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On Frames in Banach Spaces

L.K. Vashisht

Abstract. Banach frames of type ωP∗, shrinking Banach frames and retro
shrinking Banach frames in Banach spaces have been introduced and studied.
Necessary and sufficient conditions for a Banach frame (retro shrinking Banach
frame) to be shrinking are given. Relation between various types of Banach frames
are discussed.

1. Introduction

D. Gabor [12] in 1946, introduced a fundamental approach to signal decom-
position in terms of elementary signals. Duffin and Schaeffer [8] in 1952, while
addressing some deep problems in non-harmonic Fourier series, abstracted Gabor’s
method to define frames for Hilbert spaces. Later, in 1986, Daubechies, Grossmann
and Meyer [7] found new applications to wavelet and Gabor transforms in which
frames played an important role.

A sequence {xn}n∈N in a separable Hilbert space H is called frame (Hilbert) for
H if there exists positive constants A and B (0< A≤ B <∞) such that

A∥x∥2 ≤
∞∑

n=1

|〈x , xn〉|2 ≤ B∥x∥2, for all x ∈ H.

The positive constants A and B are called lower and upper bounds of the frame
{xn}n∈N, respectively. They are not unique.

The operator T : l2(N)→ H defined as:

T ({ck}k∈N) =
∞∑

k=1

ck xk, for all {ck}k∈N ∈ l2(N),

is called the pre-frame operator or the synthesis operator and its adjoint T ∗ : H →
l2(N) given by

T ∗(x) = {〈x , xk〉}k∈N, for all x ∈ H,

is called the analysis operator.

2010 Mathematics Subject Classification. 42C15, 42C30, 46B15.
Key words and phrases. Frames; Banach frames; Retro Banach frames; Schauder frames.



314 L.K. Vashisht

Composing T and T ∗ we obtain the frame operator S = T T ∗ : H → H given by

S(x) =
∞∑

k=1

〈x , xk〉xk, for all x ∈ H.

The series converging unconditionally. It follows that

〈Sx , x〉=
∞∑

k=1

|〈x , xk〉|2, for all x ∈ H.

So, the frame operator S is a positive, self-adjoint invertible operator on H. This
gives the reconstruction formula for all x ∈ H:

x = SS−1 x =
∞∑

k=1

〈S−1 x , xk〉xk =
∞∑

k=1

〈x , S−1 xk〉xk.

Today, frames play important roles in many applications in mathematics, science
and engineering. Moreover, frames provides both great liberties in the design of
vector space decompositions, as well as quantitative measure on the computability
and robustness of the corresponding reconstructions. In the theoretical direction,
powerful tools from operator theory and Banach spaces are being employed to
study frames. For a nice introduction to theory of frames an interested reader refer
to [5, 15] and references therein.

Coifman and Weiss [6] introduced the notion of atomic decomposition for
function spaces. Later, Feichtinger and Gröchenig [10] extended this idea to
Banach spaces. This concept was further generalized by Gröchenig [13] who
introduced the notion of Banach frames for Banach spaces. Casazza, Han and
Larson [2] also carried out a study of atomic decompositions and Banach frames.
Banach frames were further studied in [3, 4, 11, 17, 18, 19, 20, 21, 22, 23, 24].
Recently, various generalization of frames in Banach spaces have been introduced
and studied. Han and Larson [14] defined a Schauder frame for a Banach space
E to be an inner direct summand (i.e. a compression) of a Schauder basis of E.
Schauder frames were further studied in [26, 27]. The notion of retro Banach
frames in Banach spaces introduced and studied in [17].

In this paper Banach frames of type ωP∗ and P∗, shrinking Banach frames and
retro shrinking Banach frames in Banach spaces have been introduced and studied.
Sufficient conditions for finite sum of Banach frames to be of type P∗ are obtained.
Necessary and sufficient conditions for a Banach frame (retro shrinking Banach
frame) to be shrinking Banach frame are given. Necessary and sufficient conditions
for retro shrinking Banach frames in finite dimensional Banach spaces to be of type
P∗ are obtained. Relation between various types of Banach frames are discussed.

2. Preliminaries

Throughout this paper E will be denote an infinite dimensional Banach space
over the scalar field K (which will be R or C), E∗ the conjugate space of E and
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π : E→ E∗∗ denotes the canonical mapping of E into E∗∗. For a sequence { fn} ⊂ E∗,
[ fn] denotes the closure of linear span of { fn} in the norm topology of E∗ andÞ[ fn]
the closure of linear span of { fn} in σ(E∗, E)-topology.

Definition 2.1 ([13]). Let E be a Banach space and let Ed be an associated Banach
space of scalar valued sequences indexed by N. Let { fn} ⊂ E∗ and S : Ed → E be
given. The pair ({ fn}, S) is called a Banach frame for E with respect to Ed if:

(i) { fn(x)} ∈ Ed , for each x ∈ E.
(ii) There exist positive constants A and B with 0< A≤ B <∞ such that

A∥x∥E ≤ ∥{ fn(x)}∥Ed
≤ B∥x∥E , for all x ∈ E. (2.1)

(iii) S is a bounded linear operator such that

S({ fn(x)}) = x , for all x ∈ E .

The positive constants A and B are called the lower and upper frame bounds of
the Banach frame ({ fn}, S), respectively. The operator S : Ed → E is called the
reconstruction operator (or the pre-frame operator). The inequality (2.1) is called
the frame inequality.

The Banach frame ({ fn}, S) is called tight if A = B and normalized tight if
A = B = 1. If removal of one fn renders the collection { fn} ⊂ E∗ no longer a
Banach frame for E, then ({ fn}, S) is called an exact Banach frame.

Definition 2.2 ([17]). Let E ba a Banach space. Let (E∗)d be a Banach space of
scalar-valued sequences indexed by N and associated with E∗. Let {xn} ⊂ E and
T : (E∗)d → E∗ be given. The pair ({xn}, T ) is called a retro Banach frame for E∗
with respect to (E∗)d if:

(i) { f (xn)} ∈ (E∗)d , for all f ∈ E∗.
(ii) There exist positive constants A0 and B0 with 0< A0 ≤ B0 <∞ such that

A0∥ f ∥E∗ ≤ ∥{ f (xn)}∥(E∗)d ≤ B0∥ f ∥E∗ , for all f ∈ E∗. (2.2)

(iii) T is a bounded linear operator such that T ({ f (xn)}) = f , for all f ∈ E∗.
The positive constants A0 and B0 are called, respectively, the lower and upper frame
bounds of the retro Banach frame ({xn}, T ). The operator T : (E∗)d → E∗ is called
the reconstruction operator (or the pre-frame operator), and the inequality (2.2) is
called the retro frame inequality.

The retro Banach frame ({xn}, T ) is called tight if A0 = B0 and normalized tight
if A0 = B0 = 1. If removal of one x j render the collection {xn}n̸= j no longer a retro
Banach frame for E∗, then ({xn}, T ) is called an exact retro Banach frame.

Definition 2.3. A Banach frame ({ fn}, S) for a Banach space E is said to be of type
P if ({ fn}, S) is exact and there exists a vector z0 ∈ E such that fn(z0) = 1, for all
n ∈ N.

The vector z0 is called the associated vector of ({ fn}, S).
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Definition 2.4 ([25]). A retro Banach frame ({xn}, T ) for E∗ is said to be strong if
there exists a sequence { fn} ⊂ E∗, such that

(i) fn(xm) = δn,m for all n, m ∈ N.
(ii) (xn, fn)⊂ SE × SE∗ , for all n ∈ N.

where SE = {x ∈ E : ∥x∥= 1}, the unit sphere in E.

The sequence { fn} ⊂ E∗ is called the admissible sequence of ({xn}, T ).

Definition 2.5 ([14]). A pair (xn, fn) ({xn} ⊂ E, { fn} ⊂ E∗) is called a Schauder
frame for E if

x =
∞∑

n=1

fn(x)xn, for all x ∈ E,

where the series converges in the norm topology of E.

Definition 2.6 ([27]). A Schauder frame (xn, fn) is called pre-shrinking if ( fn, xn)
is a Schauder frame for E∗.

Lemma 2.7. Let E be a Banach space and { fn} ⊂ E∗ be a sequence such that
{x ∈ E : fn(x) = 0, n ∈ N} = {0}. Then E is linearly isometric to the Banach space
X = {{ fn(x)} : x ∈ E}, where the norm is given by ∥{ fn(x)}∥X = ∥x∥E , x ∈ E.

Lemma 2.8 ([19]). Let ({ fn}, S) (where { fn} ⊂ E∗, S : Ed → E) be a Banach frame
for E with respect to Ed . Then ({ fn}, S) is exact if and only if fn /∈ [efi]i ̸=n for all n ∈ N.

Proof. Suppose that ({ fn}, S) is exact. Fix n ∈ N. Then, there exists no
reconstruction operator S0 such that ({ fi}i ̸=n, S0) is a Banach frame for E.
Therefore, by using Lemma 2.7, [efi]i ̸=n ̸= E∗. Hence fn /∈ [efi]i ̸=n, for all n ∈ N.

Conversely, let fn /∈ [efi]i ̸=n for all n ∈ N and let ({ fn}, S) be not exact.
Then, there exists a positive integer m0 and a reconstruction operator S0 such
that ({ fi}i ̸=m0

, S0) is a Banach frame for E. So, by using frame inequality

for ({ fi}i ̸=m0
, S0), we obtain [efi]i ̸=n = E∗. This gives fm0

∈ [efi]i ̸=m0
, a

contradiction. �

Remark 2.9. Let ({ fn}, S) be an exact Banach frame for E. Then, there exists a
sequence {xn} ⊂ E, called an admissible sequence of vector to ({ fn}, S) such that

fi(x j) = δi, j =

¨
1, if i = j
0 if i ̸= j

, for all i, j ∈ N .

Lemma 2.10. Let ({ fn}, S) be a Banach frame for E. If

lim
n→∞

mn∑
i=1

α
(n)
i fi(x), (x ∈ E) exists ⇒ lim

n→∞α
(n)
i exists (i ∈ N),

then ({ fn}, S) is an exact Banach frame for E.
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Proof. Let f ∈ [ fn]. Then f = lim
n→∞

mn∑
i=1
α
(n)
i fi . Let {zn} ⊂ E be a sequence such

that
� n∑

i=1
αi fi

�
(z j) = α j , for all j ∈ N. Now for f ∈ [ fn], we have f (x) =

lim
n→∞

mn∑
i=1
α
(n)
i fi(x), x ∈ E. So, by hypothesis lim

n→∞α
(n)
i exists, i ∈ N. Thus, for each j,

π(z j) is a continuous linear functional on [ fn]. Furthermore, fi(z j) = π(z j) fi = δi, j ,
for all i, j ∈ N. Hence ({ fn}, S) is an exact Banach frame for E. �

Definition 2.11. Let ({ fn}, S) be a Banach frame for E and that {mn}, {pn}
increasing sequence of positive integers, where m0 = 0 and mn−1 ≤ pn ≤ mn,
n ∈ N. Define a sequence {ψn} ∈ E∗ by:

ψk =

¨
fk if k ̸= pn

fpn
+ gn if k = pn.

, n ∈ N,

where gn =
pn−1∑

i=mn−1+1
αi fi +

mn∑
i=pn+1

αi fi , for all n ∈ N. Then, {ψn} is called the block

perturbation of { fn}.
Theorem 2.12 ([32], page-109). Let E be a Banach space and fi ∈ E∗ (i = 1, . . . , n).
Given n scalar α1,α2, . . . ,αn, a necessary and sufficient condition that there exists, for
each ε > 0, an element x0 ∈ X such that fi(x0) = αi (i = 1,2, . . . , n) and ∥xn∥ ≤ γ+ε
is that the inequality���� n∑

i=1

βiαi

����≤ γ



 n∑
i=1

βi fi






holds for any choice of n numbers β1,β2, . . . ,βn.

Theorem 2.13 ([9], p. 609). Let T be a compact operator in a complex Banach
space X , and let λ be a fixed non-zero complex number. Then, the non-homogenous
equations

(λI − T )x = y (2.3)

(λI − T ∗) f = g (2.4)

have a unique solution for any y ∈ X or g ∈ X ∗ if and only if each of the homogenous
equations

(λI − T )x = 0 (2.5)

(λI − T ∗) f = 0 (2.6)

has zero as the solution. Furthermore, if one of the homogenous equations has a non-
zero solution, then they both have the same finite number of linearly independent
solutions. In this case the equation (2.2) and (2.3) have solutions if and only if y
and g are orthogonal to all the solutions of (2.4) and (2.5), respectively. Moreover,
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the general solution for (2.2) is found by adding a particular solution of (2.2) to the
general solution of (2.4).

3. Banach frames of Type ωP∗

Definition 3.1. A Banach frame ({ fn}, S) for a Banach space E is said to be of type
ωP∗ (weak of type P∗) if there exists a functional Φ ∈ E∗∗ such that

Φ( fn) = 1, for all n ∈ N.

If ({ fn}, S) is exact and of type ωP∗, then ({ fn}, S) is called a Banach frame of type
type P∗

The functional Φ is called an associated functional of ({ fn}, S).

Remark 3.2. The condition Φ( fn) = 1, n ∈ N, resembles dynamics of frames!
Physical interpretation of this can be understood as the earth rotates about its axis.
Here 1 is the axis and Φ is the action of rotation on { fn}.
To show existence of Banach frames of type ωP∗, we have following example.

Example 3.3. Let E = c0.

(a) Define { fn} ⊂ E∗ by fn(x) = ξn, for all n ∈ N, (x = {ξ j} ∈ E). Then, there
exists a reconstruction operator S : Ed = {{ fn(x)} : x ∈ E} → E such that
({ fn}, S) is a Banach frame for E with respect to Ed and with bounds A= B = 1.
Also, Φ = (1,1, 1, . . .) ∈ E∗∗ is such that Φ( fn) = 1, for all n ∈ N. Hence
({ fn}, S) is a Banach frame of type ωP∗.

(b) Define {gn} ⊂ E∗ by

g1(x) = 0

gn(x) = ξn−1, n= 2,3, . . .

«
, x = {ξ j} ∈ E .

Then, there exists a reconstruction operator S0 : Ed0
= {{gn(x)} : x ∈ E} → E such

that ({gn}, S0) is a Banach frame for E with respect to Ed0
which is not of typeωP∗.

Remark 3.4. A Banach frame of type P is always of type P∗. Indeed, let ({ fn}, S)
be a Banach frame of type P for E with associated vector z0. Then, Φ = π(z0) ∈ E∗∗
is such that Φ( fn) = 1, for all n ∈ N. Towards the converse one may observe that a
Banach frame of type P∗ need not be of type P. The Banach frame ({ fn}, S) given
in Example 3.3(a) is of type P∗ but not of type P.

If a signal is transmitted to a receiver, then there is some kind of disturbances (in
general) in the received signal. To overcome these disturbances from the receiver,
frames plays an important role. An interesting discussion in this direction is given
in the book by Christensen [5]. The most important signal space is L2(Ω). If {xn}
is a frame (Hilbert) for L2(Ω) space, then each element of L2(Ω) can be recovered
by an infinite combinations of frame elements. On the other hand a Banach frame
reconstruct the space L2(Ω) by an operator (pre-frame operator). Let {ϕn}, W be
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a Banach frame for L2(Ω). Then, elements of L2(Ω) can be recovered by the pre-
frame operator W . Let f0 ∈ L2(Ω). Then, in general, there is no pre-frame operator
U associated with ({ fn + f0}, U) which recover L2(Ω). We say that f0 is called
doping functional. We extend the said problem regarding recovery of concern signal
space to general Banach spaces. That is, if ({ fn}, S) is a Banach frame for a Banach
space E, then E (in general) not recovered by pre-frame operator U associated
with { fn+ f0}. However, we can recover E by a pre-frame operator associated with
{ fn + f0} provided ({ fn}, S) is of type ωP∗ with a certain action of its associated
functional on f0. This is given in the following proposition.

Proposition 3.5. Let ({ fn}, S) be a Banach frame of type ωP∗ for a Banach space
E with associated functional Φ. Then, there exists a reconstruction operator U such
that ({ fn + f0}, U) is Banach frame for E provided Φ( f0) ̸= −1, where f0 is a doping
functional.

Proof. Assume that Φ( f0) ̸=−1. Let T = I+ f0⊗Φ be a bounded linear operator on
E∗, where I is the identity operator on E∗. Then, T f = 0 gives f +Φ( f ) f0 = 0. If
Φ( f ) ̸= 0, then Φ( f0) = −1, a contradiction. Thus, T is one-one. Also, f0 ⊗ Φ
is compact, because it is finite dimensional. By Theorem 2.13, T is invertible.
Therefore, there exists a reconstruction operator U such that ({ fn + f0}, U) is
Banach frame for E with bounds A0 = B0 = 1. �

The following example gives an application of Proposition 3.5.

Example 3.6. Let E = c0. Define { fn} ⊂ E∗ by

f1(x) = 2ξ1

fn(x) = ξn, n= 2,3, . . .

«
, x = {ξ j} ∈ E .

Then, there exists a reconstruction operator S0 : Ed0
= {{ fn(x)} : x ∈ E} → E

such that ({ fn}, S0) is a Banach frame of type ωP∗ for E with associated functional
Φ = (1/2,1, 1, 1, . . .) ∈ E∗∗. Consider the doping functional f0 = f2. Then, f0 ∈ E∗
is a non-zero functional such that Φ( f0) ̸= −1. Hence by Proposition 3.5 there
exists a reconstruction operator U such that ({ fn+ f0}, U) is a Banach frame for E.

4. Finite Sum of Banach frames of type P∗

Let ({ f1,n}, S1) and ({ f2,n}, S2) be Banach frames of type P∗ for a Banach
spaces E. Then, in general, there exists no reconstruction operator Θ0 such that�n 2∑

i=1
fi,2

o
,Θ0

�
is a Banach frame of type P∗ for E.

Example 4.1. Let E = c0 and let { f1,n} and { f2,n} ⊂ E∗ be sequences defined by

f1,1(x) = ξ1, f1,n(x) =
−n

n+ 1
ξn,

f2,1(x) =−2ξ1, f2,n(x) = ξn,

 n= 2,3, 4,5, . . . , x = {ξn} ∈ E.
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Then, there exists reconstructions operators S1 and S2 such that ({ f1,n}, S1) and
({ f2,n}, S2) are Banach frames of type P∗ for E.

Furthermore, Θ0 : Ed =
nn� 2∑

i=1
fi,n

�
(x)
o

: x ∈ E
o
→ E is a bounded linear

operator such that
�n 2∑

i=1
fi,2

o
,Θ0

�
is a Banach frame (exact) for E. But there

is no functional Φ ∈ E∗∗ is such that Φ
� 2∑

i=1
fi,n

�
= 1, for all n ∈ N. Hence�n 2∑

i=1
fi,2

o
,Θ0

�
is not of type P∗.

The following proposition gives sufficient conditions under which finite sum of
Banach frames of type P∗ turns out to be of type P∗.

Proposition 4.2. Let ({ fi,n}, Si) (Si : Edi
= {{( fi,n)(x)} : x ∈ E} ⊂ Ed0

→ E),
be Banach frames of type P∗ for a Banach space E with associated functionals Φi

(i = 1, 2, 3, . . . , k). Assume that:

(i) lim
n→∞

mn∑
l=1
α
(n)
l

� k∑
i=1

fi,n

�
(x) = 0, x ∈ E ⇒ lim

n→∞α
(n)
l = 0, for all l ∈ N,

(ii) ∥{ f j0,n}∥Ed j0
≤



n� k∑

i=1
fi,n

�
(x)
o




Ed0

, x ∈ E, for some 1≤ j0 ≤ k, (4.1)

(iii)
� k∑

j=1
Φ j

�� k∑
i=1(i ̸= j)

fi,n

�
= 1− k.

Then, there exists a reconstruction operator Θ0 such that
�n k∑

i=1
fi,n

o
,Θ0

�
is a

normalized tight Banach frame of type P∗ for E.

Proof. By using inequality 4.1, there exists a reconstruction operator Θ0 : Ed1
=nn� k∑

i=k
fi,n

�
(x)
o

: x ∈ E
o
→ E such that
�n k∑

i=1
fi,n

o
,Θ0

�
is a Banach frame for E

with respect to Ed1
and with bounds A0 = B0 = 1.

Let lim
n→∞

mn∑
l=1
α
(n)
l

� k∑
i=1

fi,n

�
(x) = 0, for all x ∈ E. Then, by hypothesis lim

n→∞α
(n)
l

exists for all l ∈ N.
So, by using Lemma 2.10 there exists a sequence {zi}ni=1 ⊂ E such that� k∑

i=1
fi,n

�
(zm) = δn,m, for all n, m ∈ N.

Thus,
�n k∑

i=1
fi,n

o
,Θ0

�
is an exact normalized tight Banach frame for E.

Put Ψ =
k∑

j=1
Φ j . Then, Ψ ∈ E∗∗ and Ψ

� k∑
i=1

fi,n

�
= 1, for all n ∈ N. Hence�n k∑

i=1
fi,n

o
,Θ0

�
is a normalized tight Banach frame of type P∗ for E. �
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5. Associated Banach Frames in Banach Spaces

Let (xn, fn) be a Schauder frame for E. Then, there exist reconstruction
operators S and W such that ({ fn}, S) is a Banach frame for E and ({xn}, W ) is
a retro Banach frame for E∗. We say that ({ fn}, S) and ({xn}, W ) are associated
Banach frame and associated retro Banach frame of the Schauder frame (xn, fn),
respectively.

Let ({ fn}, S) be associated Banach frame of type ωP∗. Then, in general, there
exists no reconstruction operator eS0 for perturbed sequence { fn − fn+1} such that
({ fn − fn+1}, eS0) is a Banach frame of type ωP∗ for E. In this direction following
theorem gives sufficient conditions for perturbation of associated Banach frame of
type ωP∗.

Theorem 5.1. Let (xn, fn) be a Schauder frame for a Banach space E and let
({ fn}, S) be an associated Banach frame of type ωP∗. Let {αn} be a sequence of
scalars such that 1

αn
− 1
αn+1

= 1, for all n ∈ N and that there is no z ∈ E such that


 n∑
i=1
αi x i − z





E
→ 0 as n→∞. Then, there exists a reconstruction operator eS0 such

that
�
{ 1
αn

fn − 1
αn+1

fn+1}, eS0

�
is a Banach frame of type ωP∗ for E.

Proof. First we show that
�
{ 1
αn

fn − 1
αn+1

fn+1}, eS0

�
is a Banach frame for E.

Assume that it is not true. Then, there exists a non-zero vector x0 such that
( 1
αn

fn − 1
αn+1

fn+1)(x0) = 0, for all n ∈ N.
This gives

1

αn
fn(x0) =

1

αn+1
fn+1(x0), for all n ∈ N.

By using frame inequality of ({ fn}, S) we obtain:

fn(x0) =
αn

α1
f1(x0) ̸= 0, for all n ∈ N.

Now, (xn, fn) is a Schauder frame for E, we have

x0 =
∞∑

n=1

fn(x0)xn

=
∞∑

n=1

αn

α1
f1(x0))xn.

Thus,



 n∑

i=1
βi x i− x0





E
→ 0 as n→∞, where βi =

αi

α1
f1(x0). This is a contradiction.

Hence there exists a reconstruction operator eS such that ({ 1
αn

fn − 1
αn+1

fn+1}, eS0) is
a Banach frame for E.
Now, ({ fn}, S) is of type ωP∗, there exists a functional Φ ∈ E∗∗ such that Φ( fn) = 1,
for all n ∈ N.
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Therefore

Φ
�

1

αn
fn − 1

αn+1
fn+1

�
= 1, for all n ∈ N.

Hence
�
{ 1
αn

fn − 1
αn+1

fn+1}, eS0

�
is a Banach frame of type ωP∗. �

Now we show that an associated Banach frame of type ωP∗ (of pre-shrinking
Schauder frame) produces another Banach frame of type ωP∗:
Let (xn, fn) be a pre-shrinking Schauder frame for E with associated Banach frame
({ fn}, S) which is of type ωP∗.

Then, X =
n
{γi} ⊂ K :

∞∑
i=1
γi fi converges
o

is a Banach space with norm given

by ∥{γi}∥X = sup
1≤n<∞




 n∑
i=0
γi fi





E∗

.

Define W : E∗ →X by W ( f ) = {π(xn)( f )}, f ∈ E. Then W is an isomorphism

of E∗ into X . Also, U : X → E∗ defined by U({γi}) =
∞∑

i=1
γi fi is a bounded linear

operator from X onto E∗.
Let Z = Ker U . Then, Z is a closed subspace of X such that W (E∗)∩Z = {0}.

If {γi} ∈ X is any element such that f =
∞∑

i=1
γi fi , then {π(xn)( f )} ∈ W (E∗) and

∞∑
i=1

(γi −π(x i)( f )) fi =
∞∑

i=1

γi fi −
∞∑

i=1

π(x i)( f ) fi

= 0 .

Therefore, {γi −π(x i)( f )} ∈ Z such that

{γi}= {π(x i)( f )}+ {γi −π(x i)( f )}.
Hence X =W (E∗)⊕Z .

Let ν be a projection of X onto W (E∗).
Then

ν({γi}) =
�
π(xn)
� ∞∑

i=1

γi fi

��
, {γi} ∈ X .

Therefore, for each k ∈ N, we have

ν(ek) =
�
π(xn)
� ∞∑

i=1

δi,k fi

��
, where δi,k =

¨
1 if i = k
0, if i ̸= k

=W ( fk) .

Thus, fn = W−1(ν(en)) for all n ∈ N, and {en} be the sequence of canonical unit
vectors. Hence (W −1(ν(en)), S) is a Banach frame of type ωP∗ for E.

This is summarized in the following.
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Theorem 5.2. Let (xn, fn) be a pre-shrinking Schauder frame for a Banach space
E with associated Banach frame ({ fn}, S) which is of type ωP∗. Then, there exists a
projection ν of X ontoW (E∗) along Z such that (W −1(ν(en)), S) is a Banach frame
of type ωP∗ for E.

6. Shrinking Banach Frames

Definition 6.1. A Banach frame ({ fn}, S) for a Banach space E is said to be
shrinking if there exists a reconstruction operator W such that ({ fn}, W ) is a retro
Banach frame for E∗∗.

Definition 6.2. An exact Banach frame ({ fn}, S) for a Banach space E with
admissible sequence of vector {xn} ⊂ E is said to be retro shrinking if there exists
a reconstruction operator T such that ({xn}, T ) is a retro Banach frame for E∗.

Definition 6.3. A Banach frame ({ fn}, S) for a Banach space E is said to be bi-
shrinking if it is both shrinking and retro shrinking.

Towards the existence of shrinking Banach frame, retro shrinking Banach frame
and bi-shrinking Banach frame we have following example.

Example 6.4. (a) Let ({gn}, S0) be a Banach frame for E = c0 given in
Example 3.3(b). Then there is a reconstruction operator W : (E∗∗)d1

=
{{ψ(gn)} : ψ ∈ E∗∗} → E∗∗ such that ({gn}, W ) is a retro Banach frame for
E∗∗. Hence ({gn}, S0) is shrinking Banach frame for E. But ({gn}, S0) is not
retro shrinking.

(b) Let E = ℓ1 and let { fn} ⊂ E∗ be a sequence given by fn(x) = ξn, for
all n ∈ N, (x = {ξ j} ∈ E). Then, there exists a reconstruction operator
S : Ed0

= {{gn(x)} : x ∈ E} → E such that ({ fn}, S) is an exact Banach
frame for E with admissible sequence of vectors {xn = en} ⊂ E (sequence
of canonical unit vectors in E). Also, there exists a reconstruction operator
T : (E∗)d = {{ f (xn)} : f ∈ E∗} → E∗ such that({xn}, T ) is retro Banach frame
for E. Therefore, ({ fn}, S) is retro shrinking Banach frame for E. But there is
no reconstruction operator W such that ({ fn}, W ) is retro Banach frame for
E∗∗. Hence ({ fn}, S) is not shrinking.

(c) Let E = c0. Define { fn} ⊂ E∗ by

f2(x) = ξ1 +
1

2
ξ2,

f2n−1(x) = ξ2n−1, n ∈ N

f2n(x) =−ξ2n−3 + ξ2n−1 +
1

2nξ2n, n= 2,3, . . . .

 , x = {ξ j} ∈ E .

Then, there exists a reconstruction operator S : Ed = {{ fn(x)} : x ∈ E} → E
such that ({ fn}, S) is an exact Banach frame for E with admissible sequence of
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vectors {xn} ⊂ E given by:

x2n−1 = e2n−1 − 2ne2n + 2n+1e2n+2

x2n = 2ne2n,

)
, n ∈ N.

By nature of construction of {xn} and { fn} there exists reconstruction operator
T : Ed = {{ f (xn)} : f ∈ E∗} → E∗ such that such that ({xn}, T ) is retro Banach
frame for E∗ and W : (E∗∗)d0

= {{ψ( fn)} : ψ ∈ E∗∗} → E∗∗ such that ({ fn}, W ) is
retro Banach frame for E∗∗. Hence ({ fn}, S) is bi-shrinking Banach frame for E.

The following proposition shows that in reflexive Banach spaces every Banach
frame for a Banach space is shrinking.

Proposition 6.5. Every Banach frame ({ fn}, S) in reflexive Banach spaces is
shrinking.

Proof. Let ({ fn}, S) be a Banach frame for E with respect to Ed . If there exists no
reconstruction operator W such that ({ fn}, W ) is retro Banach frame for E∗∗, then
there exists a non-zero functional ϕ ∈ E∗∗ such that ϕ( fn) = 0, for all n ∈ N.
By reflexivity of E there is a non-zero vector x ∈ E such that π(x) = ϕ. So,
fn(x) = π(x)( fn) = ϕ( fn) = 0, for all n ∈ N. Therefore, by using frame inequality
of ({ fn}, S), we obtain ϕ = 0, contradiction. Hence there exists a reconstruction
operator W such that ({ fn}, W ) is retro Banach frame for E∗∗. Thus, ({ fn}, S) is
shrinking. �

Remark 6.6. Banach frames in reflexive Banach spaces, in general, not retro
shrinking.

Example 6.7. Let E = l2. Define { fn} ⊂ E∗ by

f1(x) = ξ1

fn(x) = ξn−1, n= 2,3, . . .

«
, x = {ξ j} ∈ E .

Then, there exists a reconstruction operator S : Ed = {{ fn(x)} : x ∈ E} → E such
that ({ fn}, S) is a Banach frame for E which is shrinking but not retro shrinking.

The following theorem gives necessary and sufficient condition for a Banach
frame to be shrinking.

Theorem 6.8. A Banach frame ({ fn}, S) for a Banach space E is shrinking if and
only if dist( f , [ f1, f2, . . . , fn])→ 0 as n→∞, for all f ∈ E∗.

Proof. Assume that ({ fn}, S) is shrinking. Then, there exists a reconstruction
operator W such that ({ fn}, W ) is a retro Banach frame for E∗∗. So, there are
positive constants A0 and B0 such that

A0∥ψ∥E∗∗ ≤ ∥{ψ( fn)}∥(E∗∗)d ≤ B0∥ψ∥E∗∗ , for all ψ ∈ E∗∗. (6.1)

By using retro frame inequality of ({ fn}, W ), we obtain dist( f , [ f1, f2, . . . , fn])→
0 as n→∞, for all f ∈ E∗.
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Conversely, if dist( f , [ f1, f2, . . . , fn]) → 0 as n → ∞, for all f ∈ E∗, then by
Lemma 2.7 there exists a reconstruction operator W : (E∗∗)d0

= {{ψ( fn)} : ψ ∈
E∗∗} → E∗∗ such that ({ fn}, W ) is a retro Banach frame for E∗∗. Hence ({ fn}, S) is
shrinking. �

The following proposition gives an application of retro shrinking Banach frames.

Proposition 6.9. Let ({ fn}, S) be retro shrinking Banach frame for E with associated

sequence of vectors {xn} ⊂ E. If



z j −

n∑
i=1
γi, j x i





E
→ 0, as n→∞, 1 ≤ j ≤ m, and

z1, z2, . . . , zm are linearly independent vectors in E, then rank(γi, j)i∈N, j=1,2,...,m = m.

Proof. This follows from properties of determinants and frame inequality of
({ fn}, S). �

The following proposition gives necessary and sufficient condition for retro
shrinking Banach frame to be shrinking.

Proposition 6.10. Let ({ fn}, S) be retro shrinking Banach frame for E with
admissible sequence of vectors {xn} ⊂ E Then ({ fn}, S) is shrinking if and only if
there exists a reconstruction operator J such that ({π(xn}, J) is the only exact Banach
frame for E∗ with admissible sequence { fn}.
Proof. Suppose first that ({ fn}, S) is shrinking. Then, there exists a reconstruction
operator W such that ({ fn}, W ) is retro Banach frame for E∗∗. Let ({ψn}, J0) be
an exact frame for E∗ with admissible sequence { fn}. Then, by using retro frame
inequality of ({ fn}, W ) we obtain π(xn) =ψn, for all n ∈ N.

On the other hand let ({π(xn}, J) is the only exact Banach frame for E∗ with
admissible sequence of vectors { fn}. If ({ fn}, S) is not shrinking, then there exists
a non-zero functional Ψ ∈ E∗∗, such that Ψ( fn) = 0, for all n ∈ N.

Put Φ1 = π(x1)−Ψ and Φn+1 = π(xn), n ∈ N.
Then, there exists a reconstruction operator J1 such that ({Φn}, J1) is an exact
Banach frame for E∗ with admissible sequence { fn}, a contradiction. Hence
({ fn}, S) is shrinking Banach frame for E. �

An exact Banach frame, in general, not retro shrinking. The following
proposition gives necessary and sufficient condition under which an exact Banach
frame turns out to be retro shrinking.

Proposition 6.11. An exact Banach frame ({ fn}, S) for E with admissible sequence
of vectors {xn} ⊂ E is retro shrinking if and only if there is a reconstruction operator
J such that ({π(xn}, J) is normalized tight Banach frame for E∗.

Proof. If ({ fn}, S) is retro shrinking, then there exists a reconstruction operator
T such that ({xn}, T ) is retro Banach frame for E∗. Then, by using retro frame
inequality for ({xn}, T ), there is a reconstruction operator J : Θd = {{π(xn)(ψ)} :
ψ ∈ E∗} → E∗ such that ({π(xn}, J) is normalized tight Banach frame for E∗.
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On the other hand if ({ fn}, S) is not retro shrinking, then there is non-zero
functional f0 ∈ E∗ such that f0(xn) = 0 for all n ∈ N. That is, π(xn)( f0) = 0
for all n ∈ N. So, by using frame inequality for ({π(xn}, J), we obtain f0 = 0, a
contradiction. Hence ({ fn}, S) is retro shrinking. �

The following theorem provides necessary and sufficient conditions under
which retro shrinking Banach frames for finite dimensional Banach spaces turns
out to be of type P∗.

Theorem 6.12. Let ({ fn}, S)n=1,2,...,l (where S : Xd → X) be a retro shrinking Banach
frame for a finite dimensional Banach space X with admissible sequence of vectors
{xn}n=1,2,...,l ⊂ X. Then, the following conditions are equivalent:

(a) ({ fn}, S)n=1,2,...,l is of type P∗.
(b) There exists a functional f0 ∈ X∗ and sequence {Ψn}n=1,2,...,l ⊂ X∗∗ such that

Ψn( fm + f0) = δn,m, for all n, m.

Proof. (a)⇒(b): Define a sequence {Ψn} ⊂ X∗∗ by

Ψ1 = π(x1)− 1

2
Φ,

Ψn = π(xn), n= 2,3, . . . l,

where Φ is the associated functional to ({ fn}, S) and π : X→ X∗∗ is the canonical
mapping.

Put f0 = f1. Then, for f0 ∈ X∗ is a non-zero functional such that

Ψn( fm + f0) = δn,m, for all n, m .

(b)⇒(a): Since ({ fn}, S)n=1,2,...,l is a retro shrinking Banach frame for X with
admissible sequence of vectors {xn}n=1,2,...,l ⊂ X, so π(xk)( f0) ̸= 0 for some k.

For scalars α1,α2, . . . ,αl , we have����π(xk)
� l∑

i=1

αi( fi + f0)
�����= ���� l∑

i=1

(αiπ(xk) fi +αiπ(xk) f0)

����
=

����αk +
l∑

i=1

αiπ(xk) f0

����
≥
���� l∑

i=1

αiπ(xk) f0

����− |αk|

=

���� l∑
i=1

αi

����|π(xk) f0| −
���� l∑

i=1

αiΨk( fi + f0)

���� .
Thus ���� l∑

i=1

αi

����≤ (∥π(xk)∥+ ∥Ψk∥)
|π(xk)( f0)|




 l∑

i=1

αi( fi + f0)
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By Theorem 2.12, there exists x0 ∈ X such that

( fn + f0)(x0) = 1, for all n= 1,2, . . . , l.

This gives fn(x0) = 1− f0(x0) for all n = 1,2, . . . , l. If f0(x0) = 1, then fn(x0) = 0,
for all n = 1, 2, . . . , l. So, frame inequality for ({ fn}, S)n=1,2,...,l gives x0 = 0, a

contradiction. Thus, f0(x0) ̸= 1. Put Φ = π
�

1
1− f0(x0)

x0

�
. Then, Φ is a functional

in X∗∗ such that Φ( fn) = 1, for all n = 1,2, . . . , l. Hence ({ fn}, S)n=1,2,...,l is of type
P∗. �

The following theorem show that bi-shrinking Banach frames are invariant
under block perturbation.

Theorem 6.13. Let ({ fn}, S) be a bi-shrinking Banach frame for E and let {ψn} be
block perturbation of { fn}. Then there exists a reconstruction operator eS such that
({ψn}, eS) is bi-shrinking Banach frame for E.

Proof. First we show that there exists a reconstruction operator eS such that
({ψn}, eS) is Banach frame for E. Assume that this is not possible. Then, there
exists a non-zero vector z0 in E such that ψn(z0) = 0, for all n ∈ N. By definition of
block perturbation, we obtain fn(z0) = 0, for all n ∈ N. Thus, frame inequality of
({ fn}, S) gives z0 = 0, a contradiction. Hence, there exists a reconstruction operatoreS : Jd = {{ψn(x)} : x ∈ E} → E such that ({ψn}, eS) is Banach frame for E.

Now ({ fn}, S) is bi-shrinking, so ({ fn}, S) is exact. Let {xn} be admissible
sequence of vectors to ({ fn}, S). Define a sequence of vectors {wn} in E:

wk =

¨
xk −αk xpk

if k ̸= pn, mn−1 ≤ k ≤ mn,

xpn
if k = pn.

, n ∈ N.

Then,ψm(wn) = δn,m, for all n, m ∈ N. That is, ({ψn}, S0) is an exact Banach frame
for E. Also, by using Lemma 2.7, there exists reconstruction operators T , W such
that ({wn}, T ) and ({ψn}, W ) are retro Banach frames for E∗ and E∗∗, respectively.
Hence ({ψn}, eS) is bi-shrinking. �

To conclude the section we observe that if two Banach spaces E and F both
have shrinking Banach frames/retro shrinking Banach frames/bi-shrinking Banach
frames, then, their product space E × F also has a shrinking Banach frame (retro
shrinking Banach frame/bi-shrinking Banach frame). This is given in the following
proposition.

Proposition 6.14. Let ({ fn}, S) ({ fn} ⊂ E∗, S : Ed → E) and ({gn}, T ) ({gn} ⊂
F∗, T : Fd → F) be shrinking Banach frames (retro shrinking Banach frames/bi-
shrinking Banach frames) for Banach spaces E and F, respectively. Then there exist
a sequence {hn} ⊂ (E × F)∗, and a reconstruction operator Θ0 : (E × F)d → E × F
such that ({hn},Θ0) is a normalized tight shrinking Banach frame (retro shrinking
Banach frame/bi-shrinking Banach frame).
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7. Dual Weak of Type P∗ Banach Frame Systems

Banach frame systems introduced and studied by Kaushik et al in [20]. Let
({ fn}, S) ({ fn} ⊂ E∗, S : Ed → E) be a Banach frame for E with respect to Ed . Let
{ϕn} ⊂ E∗∗ be a sequence such that ϕn( fm) = δn,m, for all n, m ∈ N. If there exists
a reconstruction operator S0 : (E∗)d → E∗ such that ({ϕn},S0) is a Banach frame
for E∗ with respect to (E∗)d . Then the pair (({ fn}, S), ({ϕn},S0)) is called a Banach
frame system for the Banach space E. The Banach frame ({ϕn},S0) is called an
admissible Banach frame to the Banach frame ({ fn}, S).

Definition 7.1. A Banach frame system (({ fn}, S), ({ϕn},S0)) is said to be of type
w′P∗ (dual weak of type P∗) if there exists a functional f0 in E∗ such thatϕn( f0) = 1,
for all n ∈ N.

Regarding existence of Banach frame systems of type w′P∗ we have following
example.

Example 7.2. Let E = ℓ1.
Let { fn} ⊂ E∗, {ϕn} ⊂ E∗∗ be sequences defined by

fn(x) = ξn, x = {ξn} ∈ E

ϕn( f ) = βn, f = {βn} ∈ E∗

«
n= 1,2,3, . . . .

Then, there exists reconstruction operators S : Ed = {{ fn(x)} : x ∈ E} → E and
S0 : (E∗)d = {{ϕn( f )} : f ∈ E∗} → E∗ such that (({ fn}, S), ({ϕn},S0)) is a Banach
frame system for E. Now f0=(1,1,1,. . . ) in E∗ is such that ϕn( f0) = 1, for all
n ∈ N. Hence (({ fn}, S), ({ϕn},S0)) is of type w′P∗.

Example 7.3. Let E = c0 and let { fn} ⊂ E∗, {ϕn} ⊂ E∗∗ be sequences defined in
Example 7.2. Then, (({ fn}, S), ({ϕn},S0)) is a Banach frame system for c0 which
is not of type w′P∗.

Remark 7.4. Let ({ fn}, S) be a Banach frame of type P∗. Then, in general, the
corresponding Banach frame system (({ fn}, S), ({ϕn},S0)) is not of type w′P∗.
Indeed, the Banach frame system given in Example 7.3 is not of type w′P∗ but
({ fn}, S) is of type P∗.

Remark 7.5. Let (({ fn}, S), ({ϕn},S0)) be a Banach frame system for a Banach
space E which is of type w′P∗. Then, in general, ({ fn}, S) is not of type P∗. Indeed,
let (({ fn}, S), ({ϕn},S0)) be a Banach frame system for E = ℓ1 given in Example
7.2 (which is of type w′P∗). But there is no Φ in E∗∗ such that Φ( fn) = 1, for all
n ∈ N. Hence ({ fn}, S) is not of type P∗.

Remark 7.6. Let (({ fn}, S), ({ϕn},S0)) be a Banach frame system for E. Then, in
general, admissible Banach frames ({ϕn},S0) is not unique. However, it is unique
provided (({ fn}, S) is shrinking.
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The following proposition gives necessary and sufficient conditions for a Banach
frame system to be of type w′P∗.

Proposition 7.7. (({ fn}, S), ({ϕn},S0)) be a Banach frame system for E. Then, the
following are equivalent:

(a) (({ fn}, S), ({ϕn},S0)) of type w′P∗.
(b) There exists no reconstruction operator eJ such that ({ϕn−ϕn+1}, eJ) is a Banach

frame for E∗.

Proof. This follows from frame inequality of ({ϕn−ϕn+1}, eJ) and Lemma 2.7. �

8. Relation between Various Types of Frames in Banach spaces

In this section we discuss relation between Schauder frames, associated Banach
frames, Banach frames of type P and of type P∗. This is given in the form of
remarks.

Remark 8.1. Let ({ fn}, S) is a Banach frame for E and ({xn}, W ) a retro
Banach frame for E∗. Then, in general, (xn, fn) is not a Schauder frame for E.
(Example 9.1).

Remark 8.2. Let (xn, fn) be a Schauder frame for E and let ({ fn}, S), ({xn}, T ) be
its associated Banach frame and associated retro Banach frame, respectively. Then:

(I) ({ fn}, S) need not be of type P∗. (Example 9.2(a))
(II) ({ fn}, S) may be of type P∗ but not of type P. (Example 9.2(b))

(III) ({ fn}, S) may be shrinking but not of type P∗. (Example 9.2(a))
(IV) ({ fn}, S) may be retro shrinking but not of type P∗. (Example 9.3)
(V) ({ fn}, S) may be exact and shrinking but not of type P∗. (Example 9.3)

(VI) ({xn}, T ) may not be strong. (Example 9.2(c))
(VII) ({ fn}, S) may be of type P∗ but the corresponding Banach frame system

(({ fn}, S), ({ϕn},S0)) need not be of type w′P∗. (Example 9.2(b))

9. Counter-examples

Example 9.1. Let E = l2 and {en} ⊂ E be the sequence of unit vectors. Let
{xn} ⊂ E, { fn} ⊂ E∗ be sequences defined by

xn = en − en+1,

fn(x) = ξn − ξn+1, x = {ξn} ∈ E

«
n= 1,2, 3, . . . .

Then, there exist reconstruction operators S and W such that ({ fn}, S) is a Banach
frame for E and ({xn}, W ) is a retro Banach frame for E∗. But (xn, fn) is not a
Schauder frame for E.
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Example 9.2. Let E = c0 and {en} ⊂ E be the sequence of unit vectors.

(a) Let {xn} ⊂ E, { fn} ⊂ E∗ be sequences defined by

x1 = e1, x2 = e1, xn = en−1,

f1(x) =
1
2
ξ1, f2(x) =

1
2
ξ1, fn(x) = ξn−1, x = {ξn} ∈ E

)
n= 3,4,5, . . . .

Then, (xn, fn), is a Schauder frame for E. Also, there exists a reconstruction
operator V such that ({ fn}, V ) is a shrinking Banach frame (associated) for E
which is not of type P∗ (hence not of type P).

(b) Let {xn} ⊂ E, { fn} ⊂ E∗ be sequences defined by

xn = en,

fn(x) = ξn, x = {ξn} ∈ E

«
n= 1,2,3, . . . .

Then, (xn, fn) is a Schauder frame for E. Also, there exists a reconstruction
operator S such that ({ fn}, S) is an exact Banach frame (associated) for E.
Also, Φ=(1,1,1. . . ) in E∗∗ is such that Φ( fn) = 1, for all n ∈ N. Hence ({ fn}, S)
is of type P∗. One may observe that ({ fn}, S) is not of type of P. Furthermore,
Banach frame system (({ fn}, S), ({ϕn},S0)) associated with ({ fn}, S) is not of
type w′P∗.

(c) Let {xn} ⊂ E, { fn} ⊂ E∗ be sequences defined by

xn = (2,2, 2, . . . , 2︸ ︷︷ ︸
n

, 0, 0, 0, . . .),

fn = (0,0, 0,0, . . . , 0︸ ︷︷ ︸
n−1

, 1
2
, −1

2
, 0, 0, 0, 0, . . .)

 n ∈ N.

Then, (xn, fn) is a Schauder frame for E. Also, there exists a reconstruction operator
T : (E∗)d = {{ f (xn)} : f ∈ E∗} → E∗ such that ({xn}, T ) is a retro Banach frame
(associated) for E∗ with fn(xm) = δn,m, for all n, m ∈ N. But ∥xn∥ = 2, for all
n,∈ N. Hence ({xn}, T ) is not strong.

Example 9.3. Let E = ℓ2. Let {xn} ⊂ E, { fn} ⊂ E∗ be sequences defined by

xn = en,

fn(x) = ξn, x = {ξn} ∈ E

«
n= 1,2, 3, . . . .

Then, (xn, fn) is a Schauder frame for E. Also, there exists a reconstruction
operator S such that ({ fn}, S) is shrinking (and retro shrinking) Banach frame
(associated) for E with admissible sequence of vectors {xn}. But ({ fn}, S) is not
of type P∗.

10. Conclusion

Banach frames of typesωP∗ are useful in reconstruction of functions (signals) in
Banach spaces. In particular, in a case when there is some error (doping functional)
associated with a given Banach frame. Proposition 3.5 shows that how Banach
frames of typesωP∗ are useful in recovery of a function (signal). In fact, the action
of associated functional on a given Banach frame decide the existence of a new
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pre-frame operator which recover the original function. Shrinking Banach frames
and retro Banach frames are defined and discussed towards the development of
frames in Banach spaces. Proposition 6.5 gives a necessary condition for reflexivity
of Banach spaces (which admits Banach frames). Relation between shrinking and
retro-shrinking Banach frames is given in Proposition 6.10. A relation between
retro shrinking Banach frames and Banach frames of type ωP∗ is given in
Theorem 6.12.
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