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Abstract. A graph G with lines and points is known as a product cordial graph if there occurs a
labeling g from V (G) to {0,1} such that if every line rt is given the labeled g(r).g(t), then the cardinality
of points with labeled zero and the cardinality of points with labeled one vary as a maximum by
one and the cardinality of lines with labeled zero and the cardinality of lines with labeled one vary
by as a maximum one. In this case, g is alleged the product cordial labeling of G. This paper deals
with product cordial labeling for some graphs related to bicyclic graph such as B[n,n], B[n,n]∗Sm,
B[n,n]∗P2 ∗Sm and B[n,n]∗P3 ∗Sm, B[n,n]⊙K2, B[n,n]⊙K3.
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1. Introduction
In this paper, we tend to consider graphs that are simple and finite p points and q lines. For
an in-depth check of labelling of graphs, we relate to Gallain [3]; and we use Harary [5] and
Bondy and Murthy [1] for all other notations. The notion of product cordial labelling presented
by Sundaram et al. [7]. Meena et al. [6] investigated the existence of prime labelling of bicyclic
graphs. We investigated the product cordial labelling of some bicyclic graphs.
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Definition 1.1 ([6]). If B[n,n] is the bicyclic graph obtained from two point-disjoint cycles Cm

and Cn by identifying two points r of Cm and t of Cn.

Definition 1.2 ([4]). A graph is called cordial if it’s attainable to label its points with zeros and
ones, so when the lines are labelled with the distinction of the labels at their finish points, the
quantity of points (lines) labelled with ones and zeros disagree at the most by one.

Definition 1.3 ([4]). A map g from V (G) to {0,1} is known as binary labelling of G. A binary
labelling with induced line labelling g∗ from E(G) to {0,1} defined by g∗ from (e = rt) equal
to g(r). g(t) is called a product cordial labelling if the absolute difference of v f (0) and v f (1) is
less than or equal to 1 and the Absolute difference of e f (0) and e f (1) is less than or equal to 1.
A graph which admit product cordial labelling is said to be a product cordial graphs.

Definition 1.4 ([6]). The corona product of two graphs G and H is outlined as the graph got by
taking one copy of G and cardinality of V (G) copies of H and attaching the ith point of G to
every point in the ith copy of H.

Definition 1.5 ([6]). Complete bipartite graph K1,m is called star graph Sm.

2. Main Results
The product cordial labelling for some bicyclic graphs, were investigated in this paper.

Theorem 2.1. The bicyclic graph B[n,n]∗Sm is a product cordial graph.

Proof. Let r1, r2, . . . , rn and t1, t2, . . . , tn be the points of bicyclic graph B[n,n] with r1 = t1 be
the common point.
Let p1

i , p2
i , p3

i , p4
i , . . . , pm

i be the pendent points of Sm attached at r i for 1 ≤ i ≤ n and let
s1

i , s2
i , s3

i , s4
i , . . . , sm

i be the pendent points of Sm attached at ti for 2≤ i ≤ n.
Define a labelling g from V (G) to {0,1} as follows:

g(r1 = t1)= 1,

g(r i)= 0 for 2≤ i ≤ n,

g(ti)= 1 for 2≤ i ≤ n,

g(p j
i )= 0 for 2≤ i ≤ n, 1≤ j ≤ m,

g(s j
i )= 1 for 2≤ i ≤ n, 1≤ j ≤ m.

If m is even

g(p j
1)= 0 if 1≤ j ≤ m

2
,

g(p j
1)= 0 if

m
2
+1≤ j ≤ m.

If m is odd

g(p j
1)= 0 if 1≤ j ≤ m+1

2
,
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g(p j
1)= 1 if

m+3
2

≤ j ≤ m.

Absolute difference of v f (0) and v f (1) is less than or equal to 1 and the absolute difference
of e f (0) and e f (1) is less than or equal to 1.

Thus, g is a product cordial graph.

Theorem 2.2. The bicyclic graph B[n,n]∗P2 ∗Sm is a product cordial graph.

Proof. Let r1, r2, . . . , rn and t1, t2, . . . , tn be the points of bicyclic graph B[n,n] with r1 = t1 be
the common point.

Let r′i be the point of path P2 attached at r i for 1≤ i ≤ n and let t′i be the point of path P2

attached at ti for 2≤ i ≤ n.
Let p1

i , p2
i , p3

i , p4
i , . . . , pm

i be the pendent points of Sm attached at r′i for 1 ≤ i ≤ n and let
s1

i , s2
i , s3

i , s4
i , . . . , sm

i be the points of Sm attached at ti for 2≤ i ≤ n.
Define a labelling g from V (G) to {0,1} as follows:

g(r1 = t1)= 1,

g(r i)= 0 for 2≤ i ≤ n,

g(ti)= 1 for 2≤ i ≤ n,

g(r1
i )= 0 for 1≤ i ≤ n,

g(t1
i )= 1 for 2≤ i ≤ n,

g(p j
i )= 0 for 1≤ j ≤ m, 2≤ i ≤ n,

g(s j
i )= 1 for 1≤ j ≤ m, 2≤ i ≤ n.

If m is even

g(p j
1)= 0 if 1≤ j ≤ m

2
,

g(p j
1)= 1 if

m
2
+1≤ j ≤ m.

If m is odd

g(p j
1)= 0 if 1≤ j ≤ m−1

2
,

g(p j
1)= 1 if

m−1
2

≤ j ≤ m.

Absolute difference of v f (0) and v f (1) is less than or equal to 1 and the absolute difference
of e f (0) and e f (1) is less than or equal to 1.

Thus g is a product cordial graph.

Theorem 2.3. The bicyclic graph B[n,n]∗P3 ∗Sm is a product cordial graph.

Proof. Let r1, r2, . . . , rn and t1, t2, . . . , tn be the points of bicyclic graph B[n,n] with r1 = t1 be
the common point.

Let r′i and r′′i be the points of path P3 attached at r i for 1 ≤ i ≤ n and let t′i and t′′i be the
points of path P3 attached at ti for 2≤ i ≤ n.
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Let p1
i , p2

i , p3
i , p4

i , . . . , pm
i be the pendent points of Sm attached at r′′i for 1 ≤ i ≤ n and let

s1
i , s2

i , s3
i , s4

i , . . . , sm
i be the points of Sm attached at t′′i for 2≤ i ≤ n.

Define a labelling g from V (G) to {0,1} as follows:

g(r1 = t1)= 1,

g(r i)= 0 for 2≤ i ≤ n,

g(ti)= 1 for 2≤ i ≤ n,

g(r′1)= 0, g(r′′1)= 1,

g(r′i)= 0, g(r′′i )= 0 for 2≤ i ≤ n,

g(t′i)= 0, g(t′′i )= 1 for 2≤ i ≤ n,

g(p j
i )= 0 for 2≤ i ≤ n, 1≤ j ≤ m,

g(s j
i )= 1 for 2≤ i ≤ n, 1≤ j ≤ m.

If m is even

g(p j
1)= 0 if 1≤ i ≤ m

2
,

g(p j
1)= 1 if

m
2
+1≤ i ≤ m.

If m is odd

g(p j
1)= 0 if 1≤ i ≤ m+1

2
,

g(p j
1)= 1 if

m+3
2

+1≤ j ≤ m.

Absolute difference of v f (0) and v f (1) is less than or equal to 1 and the absolute difference
of e f (0) and e f (1) is less than or equal to 1.

Thus g is a product cordial graph.

Theorem 2.4. The corona product of bicyclic graph B[n,n]⊙K2 is a product cordial graph.

Proof. Let r1, r2, . . . , rn and t1, t2, . . . , tn be the points of bicyclic graph B[n,n] with r1 = t1 be
the common point.

Let p1
i , p2

i be the points of K2 attached at r i for 1 ≤ i ≤ n and let s1
i , s2

i be the points of K2

attached at ti for 2≤ i ≤ n.
Define a labelling g from V (G) to {0,1} as follows:

g(r1 = t1)= 1,
g(r i)= 0 for 2≤ i ≤ n,
g(ti)= 1 for 2≤ i ≤ n,
g(p1

1)= 0, g(p2
1)= 0,

g(p1
i )= g(p2

i )= 0 for 2≤ i ≤ n,

g(s1
i )= g(s2

i )= 1 for 2≤ i ≤ n.

Absolute difference of v f (0) and v f (1) is less than or equal to 1 and the absolute difference
of e f (0) and e f (1) is less than or equal to 1. Thus g is a product cordial graph.
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Theorem 2.5. The corona product of bicyclic graph B[n,n]⊙K3 admits product cordial labeling.

Proof. Let r1, r2, . . . , rn and t1, t2, . . . , tn be the points of bicyclic graph B[n,n] with r1 = t1 be
the common point.

Let p1
i , p2

i , p3
i be the points of K3 attached at r i for 1≤ i ≤ n and let s1

i , s2
i , s3

i be the points of
K3 attached at ti for 2≤ i ≤ n.

Define a labelling g from V (G) to {0,1} as follows:

g(r1 = t1)= 1,

g(r i)= 0 for 2≤ i ≤ n,

g(ti)= 1 for 2≤ i ≤ n,

g(p1
i )= 0,

g(p2
i )= 1,

g(p3
i )= 1,

g(p1
1)= f (p2

1)= g(p3
i )= 0 for 2≤ i ≤ n,

g(s1
i )= f (s2

i )= g(s2
i )= 1 for 2≤ i ≤ n.

Absolute difference of v f (0) and v f (1) is less than or equal to 1 and the absolute difference
of e f (0) and e f (1) is less than or equal to 1.

Thus g is a product cordial graph.

3. Illustrations
Illustration 3.1.
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3

Figure 1. Product cordial labelling of B[3,3]∗S4
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Illustration 3.2.
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Figure 2. Product cordial labelling of B[5,5]∗P2 ∗S4

Illustration 3.3.
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Figure 3. Product cordial labelling of B[5,5]∗P3 ∗S4
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Illustration 3.4.
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Figure 4. Product cordial labelling of B[4,4]⊙K2

Illustration 3.5.
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Figure 5. Product cordial labelling of B[4,4]⊙K3

4. Conclusion
We provide five new theorems on product cordial labelling. It is terribly interesting to examine
whether or not a graph family admits product cordial labelling. We try to link bicyclic graphs
and graph operations. Similar results are often derivative for alternative graph families.
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