1

, i = k− 1, j = k− 2,

dT
k+1ea∗k−1

dT
k+1a∗k−3

, i = k− 1, j = k− 3,

δi, j−1, { j = k− 3, . . . , k+ 1, i ¾ k}∪
{ j ¾ k+ 2, for all i ∈ Z},

0, otherwise.
(4.1)

Proof. 1. Let j ¶ k − 4. By the relations (3.10) we have ω j = eω j . By
biorthogonality we have

eqi, j = 〈efi ,ω j〉= 〈efi , eω j〉= δi, j j ¶ k− 4, for all i ∈ Z.

2. Let j ¾ k+ 2. By the relations (3.10), we have ω j = eω j−1 . Hence

eqi, j = 〈efi ,ω j〉= 〈efi , eω j−1〉= δi, j−1 j ¾ k+ 2, for all i ∈ Z.
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3. Let j = k − 3, k − 2, k − 1, k, k + 1, i ¶ k − 3. By (3.9) we have ea∗i = a∗i ,
therefore 〈efi ,ϕ〉 = 〈 fi ,ϕ〉. Hence the application of functional efi to a function
ω j is equivalent to the application of functional fi to the same function. By
biorthogonality we have

eqi, j = 〈efi ,ω j〉= 〈 fi ,ω j〉= δi, j j = k− 3, k− 2, k− 1, k, k+ 1, i ¶ k− 3.

4. Let j = k− 3, k− 2, k− 1, k, k+ 1, i ¾ k. By (3.9) we have ea∗i = a∗i+1 , therefore

〈efi ,ϕ〉= 〈 fi+1,ϕ〉. By biorthogonality we have

eqi, j = 〈efi ,ω j〉= 〈 fi+1,ω j〉= δi+1, j = δi, j−1,

j = k− 3, k− 2, k− 1, k, k+ 1, i ¾ k.

It remains to consider i = k−2, j = k−3, k−2 and i = k−1, j = k−3, k−2, k−1.

5. We consider eqk−2,k−2 = 〈efk−2,ωk−2〉. For t ∈ [exk−2, exk−1] = [xk−2, xk−1]
by (3.11) the following calibration relations hold eωk−2(t) = epk−2,k−2ωk−2(t) +
epk−2,k−1ωk−1(t). By taking into account the location of supports of the functions
considered there, we conclude that the expressions epk−2,k−2ωk−2(t) and eωk−2(t)
coincide. Hence the values of functionals efk−2 on these expressions coincide. By
biorthogonality (3.4), we have

eqk−2,k−2 = 〈efk−2,ωk−2〉
= 〈efk−2, eωk−2〉/epk−2,k−2

= 〈 fk−2, eωk−2〉
−1

= dT
k+3ea∗k−2

�
dT

k+3a∗k−2 − dT
k+3a∗k−3

dT
k+2a∗k−2

dT
k+2a∗k−3

�−1

.

6. We consider eqk−2,k−3 = 〈efk−2,ωk−3〉. We use the representation (2.5) of function
ω j for j = k − 3. Since supp efk−2 ⊂ [exk−2, exk−1], it suffices to consider only the
case [exk−2, exk−1] = [xk−2, xk−1], i.e. to use formula (2.5) for [x j+1, x j+2], where
j = k− 3:

ωk−3(t) =
dT

k−3ϕ(t)

dT
k−3a∗k−3

−
dT

k−3a∗k−2

dT
k−3a∗k−3

dT
k−2ϕ(t)

dT
k−2a∗k−2

, t ∈ [xk−2, xk−1].

Since 〈efk−2,ϕ〉= ea∗k−2 , from previous equality we find

eqk−2,k−3 = 〈efk−2,ωk−3〉=
dT

k−3ea∗k−2

dT
k−3a∗k−3

−
dT

k−3a∗k−2

dT
k−3a∗k−3

dT
k−2ea∗k−2

dT
k−2a∗k−2

.

7. We consider eqk−1,k−1 = 〈efk−1,ωk−1〉. For t ∈ [exk−1, exk] = [xk−1, xk] by (3.11)
the following calibration relations hold eωk−1(t) = epk−1,k−1ωk−1(t) + epk−1,kωk(t).
By taking into account the location of supports of the functions considered there,
we conclude that the expressions epk−1,k−1ωk−1(t) and eωk−1(t) coincide. Hence
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the values of functionals efk−1 on these expressions coincide. By biorthogonality
(3.4), we have

eqk−1,k−1 = 〈efk−1,ωk−1〉= 〈efk−1, eωk−1〉/epk−1,k−1 = 〈 fk−1, eωk−1〉−1 =
dT

k−1ea∗k−1

dT
k−1a∗k−1

.

8. We consider eqk−1,k−2 = 〈efk−1,ωk−2〉. We use the representation (2.5) of function
ω j for j = k− 2. It is clear that only following formula is required

ω j(t) =
dT

j ϕ(t)

dT
j a∗j

−
dT

j a∗j+1

dT
j a∗j

dT
j+1ϕ(t)

dT
j+1a∗j+1

, t ∈ [x j+1, x j+2],

which takes the following form for j = k− 2:

ωk−2(t) =
dT

k−2ϕ(t)

dT
k−2a∗k−2

−
dT

k−2a∗k−1

dT
k−2a∗k−2

dT
k−1ϕ(t)

dT
k−1a∗k−1

, t ∈ [xk−1, xk].

Since 〈efk−1,ϕ〉= ea∗k−1 from previous equality we find

eqk−1,k−2 = 〈efk−1,ωk−2〉=
dT

k−2ea∗k−1

dT
k−2a∗k−2

−
dT

k−2a∗k−1

dT
k−2a∗k−2

dT
k−1ea∗k−1

dT
k−1a∗k−1

.

9. We consider eqk−1,k−3 = 〈efk−1,ωk−3〉. We take into account that supp efk−1 ⊂
[exk−1, exk], therefore we need representation of the function ωk−3 only on segment
[exk−1, exk] = [xk−1, xk]. Thus, in (2.5) we set j = k− 3:

ωk−3(t) =
dT

k+1ϕ(t)

dT
k+1a∗k−3

−
dT

k+1a∗k−4

dT
k+1a∗k−3

dT
kϕ(t)

dT
k a∗k−4

, t ∈ [xk−1, xk].

Since 〈efk−1,ϕ〉= ea∗k−1 , from previous equality we find

eqk−1,k−3 = 〈efk−1,ωk−3〉=
dT

k+1ea∗k−1

dT
k+1a∗k−3

−
dT

k+1a∗k−4

dT
k+1a∗k−3

dT
k ea∗k−1

dT
k a∗k−4

.

Since dT
k ea∗k−1 = 0, we find

eqk−1,k−3 =
dT

k+1ea∗k−1

dT
k+1a∗k−3

. ¤

Consider the matrix eQ def
= (eqi, j)i, j∈Z with entries given by formula (4.1). The

matrix eQ is called the matrix of sparse decomposition on (α,β).



Splines with Minimal Defect and Decomposition Matrices 365

Remark 4.1. The matrix eQ can be represented in the form

eQ def
=




. . . k− 4 k− 3 k− 2 k− 1 k k+ 1 k+ 2 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
k− 4 . . . 1 0 0 0 0 0 0 . . .
k− 3 . . . 0 1 0 0 0 0 0 . . .
k− 2 . . . 0 eqk−2,k−3 eqk−2,k−2 0 0 0 0 . . .
k− 1 . . . 0 eqk−1,k−3 eqk−1,k−2 eqk−1,k−1 0 0 0 . . .
k . . . 0 0 0 0 0 1 0 . . .
k+ 1 . . . 0 0 0 0 0 0 1 . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .




.

We consider a system of functionals { f j} j∈Z that is biorthogonal to the system
of splines {ω j′} j′∈Z . We proceed by computing the expressions

qi, j
def
= 〈 fi ,ω j〉 for all i, j ∈ Z.

Theorem 4.2. For i, j, k ∈ Z the following relations hold:

qi, j =





δi, j , { j ¶ k− 4, for all i ∈ Z}∪
{ j=k−3, . . . , k+ 1, i¶k−3},

d
T

k+3a∗k−2

�
d

T

k+3a∗k−2 − d
T

k+3a∗k−3
d

T

k+2a
∗
k−2

d
T

k+2a
∗
k−3

�−1

, i = k− 2, j = k− 2,

d
T

k−3a∗k−2

d
T

k−3a∗k−3

−
d

T

k−3a∗k−2

d
T

k−3a∗k−3

d
T

k−2a∗k−2

d
T

k−2a∗k−2

, i = k− 2, j = k− 3,

d
T

k−1a∗k−1

d
T

k−1a∗k−1

, i = k− 1, j = k− 1,

d
T

k−2a∗k−1

d
T

k−2a∗k−2

−
d

T

k−2a∗k−1

d
T

k−2a∗k−2

d
T

k−1a∗k−1

d
T

k−1a∗k−1

, i = k− 1, j = k− 2,

d
T

k+1a∗k−1

d
T

k+1a∗k−3

, i = k− 1, j = k− 3,

δi, j−1, { j=k−3, . . . , k+ 1, i¾k}∪
{ j ¾ k+ 2, for all i ∈ Z},

0, otherwise.
(4.2)

Proof. The proof is similar to the proof of the Theorem 4.1 (cf. [12]). ¤

Consider the matrix Q
def
= (qi, j)i, j∈Z with entries given by formula (4.2). The

matrix Q is called the matrix of refining decomposition on (α,β).
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Theorem 4.3. The matrices eQ and Q are the left inverse to the matrices ePT and
P

T
correspondingly, i.e.

eQePT = I , QP
T
= I ,

where I is the unit matrix.

Proof. Transposing the relation (3.11), we obtain the following equality for vector-

rows (eω)T (t) = (ω)T (t) ePT . Multiplying this equality by the vector-column ef def
=

(ef j) j∈Z , and taking into account the biorthogonality property (3.5), we obtain the
unit matrix I on the left-hand side, whereas the matrix eQ is appeared on the
right-hand side (cf. (4.1)). Thus, I = eQePT . Transposing the relation (3.12), we

obtain the following equality for vector-rows (ω)T (t) = (ω)T (t)P
T

. Multiplying

this equality by the vector-column f
def
= ( f j) j∈Z , we obtain I =QP

T
. ¤

We consider decomposition matrices in the finite-dimensional case, using the
above-introduced restrictions of all functions to the segment [a, b]. Extract a finite
collection of n+3 functionals from the set of functionals { f j} j∈Z , a finite collection

of n+ 2 functionals from the set of functionals {ef j} j∈Z , a finite collection of n+ 4

functionals from the set of functionals { f j} j∈Z.

Theorem 4.4. For the systems of functionals { fi}i∈J3,n−1
, {ef j} j∈J3,n−2

and { f l}l∈J3,n
the

following relations hold

〈 fi ,ωi′〉= δi,i′ , i, i′ ∈ J3,n−1,

〈ef j , eω j′〉= δ j, j′ , j, j′ ∈ J3,n−2,

〈 f l ,ωl ′〉= δl,l ′ , l, l ′ ∈ J3,n,

and supp fi ⊂ [a, b], supp ef j ⊂ [a, b], supp f l ⊂ [a, b].

Proof. The assertion follows from the biorthogonality property (3.5). ¤

A rectangular number (n+2)×(n+3)-matrix eQn
def
= (eqi, j), i ∈ J3,n−2 , j ∈ J3,n−1 ,

is called the matrix of sparse decomposition on [a, b].

Remark 4.2. The matrix eQn can be represented as

eQn
def
=




−3 . . . k−4 k−3 k−2 k−1 k k+ 1 . . . n−1

−3 1 . . . 0 0 0 0 0 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
k−4 0 . . . 1 0 0 0 0 0 . . . 0
k−3 0 . . . 0 1 0 0 0 0 . . . 0
k−2 0 . . . 0 eqk−2,k−3 eqk−2,k−2 0 0 0 . . . 0
k−1 0 . . . 0 eqk−1,k−3 eqk−1,k−2 eqk−1,k−1 0 0 . . . 0
k 0 . . . 0 0 0 0 0 1 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
n−2 0 . . . 0 0 0 0 0 0 . . . 1




.
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A rectangular number (n+ 3)× (n+ 4)-matrix Qn
def
= (qi, j), i ∈ J3,n−1 , j ∈ J3,n ,

is called the matrix of dense decomposition on [a, b].

Theorem 4.5. For the matrices ePn and eQn , Pn and Qn following relations hold

eQn
ePT

n = In+2, Qn P
T
n = In+3,

where In+2, In+3 are unit matrices of order n+ 2 and n+ 3 respectively.

Proof. The proof is similar to the proof of the Theorem 4.3 for finite-dimensional
case. ¤
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